
Why We Need Architects
(and Architecture) on

Agile Projects

Rebecca Wirfs-Brock
rebecca@wirfs-brock.com

Twitter: @rebeccawb
www.wirfs-brock.com

©2015 Wirfs-Brock Associates

mailto:rebecca@wirfs-brock.com

Three Questions…

• What is the role of an agile architect?

• How much architecting do you need and
when?

• How can you manage architecture risk on
small as well as large, complex projects?

? ? ?

Astronaut Architect?

Seagull Architect?

Infrastructure Freak?

Incompetent Fools?

Agile Design Values

Core values
Design Simplicity

Sustainable systems

Continuous improvement

Teamwork

Communication

Trust

Satisfying stakeholder needs

Constant learning

Some Agile Myths
• Simple solutions are always best

• Building in flexibility is over-engineering

• We don’t need specialists (or architects)!

• We’re agile so we can adapt to any new
requirement

• Don’t worry about architecture

Wayfinder
Architect

Scouting—
looking
enough ahead

Active,
integrative

Exploring
options

Steward Architect

Stewardship

• Sustainability

• Follow through

• Ongoing attention to
little things that
undermine the ability
to grow, change and
adapt

• Making difficult or
tedious tasks easier

How Much Architecting Do You Need?

Alistair Cockburn’s project characteristics grid

Qualities of Any Good Architecture

• Pragmatic. Does what it needs to without
extras

• Designed for test

• Modular

• No unintentional data redundancy or
overlapping functionality

• Supports performance, reliability,
modifiability, usability,….

Small v. Large Projects

Small Projects

• 6-8

• non-life critical

• architecture

often evolves OK

without extra

attention

Large Projects

• Multiple teams

• “Naturally”

emerging

architecture

can reflect

organization structure

• Significant risks, challenges,
unknowns, coordination

Small Project Architecture Practices:
Design “Spikes”

• Goal: Figure out a
design approach

• Time: Few hours to
a few days

• Tools: CRC Cards,
exploratory coding,
whiteboard
sketching

Small Project Architecture Practices:
Experiment on Branches

• Goal: Experiment away
from main code branch

• Time: Few hours to a
few days

• When done: Merge or
throwaway branch
code

Small Project Architecture Practices:
Incrementally Refine Abstractions

• Goal: Refactor to
eliminate redundant
code

• Time: Few minutes

• When done:
Whenever you spot
duplication

Small Project Architecture Practices:
Manage Technical Debt

• Term invented by Ward
Cunningham

• Piles up when you
continually implement
without going back to
reflect new
understanding

• Can have long term
costs and consequences

All Tasks Aren’t Alike

• The Core—fundamental
to your software’s success

• The rest—requires far less
creativity or inspiration

• The Revealing—lead to
new, deeper
understanding

Keep Architecture in Mind

• Sort tasks into “problem
buckets”: core and the rest

• Make sure each iteration
gets enough core work
accomplished

• Get team involved on core
issues

• Use post-iteration
reflections to ask why
things were harder

Architectural Practice:
Reduce Technical Debt

• Integrate new learning
into your code
– Refactoring

– Redesign

– Rework

– Code clean up

• Unit tests
(functionality)

• Tests for architectural
qualities (performance,
reliability,…)

Architecture Practice:
Sustainable Development

• Pay attention to
architecture. Not only
feature implementation

• Design consistency.
“This is how we do x.”
– Coding standards

– Consistency (API use,
errors, logging…)

• Stewards for
architecturally critical
code areas

THE MORE THERE IS TO CONSIDER

The Bigger the Project….

Being Agile Does Not Guarantee

• You can make
significant architecture
changes at the last
moment

• Good architecture
automatically emerges
from “good”
development practices

• Sometimes you need to
do more

Strike a Balance

SO

CHOOSE THE MOST RESPONSIBLE
MOMENT

Some decisions are too important to leave
until The Last Responsible Moment

Types of Project Risks

• Schedule & budget

• Operational
– execution

– resources

– communications

• Technical
– too complex

– poorly defined

– misunderstood

Architecture Debt

• Compromises in the
system that have
significant impacts

• Not isolated

• Costly to reverse

• Examples:
– ignoring scalability

– poor framework choices

– inconsistent service
interfaces

Additional Architecture Risk Reduction
Tools for Larger Projects and Programs
• Grooming and vetting project/product road

maps and timelines
• Landing zones
• Architecture spikes
• Risk reduction backlogs
• Set-based design

Component
Design Choices

Design Cycle Decision to Eliminate

x
x

x

Stuart Brand’s Shearing Layers

• Buildings components evolve at different timescales

• Layers: Each layer has its own value, and speed of
change (pace)

• Buildings adapt because
faster layers (services)
are not obstructed by
slower ones (structure)

—Stuart Brand,

How Buildings Learn

http://www.laputan.org/images/figures/shearing-layers.gif
http://www.laputan.org/images/figures/shearing-layers.gif

Yoder and Foote’s
Software Shearing Layers

“Factor your system so that artifacts that change at similar rates
are together.”—Foote & Yoder, Big Ball of Mud Pattern

• The platform

• Infrastructure

• Data schema

• Standard frameworks and components

• Abstract classes and interfaces

• Classes

• Code

• Data

LayersSlower

Faster

Product Roadmaps As Guides

• Where you expect
to go

• What features and
when? Relative
time when feature
is needed

• Influence
architecture work
and efforts

Sherwood, Oregon

Portland International Airport

Product Landing Zones

• A range of acceptable
values for important
system qualities

– Minimal: OK, we
can live with that

– Target: Realistic goal,
what we are aiming for

– Outstanding: This
would be great, if
everything goes well

Good Landing Zone Criteria

• Define acceptable range of values for some
characteristic or system quality (performance,
usability, reliability, etc.)
– # transactions, average latency of a transaction under

load, click through rate, up time….

• Broader in scope than an acceptance criteria
• SMART

• Specific
• Measurable
• Achievable (minimum value)
• Relevant
• Timely

Within
acceptable
limits

Within
acceptable limits

Good Acceptance Criteria

• Focused on a single thing (a rule or step of a
process)

• A specification of what should happen/what must
be true written in the language of the domain

• SMART
• Specific

• Measurable

• Achievable

• Relevant

• Timely

What’s Different?

Acceptance Criteria

Free 2-day shipping is offered to
Amazon Prime customers for all
items in an order that are sold
directly by Amazon

If an Amazon prime customer
wants faster shipping, they pay
standard shipping fees.

Automated tests can be written
(fairly easily)

Landing Zone Criteria

Selection of shipping options
should be completed with 99%
customer accuracy

Test, but usually in production or
staging environment

May require instrumenting
“hooks” and making several
measurements that are
aggregated/interpreted

How Architects Use Landing Zones

• Create them with Product
Owners and other
Stakeholders

• Identify high architecture
risk items

• Establish/verify target
values

• Explain architecture
tradeoffs and costs

• Monitor architecture health Photo by e.r.w.i.n. Used with attribution
http://www.flickr.com/photos/eherrera/5104896694/

Landing Zones on Agile
Projects

• Helps make sense of
the bigger picture:

– What happens when
one attribute edges
below minimum?

– When will targets be
achieved?

– What do we need to
do architecturally to
achieve targets?

Too many criteria and you lose track of what’s important

Define a core set, organize and group

Break down aggregate targets into measurable architecture-specific values

Be agile! Re-calibrate values as you implement more functionality

Managing Landing Zones

Minimum Target Outstanding

Throughput (loan
payment txns per day)

50,000 70,000 90,000

Average loan payment
txn time

2 seconds 1 second < 1 second

Intersystem data
consistency between x,
y, z systems (per cent
critical data attributes
consistent)

95% 97% 97%

ETL data accuracy for
claims data

97% 99% >99%

Performance

Data Quality

Architecture Spikes

• Bounded

• Explore potential
solutions for
achieving landing
zone targets

• Not as tactical as an
XP Design Spike

• Try out radical
changes before
committing to them

XP Design Spike

“A spike solution is a very simple program to explore
potential solutions. Build the spike to only addresses
the problem under examination and ignore all other
concerns. Most spikes are not good enough to keep,
so expect to throw it away. The goal is reducing the
risk of a technical problem or increase the reliability
of a user story’s estimate.”

—Don Wells

http://www.extremeprogramming.org/rules/spike.html

What You Do In an Architecture Spike

– prototyping

– design noodling

– looking outside

– experimenting

– modeling

– proving ideas

Criteria For an Architecture Spike:
Actionable Results

• Buys information
– Feasibility
– Reasonable

approach
– Alternatives

• Feeds into planning
– Adjusts the release

roadmap
– Recalibrates

landing zone
– Drives new

development and
design

Actionable

evidence

Architecture Spike Best Practices

• Small, smart, goal-oriented teams
– avoid us vs. them mentality

• Evidence-based answers
– working prototypes

– existing similar things

• Time-boxed
– Limited scope and duration (2-6

weeks)

• Failure is an option
– permit answers that may shift goals

3 Ways To Manage Architectural Tasks

Architecturally
meaty feature

Design spike
related task

Architecture
investigation

Prototype Framework
development

Roadmap
exploration

What Can Go On An Architecture
Backlog?

WHAT DO AGILE ARCHITECTS DO?

balance system structure
design approach

module

subsystem

system
elegance

X
system
integrity and
sustainability

architecture
views,
explanations,
sketches

The Agile Architecture Landscape

Differences Between Agile and Traditional
Architecture

Traditional

• Big picture thinking

• Produces Models and
blue prints

• Not so hands-on

• Focused on
compliance

Agile
• Balances big picture &

details
• Produce what’s needed to

make informed decisions
• Hands-on
• Focused on sustainability

52

Models
“Big M” vs. “little m”

• Lots of time invested

• Intended to last

• “Definitive”

• Usually formal

• May not be widely used
or understood

• Not a lot of time invested

• Intended to communicate

• Often discarded

• Can be formal or informal

• Made to be viewed

Agile architects create models as needed

Model

Maintain problem
related info

Broadcast change
notification

View

Render the model

Transform
coordinates

Model

Controller

Controller

Interpret user
input

Distribute control

Model

View

“A Laboratory For Teaching Object-
Oriented Thinking,”
Kent Beck, Apple Computer, Inc., Ward
Cunningham, Wyatt Software Services,
Inc.
OOPSLA 89

CRC Cards: A “little m” model

The First CRC Cards

Example:
Database
“Responsibilities”

Values Important to Agile Architects

• Balance

• Testable
architectural
qualities

• Hands-on

– programming,
designing, reading
code, building
things…

Agile Values Drive Architectural Practices

• Sustainable
development

• Responsible moments

• Evidence-based
decisions

• Attention to detail

Do
something!

Prove &
Refine.

Indicators You’ve Paid Enough
Attention to Architecture

• Defects localized

• Stable interfaces

• Consistency

• Performant

• New functionality doesn’t
“break” existing architecture

• Few areas developers avoid because they are
too unpleasant to work in

59

