
	

© 2024-2025 Rebecca Wirfs-Brock. Licensed under CC BY-SA 4.0 March 15, 2025
	

Patterns About Transitioning from Quality
Assurance to Agile Quality

Rebecca Wirfs-Brock, Wirfs-Brock Associates

	

The	patterns	in	this	collection	focus	on	actions	for	improving	software	and	system	
quality	and	integrating	Quality	Assurance	concerns	and	roles	early	and	often	into	
your	Agile	development	and	delivery	process.	Although	the	actions	you	choose	to	
take	can	vary	depending	on	your	team	size,	your	organization	and	what	you	value,	
in	general,	most	of	these	patterns	can	be	applied	to	widely	different	contexts.	
Originally	these	patterns,	written	by	Joe	Yoder,	Rebecca	Wirfs-Brock,	Ademar	
Aquiar,	and	Hironori	Washikazi,	were	presented	at	various	patterns	conferences	
(see	references).	

The	patterns	in	this	collection	are	organized	into	these	categories:	core,	identifying	
qualities,	making	qualities	visible,	and	being	agile	at	quality.	Each	pattern	is	
described	in	pattern	gist	form.	A	pattern	gist	is	a	brief	version	of	the	fuller	pattern	
description.	The	gist	motivates	the	pattern,	poses	a	question	about	the	problem	the	
pattern	addresses,	and	then	sketches	the	pattern	solution.	

Gists	are	linked	to	fuller	pattern	descriptions—typically	2	or	3	pages—in	the	
original	papers	presented	at	various	patterns	conferences.	

Category:	Core	Patterns	
These	patterns	establish	overarching	goals	for	embedding	quality-related	activities	
and	instilling	a	quality	focus	into	Agile	teams.	

Pattern:	Integrate	Quality	
Generally,	Quality	Assurance	(QA)	is	not	done	until	after	many	sprints	or	way	late	in	
the	development	process.	Delaying	QA	testing	until	after	many	sprints	have	been	
completed	can	cause	a	lot	of	problems	with	work	items	that	were	thought	to	be	
good	enough	but	weren’t.	System	quality	attributes,	such	as	performance	or	security	
that	are	not	addressed	until	way	late	in	the	process	can	cause	upheaval	in	the	
architecture.	If	important	system	qualities	had	been	recognized	and	considered	
during	earlier	sprints,	some	of	them	could	have	been	incorporated	at	this	earlier	
time	resulting	in	less	rework.		

How	can	you	incorporate	examining	important	system	qualities	into	your	
agile	process	and	where	does	QA	fit	into	the	process?		

As	part	of	your	agile	process,	create	ways	to	understand,	describe,	develop	and	test	
for	system	qualities.	This	can	be	done	through	getting	a	high	level	understanding	of	
what	system	qualities	are	important	to	your	project	and	providing	a	means	for	

	

	 2	

describing	them.	The	most	important	idea	is	to	make	QA	part	of	the	whole	team	and	
to	integrate	quality	thinking	into	your	agile	mindset.		

For	example,	if	you	are	practicing	Scrum,	you	would	make	sure	this	attention	to	
system	quality	is	part	of	your	normal	sprint	including	planning	and	testing.	During	
the	envisioning	phase,	important	quality	attributes	should	be	considered	and	
understood.	Then,	these	can	be	prioritized	into	the	backlog	for	consideration	during	
sprints.	During	a	sprint,	any	relevant	quality	tasks	will	be	included.	In	addition	to	
the	normal	functional	and	acceptance	testing,	the	Scrum	team	will	also	develop	tests	
to	validate	the	system	qualities	or	ways	to	monitor	them	through	a	dashboard.	

Pattern:	Break	Down	Barriers		
Most	agile	processes	do	a	good	job	of	focusing	on	functional	requirements,	how	to	
prioritize	them,	and	on	a	collaborative	environment	that	fully	engages	product	
owners,	scrum	masters	and	the	development	team.	However,	barriers	can	exist	
between	people	who	are	not	“inside”	the	development	team	or	feel	tangential	to	it.	
This	is	especially	important	for	contributors	who	may	not	be	engaged	full	time	on	
the	project.	Groups	or	individuals	that	contribute	to	an	agile	project	need	be	
engaged	and	feel	like	valued	contributors	to	the	software’s	success.		

How	can	agile	teams	remove	the	barriers	and	become	more	agile	at	quality?	

Tear	down	those	barriers	or	walls	that	impede	communication	through	various	
actions.	Have	QA	fully	participate	in	the	team’s	estimation	sessions.	Have	QA	
specialists	move	participate	as	part	of	the	team	bringing	their	expertise	to	the	
group.	Have	the	Product	Owner	(PO),	development	team,	and	QA	all	be	part	of	
planning	prior	to	the	upcoming	sprint.	

An	important	principle	in	most	agile	practices	is	the	“Whole	Team”	concept,	where	
people	work	together	to	produce	a	high	quality	product.	It	isn’t	just	testers	who	
need	to	care	about	quality.	Everyone	on	the	team	needs	to	care	about	quality,	even	
though	they	bring	different	strengths	and	experiences	to	their	work.	Having	QA	as	
part	of	team	from	the	start	helps	instill	a	quality	mindset	into	the	team	and	makes	
quality	concerns	an	integral	part	of	a	more	streamlined	process.

	 	

	

	 3	

Category:	Identifying	Qualities	(8	patterns)		
An	important	but	difficult	task	for	software	development	teams	is	to	identify	the	
important	qualities	(non-functional	requirements)	for	a	system.	Quite	often	system	
qualities	are	overlooked	or	simplified	until	late	in	the	development	process,	thus	
causing	time	delays	due	to	extensive	refactoring	and	rework	of	the	software	design	
to	correct	quality	flaws.	It	is	important	that	agile	teams	identify	essential	qualities	
and	make	those	qualities	visible	to	the	team.	

Pattern:	Find	Essential	Qualities		
Quite	often	essential	system	qualities	are	overlooked	or	simplified	until	late	in	the	
development	process.	This	can	cause	delays	due	to	extensive	refactoring	and	
rework	of	the	software	design	in	order	to	correct	quality	flaws.	To	avoid	extensive	
rework	it	is	important	that	agile	teams	identify	these	fundamental	qualities	and	
make	those	qualities	visible	to	the	team	in	a	timely	manner.		

How	can	agile	teams	understand	essential	qualities	for	an	evolving	system?		

At	the	start	of	a	project	it	is	important	to	identify	essential	qualities	critical	to	the	
success	of	the	project.	This	can	be	done	via	an	agile	quality	attribute	workshop	
where	you	agree	on	essential	qualities,	and	make	sure	they	are	visible	to	team.	
These	workshops	should	include	key	members	such	as	the	product	owner,	
developers,	architects,	quality	assurance,	and	the	customer.	Whenever	there	are	
major	changes	to	the	roadmap	or	new	system	qualities	become	apparent,	the	team	
can	choose	to	hold	another	quality	workshop.		

During	a	quality	workshop,	which	might	last	an	hour	or	two,	simple	collaborative	
techniques	can	be	used	to	identify	and	characterize	system	qualities.	People	can	
identify	a	concern	and	write	it	on	a	sticky	note	that	is	associated	with	a	specific	
system	quality	(such	as	performance	or	reliability).	The	team	can	vote	on	what	they	
consider	most	important	and	urgent	and	then	write	Agile	Quality	Scenarios	for	
those.	

Pattern:	Agile	Quality	Scenarios	
Often	backlog	items	are	restricted	to	functional	requirements.	From	these	backlog	
items	scenarios	and	user	stories	are	written	to	elaborate	them	so	that	concrete	tasks	
can	be	identified	and	work	effort	estimated.	This	incrementally	helps	the	project	
move	forward	developing	functionality.	As	the	system	evolves,	however,	there	can	
be	many	other	important	system	qualities	such	as	security,	performance,	reliability	
and	other	qualities	that	also	need	attention.	Typically	these	requirements	have	not	
been	identified	if	a	product	backlog	only	includes	functional	requirements.		

How	can	we	get	a	good	understanding	and	a	high	level	view	of	the	important	
qualities	that	need	to	be	addressed	during	the	development	of	the	system?	

Early	on	in	the	process,	use	a	lightweight	methodology	to	create	and	describe	high-
level	quality	scenarios	that	address	important	non-functional	requirements	such	as	

	

	 4	

performance,	load,	reliability,	and	security.	If	you	know	that	certain	qualities	are	an	
important	consideration,	they	can	be	prioritized	as	part	of	the	product	roadmap	and	
included	during	relevant	sprints.	As	more	qualities	become	apparent,	you	can	create	
scenarios	for	them	as	needed.	These	scenarios	can	be	used	in	two	ways:	to	drive	the	
design	of	core	aspects	of	a	system	based	on	quality	concerns,	or	to	capture	a	
concrete	scenario	to	evaluate	whether	the	system’s	architecture	satisfies	that	
particular	quality.		

Quality	scenarios	describe	desired	system	qualities	following	a	general	form	that	
has	these	parts:	the	source	of	stimulus	(or	what	causes	the	quality	to	be	exhibited),	
the	stimulus	(or	a	brief	summary	of	an	action	or	event),	the	artifact	and	environment	
(what	parts	of	the	system	under	what	operating	conditions),	the	response	(what	
happens	when	the	system	reacts),	and	the	response	measure	(some	concrete,	
tangible	result	you	expect).		

Pattern:	Quality	Stories	
While	creating	and	implementing	user	stories	for	functional	requirements,	you	
identify	performance,	usability,	internationalization,	reliability	or	other	non-
functional	qualities	that	broadly	apply	to	several	user	stories	or	across	a	number	of	
features.	At	other	times	you	may	have	a	specific	system	quality	that	needs	to	be	
improved	on,	perhaps	to	achieve	a	landing	zone	target.		

How	can	you	make	these	quality	requirements	visible	to	the	team	and	
prioritized?	

While	working	on	different	parts	of	the	system	or	when	important	qualities	need	to	
be	prioritized,	create	a	quality	story	to	represent	the	system	qualities,	especially	for	
those	that	span	multiple	user	stories	or	features.	Create	separate	quality	stories	and	
add	these	to	your	backlog.	In	contrast,	an	agile	user	story	is	a	short,	brief	description	
of	a	desired	feature,	told	from	the	perspective	of	the	person	who	desires	that	
capability.	Attached	to	a	single	user	story	there	may	also	be	story-specific	fold-out	
qualities.	But	they	don’t	give	you	a	picture	of	the	overall	quality	you	need.	

Your	backlog	can	contain	both	quality-specific	and	functional	user	stories.	Adding	
quality-specific	stories	to	your	backlog	makes	these	quality	requirements	visible.	It	
also	allows	the	Product	Owner	to	prioritize	quality-related	concerns	along	with	
system	functionality.		

Pattern:	Measurable	System	Qualities		
To	know	whether	a	desired	quality	has	been	achieved	it	has	to	be	measured.	The	
description	of	the	quality	and	the	specific	aspect	you	are	trying	to	measure	can’t	be	
vague	or	fuzzy.		

How	can	you	decide	on	what	values	you	expect	for	a	quality	and	how	to	
measure	them?		

	

	 5	

Define	an	appropriate	way	to	measure	a	quality	and	to	describe	it	with	only	as	much	
accuracy	and	precision	as	you	need.	This	involves	defining	or	finding	an	appropriate	
way	to	measure	(the	meter)	and	describing	accurately	the	values	you	expect	(the	
scale).	There	are	three	types	of	scales	of	measure:	natural,	constructed,	or	proxy.		

A	natural	scale	is	one	that	is	obviously	associated	with	a	specific	quality	and	is	
usually	the	easiest	to	agree	upon.	A	constructed	scale	is	built	specifically	to	measure	
and	quantify	a	quality,	for	example,	a	7-point	user	satisfaction	scale.	A	proxy	scale	is	
an	indirect	measure	of	quality.	When	it	is	difficult,	too	costly	or	too	early	to	directly	
measure	system	qualities	use	a	proxy	scale	to	measure	parts	of	the	system	to	give	a	
feel	for	a	certain	system	quality	and	then	extrapolate	expected	values.	You	may	need	
to	construct	a	proxy	scale	when	parts	of	the	system	are	not	yet	completed	or	
integrated.	You	may	start	by	measuring	using	a	proxy,	then	transition	to	a	natural	
scale	if	you	continue	monitoring	the	quality	in	production.		

Pattern:	Fold-out	Qualities	
A	user	story	or	feature	is	considered	shippable	when	it	meets	the	expectations	of	a	
product	owner	and	has	the	agreed	qualities.	Typically	a	Product	owner’s	
expectations	are	phrased	as	acceptance	test	criteria	that	is	technology	neutral,	and	
at	a	high	level.	Some	user	stories	have	explicit	system	quality-related	criteria	that	
are	part	of	accepting	it	as	complete.	In	order	for	a	story	to	be	acceptable	it	must	
meet	specific	performance,	usability,	internationalization,	reliability	or	other	non-
functional	requirements.		

How	can	you	define	and	describe	agreed	upon	system	qualities	that	should	be	
exhibited	by	an	implemented	story?	

Create	and	attach	specific	quality	acceptance	criteria	to	the	user	story.	
These	are	called	fold-out	qualities	because	they	are	integral	to	accepting	
a	user	story,	but	they	are	not	necessarily	the	first	acceptance	criteria	
you	may	identify.	They	unfold	as	you	have	deeper	conversations	about	
how	your	system	should	behave	and	what	qualities	it	should	exhibit.	
While	your	initial	concern	is	correctly	implementing	that	functionality,	
satisfying	a	fold-out	quality	can	strongly	influence	your	design	and	
implementation	choices.	So,	they	are	important	to	discuss	and	reach	
agreement	about	and	more	completely	describe	the	definition	of	done.		
Pattern:	Agile	Landing	Zones		
On	a	complex	project	or	product,	you	need	to	be	aware	of	those	system	qualities	that	
contribute	to	your	project’s	success.	You	don’t	want	these	essential	success	criteria	
to	get	lost	in	with	the	myriad	of	other	requirements.	You	also	need	to	make	design	
tradeoffs	as	you	implement	your	system.	Almost	always	these	tradeoffs	have	
architectural	implications,	so	your	definition	of	success	needs	to	be	somewhat	
flexible—you	may	have	to	compromise	on	one	design	goal	in	order	to	achieve	
another.		

	

	 6	

How	can	you	understand	and	monitor	those	system	qualities	that	need	to	be	
addressed	in	a	way	that	allows	you	to	make	thoughtful	design	tradeoffs?		

Define	and	use	an	agile	landing	zone.	Tom	Gilb	originally	defined	a	landing	zone	as	a	
set	of	criteria	used	to	monitor	and	characterize	the	“releasability”	of	a	product.	An	
agile	landing	zone	is	one	where	all	the	criteria	and	acceptable	values	are	not	fixed	or	
known	at	the	beginning.	For	some	system	qualities,	there	isn’t	one	specific	number	
you	are	aiming	for,	but	you	know	what	is	minimally	acceptable.	For	other	qualities,	
you	may	have	specific	targets,	but	you	are	willing	to	compromise	on	them	in	order	
to	achieve	other	system	quality	objectives.	You	want	flexibility	in	achieving	some	
quality	requirements	and	overall	accountability.	

The	criteria	and	values	of	an	agile	landing	zone	take	shape	over	the	lifetime	of	a	
project.	Landing	zone	criteria	are	similar	to	release	criteria,	except	they	provide	for	
tolerances	in	acceptable	values.	There	isn’t	one	number	you	are	aiming	for;	you	have	
a	range	of	values	for	each	system	quality	attribute	you	are	targeting.	This	gives	you	
some	flexibility	in	defining	what’s	“good	enough.”		There	are	three	possible	values	
for	any	landing	zone	criteria:	minimum,	target,	and	outstanding.	A	minimum	value	is	
something	you	are	willing	to	live	with,	although	you	may	aspire	for	a	higher	value.	A	
target	value	is	what	you	think	you	can	achieve	with	reasonable	cost	and	effort.	An	
outstanding	value	is	something	that	you	believe	might	be	achievable	but	not	without	
significant	effort.	

Pattern:	Recalibrate	the	Landing	Zone		
Initially,	you	defined	a	set	of	landing	zone	criteria	that	you	expected	to	achieve	over	
a	few	iterations.	You	left	the	rest	of	your	landing	zone	purposefully	sketchy.	As	
you’ve	implemented	new	functionality,	you	have	continued	to	add	new	landing	zone	
criteria	while	monitoring	the	values	of	existing	ones.		

How	can	you	continue	to	evolve	your	landing	zone	and	keep	it	up	to	date?		

Revisit	your	landing	zone	criteria	from	time	to	time	and	reset	expectations.	Some	
initial	values	may	not	be	appropriate,	given	what	you	know	now.	Because	you	are	
implementing	your	system	incrementally	and	learning	more	about	your	system’s	
capabilities	and	limitations,	it	is	natural	for	the	criteria	in	an	Agile	Landing	Zone	and	
their	values	to	shift	and	be	adjusted	over	time.	

What	initially	appeared	to	be	reasonable	targets	may	change	in	light	of	new	facts	or	
market	changes.	You	might	recalibrate/readjust	landing	zone	criteria	based	on	new	
information/system	capabilities/technologies.	Previous	implementation	decisions	
may	either	positively	affect	or	limit	your	ability	to	achieve	newly	identified	criteria.	
Landing	zones,	like	release	criteria	can	and	do	change.	In	fact,	changing	acceptable	
values	for	your	landing	criteria	is	not	always	a	bad	thing	to	do,	especially	if	you	are	
reacting	to	the	current	situation	and	making	thoughtful	design	tradeoffs.	

	

	 7	

Pattern:	Agree	on	Quality	Targets		
There	are	several	areas	where	you	need	to	define	specific	quality-related	targets.	
You	may	have	targets	for	performance,	usability,	internationalization,	reliability	or	
other	non-	functional	qualities	that	broadly	apply	to	several	user	stories	or	across	a	
number	features.	If	you’ve	done	something	similar	in	the	past,	the	quality	criteria	to	
choose	and	their	acceptable	values	may	be	obvious.	At	other	times	it	can	more	of	a	
challenge	to	reach	agreement.	How	much	improvement	to	strive	for	may	be	open	to	
debate.		

How	can	you	reach	consensus	when	defining	quality	acceptance	criteria?		

Work	towards	informed	consensus	on	quality-related	targets.	Ideally	a	small	group	
of	informed	individuals	should	agree	upon	target	values.	If	you	have	diverse	
stakeholders	with	varying	opinions,	you	may	decide	to	give	each	stakeholder	group	
a	voice	in	identifying	several	qualities	that	are	particularly	relevant	to	them.	
However,	you	might	want	to	choose	someone,	such	as	a	business	architect,	product	
owner,	or	lead	engineer	who	knows	about	the	product	to	take	a	first	cut	at	
establishing	reasonable	values	for	quality	criteria	and	values	that	are	questioned,	
challenged,	and	then	reviewed	and	agreed	upon	by	a	small	group.	

It	is	important	to	recognize	that	technical	considerations	impact	quality	targets.	Any	
assumptions	about	how	these	values	can	be	achieved	should	be	noted.	To	reach	
consensus	on	specific	quality	targets,	you	may	need	someone	to	play	the	role	of	
facilitator.	The	facilitator	should	know	enough	about	the	program	or	product	to	be	
constructive,	but	they	need	not	be	the	“authority”	or	“expert.”	That	person	should	be	
good	at	gaining	consensus	and	get	the	best	from	individuals	who	may	have	strongly	
held	opinions	and	disagreements.	Ideally,	a	facilitator	knows	enough	about	the	
product	to	offer	constructive	observations	and	has	the	ability	to	lead	a	small	group	
forward	in	defining	acceptable	criteria	and	values.	 	

	

	 8	

Category:	Making	Qualities	Visible	(5	patterns)	
It	is	important	for	team	members	to	be	aware	of	important	system	qualities	and	
have	them	readily	available.		

Pattern:	System	Quality	Dashboards		
As	your	system	evolves	the	team	begins	to	better	understand	what	system	qualities	
are	important	and	how	to	better	measure	them.	As	time	goes	on,	and	more	and	
more	qualities	are	built	into	the	system,	keeping	track	of	these	qualities	becomes	
increasingly	important.	Some	are	important	to	keep	a	watch	on	while	others,	once	
validated	and	made	testable,	are	good	enough.	Although	originally	the	system	might	
meet	quality	constraints,	qualities	can	degrade	if	they	aren’t	monitored	and	
maintained.		

How	can	agile	teams	provide	a	means	to	make	this	information	accessible	and	
visible	to	the	team?		

The	first	step	is	to	outline	the	critical	items	that	need	to	be	measured	and	monitored	
on	an	ongoing	basis.	Some	of	these	can	start	off	with	simple	measures,	exercising	
and	measuring	only	partially	implemented	functionality.	Although	initially	you	
might	be	making	simple	measures,	unless	you	incorporate	them	into	a	dashboard,	
they	won’t	be	readily	visible.		

So	create	a	dashboard	to	monitor	important	qualities	to	provide	ongoing,	timely	
feedback.	As	important	system	qualities	are	outlined	and	included	in	the	backlog,	
note	which	ones	should	be	monitored	and	where	tools	can	be	created	to	measure	
the	system	as	it	evolves.	If	an	existing	tool	provides	all	that	is	needed	and	is	
relatively	easy	to	use,	use	the	tool	to	create	your	dashboard.	Some	tools	that	provide	
powerful	means	of	measurement	can	be	costly	or	hard	to	use.	So	you	may	need	to	
determine	whether	it	is	better	to	purchase	a	powerful	tool	or	use	an	open	source	
dashboard	that	may	not	be	as	powerful.	

Pattern:	System	Quality	Radiator	
As	the	system	evolves	the	team	begins	to	better	understand	what	system	qualities	
are	important	and	how	to	measure	them.	Keeping	track	of	these	qualities	and	what	
the	current	quality	of	the	system	becomes	increasingly	important.	There	are	
essential	qualities	that	are	key	to	the	success	of	the	product.		

How	can	agile	teams	provide	a	means	to	make	important	qualities	of	the	
system	and	their	current	status	accessible	and	visible	to	the	team?		

Post	visual	displays	that	people	can	see	as	they	work	or	walk	by	that	shows	
information	about	the	system	qualities	you	want	to	focus	on	and	their	current	status	
without	having	to	ask	anyone	a	question.	System	Quality	Radiators	can	have	many	
forms	ranging	from	posters	or	displays	to	colored	sticky	notes	on	a	Kanban	board,	
to	colorized	backlog	items.	What	is	important	is	that	the	quality	radiator	is	visible	
and	easily	understood.	It	is	also	important	to	keep	the	quality	radiator	up	to	date.	

	

	 9	

A	display	might	show	current	landing	zone	values,	quality	stories	on	the	current	
sprint,	reminders	about	quality-related	activities,	or	quality	measures	that	the	team	
is	actively	working	on.	Sometimes	a	display	will	just	show	the	results	of	certain	
system	quality-related	tests	for	the	day.	Sometimes,	third-party	tools	can	be	used	to	
present	a	live	display	of	key	system	qualities	and	values—resulting	in	a	Quality	
Dashboard.	

Pattern:	Quality	Checklists	
Some	system	qualities,	such	as	security	and	usability,	can	be	observed	by	executing	
system	functionality.	Other	qualities,	such	as	maintainability	and	extensibility	are	
embodied	in	how	the	software	is	constructed.	Even	though	you	might	be	paying	
attention	to	quality,	as	your	system	evolves,	problems	will	arise	and	there	will	be	
issues	sustaining	qualities.	Quality	requirements	will	inevitably	change	as	you	learn	
and	parts	of	the	system	that	were	good	enough	at	one	time,	might	no	longer	meet	
today’s	requirements.		

How	can	you	ensure	system-wide	quality	requirements	are	being	considered	
and	not	overlooked	as	your	system	evolves?	

Create	checklists	that	include	expectations	for	desired	system	qualities,	which	are	
common	across	the	system	and	should	be	consistently	met.	Checklists	can	be	
reviewed	by	the	team	to	ensure	that	qualities	are	met	before	features	are	released	
and	verified	by	the	team	as	part	of	quality	assurance.	Explicitly	stating	what	
qualities	need	to	be	delivered	consistently	across	many	different	user	stories,	and	
what	important	qualities	should	be	considered	as	new	functionality	is	added	can	
help	the	team	keep	quality	requirements	in	mind.		

There	are	two	kinds	of	checklists:	read/review	and	do/confirm.	A	read/review	
checklist	is	one	where	team	members	may	perform	tasks	separately	beforehand,	
then	come	together	to	affirm	that	these	items	have	been	successfully	completed.	A	
do/confirm	checklist	is	one	where	each	checklist	item	is	performed	on	the	spot	and	
then	verified	by	the	team	before	proceeding	to	the	next	step.		

Pattern:	Qualify	the	Roadmap	
Many	agile	teams	include	a	product	roadmap	as	part	of	their	planning.	This	
roadmap	typically	shows	a	rough	plan	for	delivering	features	over	time.	This	plan	is	
useful	for	sharing	a	common	understanding	to	the	teams	involved	in	the	project	and	
to	help	communicate	stakeholders’	expectations	and	overall	project	plans	and	goals	
across	the	organization.	The	roadmap	includes	a	timeline	with	expected	milestones	
and	targets	for	when	key	features	are	desired.		

As	systems	qualities	are	a	key	factor	in	the	success	of	any	product,	how	can	
agile	teams	include	these	qualities	as	part	of	the	roadmap	and	overall	
timeline?		

Product	roadmaps.	Typically	a	product	roadmap	includes	a	timeline	for	when	high-
level	features,	which	are	implemented	by	many	user	stories,	are	desired.	While	

	

	 10	

developing	and	evolving	the	product	feature	roadmap,	also	plan	for	when	system	
qualities	and	the	architecture	features	to	support	them	should	be	addressed.	

Quality-related	roadmap	items	should	either	be	placed	just	before	or	along	with	any	
functionality	that	depends	on	them.	This	may	seem	contrary	to	that	well-known	
agile	mantra,	“Make	it	work,	make	it	right,	make	it	fast.”	However,	if	you	have	a	risky	
architecture	feature,	you	might	want	to	work	on	that	feature	a	bit	before	
implementing	functionality	that	depends	on	it.	Isn’t	this	similar	to	using	a	spike	
solution	and	then	refining	that	solution?	Alternatively,	teams	may	create	a	separate	
technology	roadmap	that	outlines	the	expected	delivery	of	architecture	components	
and	technology.	Regardless	of	whether	you	have	a	separate	technology	roadmap	or	
identify	architecture	features	on	your	product	roadmap,	it	is	important	to	make	
visible	when	important	system	qualities	should	be	considered	and	worked	on.	

Pattern:	Qualify	the	Backlog	
Agile	backlogs	include	an	ordered	list	of	important	features	and	technical	tasks	
necessary	to	complete	a	project	or	a	release.	This	backlog	prioritizes	the	order	that	
work	is	done.	The	definition	of	done	for	each	backlog	item	may	also	need	to	include	
important	system	quality	requirements.	However,	certain	system	qualities	cut	
across	one	or	more	user	stories.		

How	can	agile	developers	better	understand	the	scope	of	the	work	that	needs	
to	be	done,	especially	when	it	comes	to	understanding,	implementing	and	
testing	system	qualities?		

Create	and	add	specific	quality	items	to	your	backlog.	These	items	can	include	
Quality	Scenarios,	Quality	Stories,	and	Fold-Out	Qualities	for	some	user	stories.		

If	you	have	identified	Quality	Scenarios	in	a	Quality	Workshop,	these	can	be	added	
to	your	backlog	as	individual	work	items.	If	a	specific	quality	spans	multiple	user	
stories,	then	this	overall	quality	is	more	visible	if	you	create	a	separate	Quality	Story	
and	add	it	to	your	backlog	to	represent	that	quality	requirement.	Sometimes	certain	
qualities	are	related	to	specific	functional	user	stories.	When	then	happens	you	can	
use	a	Foldout	Quality	instead.	This	ensures	that	the	story	isn’t	declared	done	until	it	
is	delivered	along	with	its	desired	qualities.		 	

	

	 11	

Category:	Being	Agile	at	Quality	(8	patterns)	
In	any	complex	system,	there	are	many	different	types	of	testing	and	monitoring,	
specifically	when	testing	for	system	quality	attributes.	QA	can	play	an	important	
role	in	this	effort	as	an	integral	part	of	a	whole	team	approach	to	quality.	

Pattern:	Whole	Team	
Traditionally	Quality	Assurance	teams	belong	to	a	separate	group.	Typically,	QA	in	
most	organizations	has	not	had	good	access	to	business	stakeholders.	As	a	
consequence,	they	generally	prefer	a	lot	of	documentation	and	prefer	to	specify	
their	tests	based	on	detailed	written	specifications.	Although	QA	likes	a	lot	of	
documentation,	the	quality	of	that	documentation	can	be	inconsistent	or	outdated.	
And	since	testing	takes	so	much	effort,	QA	has	traditionally	preferred	to	test	a	fully	
functioning	system	in	order	to	minimize	re-testing	and	rework.	Since	QA	typically	
has	not	been	engaged	until	late	in	the	process,	serious	time-to-market	pressures	can	
cause	compromises	to	quality.	Problems	can	arise	when	QA	is	not	part	of	the	
development	team	(creating	an	us	vs.	them	syndrome).		

How	can	you	better	incorporate	QA	into	an	agile	team?		

Include	QA	as	part	of	the	team	from	the	start.	When	QA	is	included	as	part	of	the	
agile	team	from	the	beginning,	QA	can	help	everyone	on	the	team	understand	and	
validate	requirements.	QA	is	also	able	to	assist	with	the	definition	of	done	and	help	
product	owners	understand	what	quality	attributes	should	be	considered	and	when	
they	should	be	addressed.	

The	role	of	QA	shifts	from	being	an	outsider	on	a	different	team	to	being	a	team	
member	on	a	unified	“Agile	Team.”	This	transition	from	“outsider”	to	“team	
member”	increases	the	team’s	overall	knowledge	about	quality.	By	being	part	of	the	
team	throughout,	QA	assists	the	team	by	keeping	those	qualities	are	important	
visible	and	to	help	know	when	working	on	specific	system	qualities	best	fits	into	the	
process	(when	to	do	what	for	different	qualities)	

Pattern:	Quality-Focused	Sprint		
Features	don’t	make	a	viable	system;	rather	a	viable	system	is	accomplished	by	
focusing	on	features	accompanied	by	paying	attention	to	system	qualities.		If	you	
have	only	concentrated	on	implementing	functionality,	you	are	delivering	working	
software	each	sprint.	But	it	may	not	meet	the	demands	of	a	production	
environment,	which	has	more	demanding	users,	higher	volumes	of	data,	more	
transactions,	and	more	of,	well	everything.		

How	can	you	incorporate	these	other	non-functional	requirements	into	your	
system	as	needed?		

Take	time	to	focus	on	your	software’s	non-functional	qualities	and	devote	a	sprint	to	
measuring	and	improving	one	or	more	of	your	system’s	qualities.	Set	expectations	
that	no	new	features	will	be	delivered,	focusing	on	a	better	system	for	the	result.	

	

	 12	

Like	any	other	sprint,	you	need	to	identify	and	prioritize	work	and	create	a	backlog.	
However,	the	nature	of	the	work	in	a	quality-focused	sprint	will	be	different:	instead	
of	functional	stories,	you	need	to	identify	and	prioritize	stories	about	the	qualities	
you	are	trying	to	improve.		

Improving	one	quality	can	impact	other	system	qualities.	The	definition	of	“done”	
for	quality-focused	sprint	involves	more	than	just	implementing	and	verifying	
improvements.	It	can	also	involve	measuring	the	impacts	your	quality	
improvements	have	on	existing	system	functionality	and	potentially	revising	your	
quality	acceptance	criteria.		

Pattern:	Product	Quality	Champion	
Many	agile	teams	and	product	owners	are	focused	on	the	delivery	of	important	
features	for	the	system.	However,	it	requires	more	than	implementing	the	features	
before	any	system	can	be	considered	done.	While	delivering	features	is	critical	to	
the	success	of	the	project,	the	system	is	not	“ready	for	release”	until	critical	system	
qualities	have	also	been	addressed.		

As	the	system’s	features	are	delivered,	how	can	the	team	pay	attention	to	
systems	qualities	as	well?		

Include	as	part	of	your	agile	team	a	Product	Quality	Champion.	This	is	someone	who	
helps	the	team	keep	focused	on	important	system	qualities.	This	person	is	involved	
from	the	start	of	the	project	understanding	the	customer	requirements	and	
continues	working	throughout	assisting	the	team	with	a	quality	focus.	Typically	a	
Product	Quality	Champion	doesn’t	have	“quality	champion”	in	their	job	title.	This	is	a	
role	or	task	that	they	take	on	in	addition	to	their	other	responsibilities.	A	product	
quality	champion	can	come	from	QA.	Business	analysts,	architects,	or	product	
managers	may	also	be	product	quality	champions.		

A	product	quality	champion	doesn’t	let	quality	issues	slide,	and	works	to	build	
consensus	around	system	quality	requirements	and	how	they	might	be	delivered.	
The	quality	champion	or	advocate	collaborates	closely	with	the	Product	Owner	and	
other	team	members	pointing	out	important	qualities	that	can	be	included	in	the	
product	backlog.	They	also	work	to	make	these	qualities	visible	and	explicit	to	all	
team	members	by	leading	Quality	Workshops,	setting	up	Quality	Radiators	or	Quality	
Dashboards	and	generally	promoting	enthusiasm	about	product	quality.		

Pattern:	System	Quality	Specialist	
Quality	assurance	on	agile	projects	primarily	focuses	on	validating	and	verifying	
user	stories	that	express	requirements	in	terms	of	system	functionality.	QA	may	be	
more	comfortable	and	familiar	with	functional	testing.	Nonetheless,	production	
software	needs	to	exhibit	system	qualities	such	as	being	scalable,	usable,	secure,	and	
reliable	to	satisfy	its	end	users.	Individual	user	stories	as	well	as	the	overall	system	
qualities	must	be	verified	to	meet	objectives.		

	

	 13	

How	can	agile	teams	obtain	and	realize	the	best	experience	and	practices	for	
specifying,	testing	and	validating	system	qualities?		

When	your	team	is	lacking	specific	skills,	include	System	Quality	Specialists	at	
various	times	(possibly	full	time)	to	assist	your	team	with	describing,	validating,	and	
testing	system	qualities.	A	System	Quality	Specialist	is	a	QA	role	with	deep	technical	
skills	related	to	specific	system	qualities.	The	term	specialist	sometimes	has	a	bad	
connotation,	implying	that	knowledge	is	unnecessarily	held	too	closely	or	poorly	
communicated	to	others.	Some	agile	teams	even	go	so	far	as	to	avoid	hiring	
specialists.	However	it	is	wishful	thinking	to	believe	you	will	only	have	“t-shaped”	
people	working	on	a	team.	Not	everyone	necessarily	is	able	to	easily	acquire	the	
deep	skills	necessary	to	perform	certain	quality-related	tasks.	Sometimes	you	need	
specialists	and	the	specialists	are	not	necessarily	t-shaped.	

The	System	Quality	Specialist	can	be	temporary	until	the	team	acquires	the	
necessary	skills,	or	the	specialists	could	become	full-	time	team	members	if	the	need	
is	ongoing.	The	specialists	work	with	the	team	by	directly	assisting	them	with	the	
quality-related	tasks.	They	are	hands-on	rather	than	merely	advice	givers.	This	
specialist	may	not	be	familiar	with	agile	practices	or	processes.	Effectively	
incorporating	them	into	your	team	may	mean	that	you	need	to	work	with	them	to	
understand	your	agile	values	and	preferred	ways	of	working.	And	you	may	want	to	
adapt	your	process	based	on	their	inputs	and	advice.		

Pattern:	Spread	the	Quality	Workload	
Agile	teams	spend	most	of	their	time	specifying,	implementing,	and	verifying	
functionality.	It	is	also	necessary	to	implement	and	validate	system	qualities	before	
a	system	is	ready	to	release.	There	are	many	quality-related	tasks	that	need	to	be	
performed.	If	they	aren’t	addressed	in	a	timely	fashion	QA	can	become	the	
bottleneck	for	getting	things	done.		

How	can	teams	balance	quality	efforts	with	feature	delivery	to	ensure	that	all	
tasks	are	addressed	at	responsible	moments?		

Rebalance	quality	efforts	by	involving	more	than	just	those	who	are	in	QA	or	have	
QA	roles	to	work	on	quality-related	tasks.	Spread	the	quality	workload	over	time	by	
including	quality-related	tasks	throughout	the	project.	The	goal	is	to	take	a	balanced	
approach	to	tackling	quality	work	including	the	definition,	implementation,	and	
validation	of	system	qualities.	This	all	comes	down	to	everyone	working	together	to	
make	the	project	successful,	pitching	in	when	needed,	not	only	when	being	told	to.	

Developers	already	have	a	responsibility	and	ownership	for	code	quality	and	
helping	make	sure	it	meets	the	core	business	requirements	including	system	
capabilities	and	functionality.	However,	a	developer	can	also	assist	with	validating	
system	qualities.	For	example,	a	developer	can	work	on	writing	a	test-	fixture	to	
validate	a	specific	system	quality	with	guidance	and	verification	from	the	QA	expert.	
Or	a	developer	can	pair	with	QA	to	build	some	infrastructure	for	validating	and	
monitoring	critical	system	qualities.	Or	if	developers	get	trained	on	the	basics	of	

	

	 14	

exploratory	testing,	they	can	provide	fresh	testing	perspectives	on	new	system	
functionality	and	help	balance	the	load.		

Pattern:	Automate	as	You	Go	
At	the	start	of	agile	projects	there	are	many	pressures	to	get	something	out	to	the	
end-user	and	to	get	initial	reactions	and	feedback.	It	is	important	to	establish	a	
frequent	delivery	cadence	and	tools	to	make	that	possible.	In	creating	this	
environment,	quality-related	items	need	to	be	considered	as	well.	As	a	system	
evolves,	it	is	essential	to	regularly	evaluate	the	system	to	make	sure	that	key	
qualities	are	being	met.		

How	can	agile	teams	create	tooling	and	an	environment	to	assist	with	quick	
feedback	about	important	qualities	of	the	system	and	make	their	current	
status	accessible	and	visible	to	the	team?	

Create	an	environment	and	use	tools	to	automate	fundamental	things	that	add	value	
as	soon	as	you	can.	Do	not	put	off	automation	tasks	until	late	in	development.	Some	
automations	are	important	to	do	from	the	start.	Early	on	the	most	essential	things	to	
automate	are	the	build,	integration	and	test	environment	configuration.	Then	
automate	functional	tests	and	system	quality	tests.	But	that’s	only	the	start.	There	
are	other	things	you	can	automate	such	as	acceptance	tests,	performance	metrics,	
code	smell	detection,	application	security	checks,	and	architectural	conformance.	As	
you	automate	tasks,	they	become	part	of	the	cadence	of	your	project.		

If	you	have	repetitive,	tedious	or	error	prone	tasks,	and	it	is	feasible	to	do	so,	
automate	those	as	well.	The	more	you	automate	repetitive	manual	tasks,	the	more	
time	it	frees	you	up	to	do	more.	It	also	allows	time	to	spend	on	exploratory	testing.	
Automation	also	allows	you	to	more	safely	evolve	the	system	and	lets	you	do	work	
in	smaller	batches,	making	fewer	mistakes	and	getting	quicker	feedback.			

Pattern:	Shadow	the	Quality	Expert	
As	an	organization	grows,	it	is	important	to	also	grow	and	evolve	quality	expertise	
along	with	the	agile	team.	Often	organizations	do	not	have	the	resources	or	people	
to	completely	fulfill	their	Quality	Assurance	needs.	Quality	experts	can	have	deep	
technical	and	product	knowledge.	A	whole	team	philosophy	leads	you	to	want	to	not	
lock	up	or	isolate	expertise,	but	instead	spread	knowledge	across	the	team	and	grow	
“T-shaped”	skills	within	your	organization.	T-shaped	people	have	skills	and	
knowledge	that	are	both	deep	and	broad.		

How	can	organizations	grow	quality	expertise	and	spread	knowledge	and	
ideas	about	qualities	across	the	teams?		

Have	various	people	follow	or	shadow	a	QA	expert	while	they	are	doing	their	tasks.	
The	QA	expert	works	as	a	mentor	teaching	by	actively	involving	the	shadow	as	an	
apprentice	in	understanding	what	happens	and	what	needs	to	be	considered	during	
important	quality	tasks.		

	

	 15	

Early	on,	a	shadow	can	follow	a	QA	expert	around,	observing	and	taking	notes.	It	is	
important	that	the	shadow	asks	relevant	questions	and	has	close	interactions	with	
the	QA	expert.	The	expert	can	explain	what	she	is	thinking	as	she	is	doing	her	work.	
As	the	shadow	becomes	more	confident	and	learns	new	skills,	they	become	more	
involved	in	performing	quality	tasks.	Shadowing	takes	time	and	commitment.	The	
best	scenario	for	effective	shadowing	is	when	the	QA	expert	has	enough	time	and	
patience	to	actively	involve	the	shadow	with	their	daily	tasks.		

Pattern:	Pair	with	a	Quality	Advocate	
Quality	Assurance	is	much	more	than	just	testing	and	validating	the	software.	There	
are	important	quality	considerations	that	if	the	team	is	made	aware	of	can	help	with	
the	success	of	the	system.	

How	can	the	agile	team	build	quality	into	the	system,	especially	when	it	comes	
to	understanding	and	testing	for	system	qualities?		

Pair	developers	and	other	agile	team	members	with	quality	assurance	to	complete	
quality-related	tasks	and	to	spread	QA	knowledge	and	quality	perspectives.	The	
synergy	achieved	by	various	roles	pairing	with	a	quality	advocate	has	mutual	
benefits.	Pairing	can	help	the	team	understand	key	qualities	and	how	to	validate	and	
think	about	them.	QA	can	pair	with	the	Product	Owner	or	Project	Manager	to	inform	
them	about	how	the	software	is	expected	to	work	and	what	kinds	of	testing	is	going	
on.	A	Product	Owner	may	not	otherwise	be	aware	of	how	the	system	is	tested	and	
how	testing	for	system	qualities	differs	from	the	unit	tests	developers	are	writing.	
While	pairing,	QA	can	gain	a	deeper	understanding	of	project	priorities	and	how	
quality-related	work	needs	to	be	made	more	visible.	

During	programming	tasks,	QA	members	can	pair	with	developers.	Testers	typically	
focus	on	testing	from	the	users’	perspective.	As	they	pair	with	developers,	testers	
gain	a	deeper	understanding	of	how	the	software	works	behind	the	scenes.	This	
helps	QA	to	identify	potential	areas	that	might	require	more	testing	as	well	as	help	
them	better	isolate	defects.	Developers	learn	much	about	testing	boundary	
conditions,	good	interfaces,	and	input	validation	from	QA,	as	well	as	what	conditions	
might	lead	to	potential	failure.	Pairing	QA	with	a	DBA	can	be	useful,	especially	when	
isolating	data	schema	or	data	access	issues.	QA	often	has	a	deeper	understanding	of	
how	the	software	is	expected	to	function	than	the	DBA.	Both	come	to	better	
appreciate	each	other's	concerns	and	get	ideas	for	improved	testing	and	validation	
of	the	system.	

	 	

	

	 16	

References	
The	patterns	in	the	QA	to	Agile	Quality	collection	were	presented	and	workshopped	
at	the	following	Patterns	conferences.	Copies	can	be	found	in	the	ACM	digital	library	
or	Rebecca	Wirfs-Brock’s	website	(See	www.wirfs-
brock.com/rebecca/collections/Agile-Quality-Patterns	for	downloadable	copies	of	
the	full	patterns	papers).	

[YWA]	Joseph	Yoder,	Rebecca	Wirfs-Brock,	and	Ademar	Aguilar.	2014.	“QA	to	AQ:	Patterns	about	
transitioning	from	Quality	Assurance	to	Agile	Quality.”	3rd	Asian	Conference	on	Patterns	of	
Programming	Languages	(AsianPLoP	2014),	Tokyo,	Japan	
[YW]	Joseph	Yoder	and	Rebecca	Wirfs-Brock.	2014.	“QA	to	AQ	Part	Two:	Shifting	from	Quality	
Assurance	to	Agile	Quality,”	21st	Conference	on	Patterns	of	Programming	Language	(PLoP	2014),	
Monticello,	Illinois,	USA	
[YWW14]	Joseph	Yoder,	Rebecca	Wirfs-Brock,	and	Hironori	Washizaki.	2014.	“QA	to	AQ	Part	Three:	
Shifting	from	Quality	Assurance	to	Agile	Quality:	Tearing	Down	the	Walls,”	10th	Latin	American	
Conference	on	Patterns	of	Programming	Language	(SugarLoafPLoP	2014),	Ilha	Bela,	São	Paulo,	
Brazil.	
[YWW15]	Joseph	Yoder,	Rebecca	Wirfs-Brock,	and	Hironori	Washizaki.	2015.	“QA	to	AQ	Part	Four:	
Shifting	from	Quality	Assurance	to	Agile	Quality:	Prioritizing	Qualities	and	Making	them	Visible,”	22nd	
Latin	American	Conference	on	Patterns	of	Programming	Language	(PLoP	2015),	Pittsburgh	PA,	USA,	
2015.	
[YWW16a]	Joseph	Yoder,	Rebecca	Wirfs-Brock,	and	Hironori	Washizaki.	2016.	“QA	to	AQ	Part	Five:	
Being	Agile	at	Quality:	Growing	Quality	Awareness	and	Expertise,”	5th	Asian	Conference	on	Patterns	
of	Programming	Language	(AsianPLoP	2016),	Taipei,	Taiwan,	2016.	
[YWW16b]	Joseph	Yoder,	Rebecca	Wirfs-Brock,	and	Hironori	Washizaki.	2016.	“QA	to	AQ	Part	6:	
Being	Agile	at	Quality:	Enabling	and	Infusing	Quality,”	23rd	Conference	on	Pattern	Languages	of	
Programs	(PLoP	2016),	Monticello,	Illinois,	USA,	2016.	

	

https://www.wirfs-brock.com/rebecca/collections/Agile-Quality-Patterns
https://www.wirfs-brock.com/rebecca/collections/Agile-Quality-Patterns

