Why We Need
Architects (and
Architecture) on
Agile Projects

Rebecca Wirfs-Brock
rebecca@wirfs kock.com

©2011 Wirfs Bock Associates

No

Three Questions...

 If you are agile, how much architecting do you
need and when?

 How can you manage architecture risk on
large, complex agile projects?
« \What Is the role of an agile architect?

Agile Values

e Core values:
— Design Simplicity
— Communication
— Teamwork
— Trust
— Satisfying stakeholder needs

e Constant learning

Qualities of Good Agile Architecture

Designed for test.
Modular.

No unintentional data redundancy or
overlapping functionality.

Pragmatic. Does what it needs to without
extras.

Supports performance, reliability,
modifiability, usability,....goals.

Agile Misconception:
Simple Design Is Always Best

e Does that mean you should never...
— create a framework?
— write code that needs comments?
— never implement a complex solution?
— anticipate future features?

Stuart Brand’s Shearing Layers

 Buildings are made of components that evolve
at different timescales.

* Layers: site, structure, skin, services, space
plan, stuff. Each layer has its own value, and
speed of change (pace).

 Buildings adapt because
faster layers (services) are
not obstructed by slower
ones (structure).

—Stuart Brand, How Buildings Learn

ST
SR A
SERVFCES
SKIN
STRUCTURE

SITE

Yoder and Foote’s
Software Shearing Layers

“Factor your system so that artifacts that change at similar rates
are together.”—Foote & Yoder, Ball of Mud Pattern
Layers
* The platform
* Infrastructure
« Data schema
» Standard frameworks and components
 Abstract classes and interfaces
 Classes

4 » Code

e Data

Slower

Faster

Agile Design Values

Respect your system’s shearing layers.
— Understand the rates of what changes.

Make what Is too difficult, time consuming, or
tedious easler.

— Create tools, leverage design patterns, build or use
frameworks, use data to drive behavior...

Don’t overdesign!!!
Don’t under architect.

The Boundary Between Architecture and Design

* Architecture _
e “Architecturally ° Prr?rs)llgrr]r?eanr]ccsl

significant” design issues solutions

 Balances big picture and <« Makes detailed
details decisions

. e Primarily focused on
e Considers many factors technicgf CONCerns

9

How Much Architecting Do You Need?

Project
Criticality
Life
LE L20 L40 L100 L200 L1000
Essential
maoney E& E20 E40 E100 E200 E1000
Discretionary
Money D6 D20 D40 D100 D200 D1000
Comfort
CB G20 C40 C100 C200 C1000
1-6 -20 =40 =100 =200 -1000
Project Size

Alistair Cockburn’s project characteristics grid

What’s a Small Project?

A team of 6-8

Working on non-life critical
projects

Architecture typically
evolves along with
Implementation without
much risk

May or may not need extra
architecture attention

Small Project Architecture Practices

e Design “Spikes”
— Goal: Figure out a
design approach.

— Time: Few hours to
a few days.

— Tools: CRC Cards,
exploratory coding,
whiteboard
sketching.

Small Project Architecture Practices

e Experiment on
Branches

— Goal: Experiment away
from main code branch.

— Time: Few hours to a
few days.

— When done: Merge or
throwaway branch
code.

Small Project Architecture Practices

. Incrementally refine 1
abstractions |

— Goal: Refactor to
eliminate redundant
code.

— Time: Few minutes.

— When done:
Whenever you spot
duplication.

Small Project Architecture Practices

 Monitor technical debt. |

— Term invented by Ward
Cunningham.

— Piles up when you
continually implement
without going back to
reflect new
understanding.

— Can have long term costs
and consequences.

All Tasks Aren’t Alike

e The Core—fundamental to
your software’s success

* The rest—requires far less
creativity or inspiration

* The Revealing—lead to new,
deeper understanding
— Always a surprise

— Require invention and
Innovation

— Hard to predict when they will
be done

Keeping Architecture in Mind
Sort tasks into “problem buckets”: core and the
rest

Make sure each iteration gets enough core work
accomplished

Get team involved on core issues

Use post-iteration reflections to ask why things
were harder than they first appeared

Break out of planned iteration cycles to tackle
revealing problems (they need more than a quick
design spike)

THE MORE THERE IS TO
COORDINATE

Agile Misconception: Upfront
Thinking, Planning, Investigating,
Architecting Is Wasteful

* Areaction to “too much” thinking without
“doing”.
e Reality:

— You need to strike a balance: Find the right time and
effort for your project

e Some upfront planning is critical for large, complex projects

* Ongoing thinking, prototyping, and architecture experiments
are important too.

CHOOSE THE MOST RESPONSIBLE
MOMENT

Team Size Matters

>9 and any group splits
Into teams

No one knows everything
or everybody

— Expertise uneven

— Skills varied

— Specialists
Work needs coordination
Architecture allowed to
“naturally” emerge often

reflects the
organizational structure

Architecture Risk Reduction Tools

* Project/product road maps and timelines
e Landing zones

 Design innovation spikes

 Architecture spikes

 Risk reduction backlogs

o Set-based design
| ——X
= A —-xX

Component
Design Choices M —

L A A J
| | | |

Design Cycle ‘ Y ' Decision to Eliminate X

A Project Landing Zone

Each requirement in the landing zone has a
range of acceptable values: Minimum, Target,
and Outstanding

Multi-dimensional success criteria

Minimum can seem unacceptable in isolation;
but not when you consider everything

A range of measurable attributes that must be
achieved to declare project or product success

Landing Zone Precision & Granularity

Data Quality:

Accuracy (percent in <2.5% 1.5% 0.5%
error) for critical data

attributes

Performance:

loan payment 60,000 75,000 100,000

transactions per hour
Usability: Learning
loan management <16 hrs 8 hrs 4 hrs

system tasks by a
new quality analyst

Landing Zones & Architecture

= L
E -—
13 ~ =
e i g il .
Y B i bl ' Ly s

* |dentify and manage
 Potential risks
 Innovations required

o Skills to be acqul red Photo by e.r.w.i.n. Used with attribution
http://www.flickr.com/photos/eherrera/5104896694/

http://www.flickr.com/photos/eherrera/5104896694/

Landing Zones on Agile
Projects

* Helps make sense of
the bigger picture:

— What happens when
one attribute edges
below minimum?

— When will targets be
achieved?

— What do we need to
do architecturally to
achieve targets?

Design Innovation Spike

_ %
<

TE" "W

. "
st

e

2 al
._Lm X<
S S O ¢

005 < ©
QO OoO— OO O 0N O
O © O Cc C ‘= © X
nCTON SIH
0.5 c D0 C -
S Cc oS+ 2o
WSn_bn.a.|n_bn.aunu.m|uv
n O = O O .= "m
nuomnm O © o
[) [)

What You Do In an Innovation Spike

— prototyping

— design noodling
— looking outside
— experimenting
— modeling

— vet ideas

Example Innovation Spikes

« Business transaction redesign
 Document parsing

« Fact representation & rule simplification
« Automated location of external resources

 Scale up, scale out, re-distribute, re-think...
 Try out radical changes in how things are done

Design Innovation Spike Best Practices

« Small, smart, goal-oriented

teams /

— avoid us vs. them mentality / &
» Evidence-based answers /I , -

— working prototypes
— existing similar things
 Fallure Is an option

— permit answers that shift
goals

Criteria For an Architecture Spike:
Answer Bounded Questions

e Buys information e
— Feasibility

— Rework effort

— Reasonable design
approach

— Alternatives
e Better estimates
e Actionable

Architecture Debt

Compromises in the
system that have
significant impacts.

Not isolated.
Difficult to reverse.

Examples:

— reliance on a poorly
designed framework

— Inconsistent service

- ‘ I - T ' | Eﬂ'
Interfaces * =

Ways To Manage Architectural Tasks

Fcgrr Bagsog Architeciure Backlog
1. Add to =5 Exporaton Task 2. Separate
Technical Task ;ﬁﬂgeﬂs Afﬁhi _I_ e _I_ e
ngram :$ E Investigate FWVs c1ur
Bﬂﬂkiﬂ d Architeciure Task Eaﬂklug
Arch Ready |
Kanban 3 2
Roadmap
exploration

Prolobype

Mot started I progress Dane
Frogram Backlog
| X |
tem x A [y] |Il
Item - E
*——h
bt T ISR RS ilem a - I:i
4 item b Lt 1
I
|
! —
I
I
I
i
{ Arch Kanban In development Ready for In test Done
; Queue
:’
y | 3 | 9 '
. support
Yea- - for 2 task 1
Roadmap
exploration
The architectural kanban queus The team can lest up When a feature
has strategically i to two architecturally is done
T fe it to th
alres maoves to the
features and exploratory features o : re e
needed to suppor the product one 'n:.:rli 50
limit is two

roadmap just in time

Not started In progress Dane
Frogram Backl
g .
ltam x L Ly L.TJ
Ttem > L ¥ | |I.l
> [-
------------- item a - -_t
itern b
-
Arch Kanban In development . e
Queue st

Done

-~

As the suppost task m
the teamﬂlﬁ

EX

h-

5 through the board,
shes iL

—_—- o
= o

Arch Kanban
Queus

il [T ST ——
e
-

In progress Dane
Frogram Backlog

Item x I -I- L—T—i
flem i

item b

T
In development Ready for ntest
test

... Done

B

X

Roadmap

exploration

-

Whenitgetstod
ariginal task

g, it allows the
procesed.

What Can Go On An Architecture

Backlog?
& & &

Design spike Architecture

Architecturally related task investigation

meaty feature

@ @ @

Prototype Framework Roadmap
development exploration

WHAT DO AGILE ARCHITECTS DO?

%;J T 5@ dﬁw

Stakeholder Goals

as Stories, Use Cases, User Stories,
Cluality Atiributes,

: Acceptance Test Cases, efc
Deployment = i ‘
b +~ Balancing, Aligning,

T
b
- R 1
Expressed as Runtime Platform i \ Optimizin .
Models, Network Models, Runtime i_r e P 9 il ; .
Dependency Models =0 0T©e e T U ——__ _ _ _ T
Operations @
e ——

Implementation Environment

Expressed as
Installation Workflows, Roles& Responsibilities Development
— Expressed as Architectural,
Design and Code Models
X Concurrency

Expressed as Process

. Data
AR T T - ’ Medels, Inter-Process
e S, - . / Communication Modals,
L , Expressed as Information Thread Design, Deadlock
i
*

Maodels, Metadata Medels, Analysis Models
Data Ownership Models, etc.

QIQ izati Implementation Support

{e.g. — Management Tools for Code, Test
Cases, Requirements, Defects efc.)
Expressed as Database Schemas, File
Structures, Spreadsheet Layouls etc.

Expressed as Organizational Structures, Incentive Structures,
Geographic Distribution,
Funding & Investment Models, etc

Agile Architecture Wayfinding

 Scouting—Ilooking
enough ahead

« Exploring potential
paths

— Short experiments
— Extrapolations

— Conclusions based
on experience,
Intelligence
gathered &
Intuition

 Explaining and
selling architectural
Ideas

Differences Between Agile and Traditional
Architecture

ditiol S '- S
e Big picture thinking ¢ Balances big picture &

 Produces Models and . Setzélls ot ted t
blue prints roduce what’s needed to

make informed decisions

* Not so hands-on Hands-on
» Focused on » Focused on sustainability
compliance “

Models
“BigM” vs. “little m”

Not a lot of time Iinvested
Intended to communicate

e Lots of time invested
e |ntended to last

o “Definitive” Often discarded

o Usually formal Can be formal or informal

« May not be widely used ¢ Made to be viewed
or understood

Agile architects create models as needed

CRC Cards: A “little m” model

The First CRC Cards

Model

Maintain problem
related info

Broadcast change
notification

“A Laboratory For Teaching EObject-
Oriented Thinking,”

Kent Beck, Apple Computer, Inc., Ward
Cunningham, Wyatt Software Services,
Inc.

OOPSLA 89

View

Render the model

Transform
coordinates

Model

Controller

Controller

Interpret user Model
input
View
Distribute control

Example:

Component Responsibility Descriptions

Business I . Note . Payment I Allowed to
"Applications" | Underwriting Sourcing Custody Pooling Management Default Relationship XXX e
o . Fraud
Agﬂ;)csgfn Data Import/Export XXX XXX XXX Reporting Management
Business Loan Account Contract Agreement XXX XXX XXX
Infrastructure
Attribute Business Price .
i Defintion Rule Customer XXX Definition Offering Term \
Key :
Attribute Business
Defintion Subysystem

“The Customer component is responsible for knowing the organizations and
individuals. It includes authentication and role-based authorization for detailed
tasks and contact information for organizations.”

Supports interactive web and

self service applications

Provides storage for,

- Transactions that will affect
systems of record

- Staging information doser to the
user to suppart high performance
acoess

- Data required by end users that
comes from systems of record that
do not have 24 x 7 availehility

Repository for those
business entities that are
shared across systems of

record

-Cudgomer is an example an
sUch an ermtity

- I8 regponsble for managing the
syhichronidng those entiies
across sydems

- Fundamenrtally a store far
busness idertty management

Example:
Database
“Responsibilities”

Supports the event driven and

setvice integration architecture .

Provides gorage for

-transformation and enrichment services

- long running transadions.

- audit and performance metrics

-messagesthat need replayed in case of an
unexpected failure

- error handing

Repository for business

data and transactions

-Based on business processes

- Considered the single source of
the fruth a= it relatesto a given
entity

- A given entity should have one
and ondy one system of record

Supports capturing and storing
data to support reporting and

business analytics

Provides Storage for

- Time variantinon volatile data sourced
from systems of record

- Higterical record of transactional data

- Archival deta for those systems of records
not capable 10 support historical tracking
of data

Indicators You’ve Paid Enough
Attention to Architecture

Developers can easily add new functionality.

New functionality doesn’t “break” existing
architecture.

Stable interfaces.
Consistency.

Few areas that developers avoid because they
are too difficult to work in.

Defects are localized.
Able to incrementally integrate new functionality.

Values Important to Agile Architects

e Balance l

e Testable
architectural
qualities

e Being hands-on

— programming,
designing, reading
code, building

things...

 Sustainable
development

Sustainable
Architecture
o Stewardship

— Follow through
— Ongoing attention

— Not ignoring the little things that
can undermine our ability to grow,
change and adapt our systems

-
I]
Loy
- "

\

49

