Why We Need Architects
(and Architecture) on
Agile Projects

Rebecca Wirfs-Brock

rebecca@wirfs-brock.com
Twitter: @rebeccawb
www.wirfs-brock.com

©2015 Wirfs-Brock Associates

mailto:rebecca@wirfs-brock.com

Three Questions...

7?7

* What is the role of an agile architect?

* How much architecting do you need and
when?

* How can you manage architecture risk on
small as well as large, complex projects?

Astronaut Architect?

s,

2 ‘\“"_‘.‘ ks
- ’,' 3 S~

Seagull Architect?

Infrastructure Freak?

SL 3

- B .
T o e

P

3

Agile Design Values

Core values

v’ Design Simplicity
v'Sustainable systems

v’ Continuous improvement

v Teamwork

v’ Communication

v’ Trust

v Satisfying stakeholder needs

Constant learning

Some Agile Myths

Simple solutions are always best
Building in flexibility is over-engineering
We don’t need specialists (or architects)!

We're agile so we can adapt to any new
requirement

Don’t worry about architecture

Wayfinder
Architect

Scouting—
looking
enough ahead

Active,
Integrative

Exploring
options

Stewardship ! el

Sustainability
Follow through

Ongoing attention to
little things that
undermine the ability
to grow, change and
adapt

Making difficult or
tedious tasks easier

How Much Architecting Do You

Need?

Project
Criticality
Life
L6 L20 L40 L100 L200 L1000
Essential
money E6& E20 E40 E100 E200 E1000
Discretionary
Money D6 D20 D40 D100 D200 D1000
Comfort
CB Cz20 G40 C100 C200 C1000
1-6 - 20 =) =100 =200 -1000
Project Size

Alistair Cockburn’s project characteristics grid

Qualities of Any Good Architecture

* Pragmatic. Does what it needs to without
extras

* Designed for test
 Modular

* No unintentional data redundancy or
overlapping functionality

e Supports performance, reliability,
modifiability, usability,....

Small v. Large Projects

Small Projects Large Projects S
. 1Y
6-8 Multiple teams () YT A
non-life critical * “Naturally”
architecture - emerging
often evolves OK architecture
without extra can reflect
attention organization structure

» Significant risks, challenges,
unknowns, coordination

Small Project Architecture Practices:
Design “Spikes”

* Goal: Figure out a
design approach

 Time: Few hours to
a few days

e Tools: CRC Cards,
exploratory coding,
whiteboard
sketching

Small Project Architecture Practices:
Experiment on Branches

* Goal: Experiment away
from main code branch

* Time: Few hours to a
few days

* When done: Merge or
throwaway branch
code

Small Project Architecture Practices:
Incrementally Refine Abstractions

e Goal: Refactor to
eliminate redundant
code

* Time: Few minutes

* When done:
Whenever you spot
duplication

Small Project Architecture Practices:
Manage Technical Debt

Term invented by Ward
Cunningham

Piles up when you
continually implement
without going back to
reflect new
understanding

Can have long term
costs and consequences

All Tasks Aren’t Alike

* The Core—fundamental
to your software’s success

* The rest—requires far less
creativity or inspiration

* The Revealing—lead to
new, deeper
understanding

Keep Architecture in Mind

Sort tasks into “problem
buckets”: core and the rest

Make sure each iteration
gets enough core work
accomplished

Get team involved on core
issues

Use post-iteration
reflections to ask why
things were harder

Architectural Practice:
Reduce Technical Debt

* Integrate new learning
into your code

— Refactoring

— Redesign

— Rework

— Code clean up

* Unit tests
(functionality)

* Tests for architectural
qualities (performance,
reliability,...)

Architecture Practice:
Sustainable Development

* Pay attention to
architecture. Not only
feature implementation

* Design consistency.
“This is how we do x.”

— Coding standards

— Consistency (API use, ‘
errors, logging...) stable Velgcity

e Stewards for , Sustalnable Pace i’%

" g

architecturally critical
code areas

THE MORE THERE IS TO CONSIDER

Being Agile Does Not Guarantee

* You can make
significant architecture
changes at the last
moment

* Good architecture .
automatically emerges
from “good”
development practices

 Sometimes you need to
do more

Strike a Balance

Some decisions are too important to leave
until The Last Responsible Moment

SO

CHOOSE THE MOST RESPONSIBLE
MOMENT

Types of Project Risks

* Schedule & budget

* Operational
— execution
— resources
— communications

* Technical
— too complex
— poorly defined
— misunderstood

Compromises in the
system that have
significant impacts

Not isolated

Costly to reverse
Examples:

— ignoring scalability

— poor framework choices

— Iinconsistent service
interfaces

Additional Architecture Risk Reduction
Tools for Larger Projects and Programs

Design Choices

—X
> » —X
Component ol
N > q
o—"
x)) I J

Grooming and vetting project/product road
maps and timelines

Landing zones
Architecture spikes

Risk reduction backlogs
Set-based design

Design Cycle ‘ Y / Decision to Eliminate X

Stuart Brand’s Shearing Layers

* Buildings components evolve at different timescales

* Layers: Each layer has its own value, and speed of
change (pace)

* Buildings adapt because
faster layers (services)
are not obstructed by
slower ones (structure)

—Stuart Brand,
How Buildings Learn SKIN

STRUCTURE

SITE

http://www.laputan.org/images/figures/shearing-layers.gif
http://www.laputan.org/images/figures/shearing-layers.gif

Yoder and Foote’s
Software Shearing Layers

“Factor your system so that artifacts that change at similar rates
are together.”—Foote & Yoder, Big Ball of Mud Pattern

Slower Layers

* The platform

* Infrastructure

* Data schema

e Standard frameworks and components
* Abstract classes and interfaces

* Classes

*‘ * Code

* Data
Faster

Product Roadmaps As Guides

* Where you expect
to go

 What features and
when? Relative
time when feature
is needed

 Influence
architecture work
and efforts

% e Golf Case " ~— uou caup —~
Linnten Park 4 %,) o \
L P \‘A"‘"- nliimbia .y

o~ Portland Internatlonal Alrport =

=
1 NE Answorth St

2,
“5 NE Killngsworts S1,

i ST e Mmoot i

z E g

W Ll

P %
i ey A1
2 " 3
X Bonny Slope N o
i s Forest Park W
Heights : 3 \
| \L \
A % %e.,..m eights. L B | | _g
: West 3 ———"Portland=
/ Haven-Sylvan A /,\N'Smnéfﬁf@' “““::‘:“:f"?“,_\ /l
Ss, | Mariene : Portlandia Sunnyside Mt Tabor
S, Jillage L £
) Vi — & S
% Il | | et sbor
“Yiag, / R Codar His \ City Park [l
< Bridlemils

\‘ " "_‘--\ s L e

ey

Wast Sloga_ Southwest Hils {

R
Ehd\pml\e (] \ @ =
i s B'.""""_rﬁ‘,r_esm’. S, = |
= o Beauel‘mn N:?l;;“;:* r(%t’ Kenilworth nﬂr‘;’& §:
ot "y E
Halm h Ralelgr\ H|I\s] 1
Il & @- 5

Pomar‘ i
Golf Club ™
ﬁ\\. £ i

i\ﬁ‘gaﬂnuunumah BJL— y\e.,\,mmm ']| !‘: SE-E‘B”“‘S‘[— ——/
Z T

- SWeAllen Bd s

Hightand 1 Vose

Rl g
E; / e SE-Tacomg o
s .] S 4
Garden arktham | — — & !\,«
Homes*Whitford o Tk @ Jﬁ’"'fg
2 > Marshall & Welery - i g
§-ﬁ South Eark Country CRib - 3 Leweling 23
5 % SEK]
g Beaveion U i Miiauce oo Ry 3
o —
2 Hight: Campbell
2= hiands Ll . ! .
7 Isiand S Linwaod
] Station « 5 1
=\ Tryen Creek Miwaukis
& State park & \ (T
1 . £ I \\ :
Lake
B8 it e \
Mountain 2 estiake T e Oswego | \ (224)
~=Hrusy “’a‘/ i
,

Cak Gruva = L0
| Oafield X \
North

/ Lake Grove 3 ;’
Oswieqo (B9E) dorth
///:ewa“ L/RLLL— = ’ \ Clackamas t’:lackamas-caf'ﬁﬂﬂﬂv
SO = t

o ‘___‘ Johnson |
Marylharst City uy
] 5
1 |Blue Heron Jennmgs 5 Rl
o i Skyline Ruobinwood Lndge g‘ 3
Ridge T
Rivergrove
A Childs %;x

L'l'Biﬁal\ﬂ Rd
R o Rosemont b, s
I %
yp\..__ e H%””'b Bivd
\-ﬂ‘sr

é‘%; T,

Product Landing Zones

e A range of acceptable

4 values for important

system qualities

— Minimal: OK, we
can live with that

— Target: Realistic goal,
what we are aiming for

— Outstanding: This
would be great, if
everything goes well

Good Landing Zone Criteria

Define acceptable range of values for some
characteristic or system quality (performance,
usability, reliability, etc.)

— # transactions, average latency of a transaction under
load, click through rate, up time....

Broader in scope than an acceptance criteria

SMART
* Specific e
* Measurable Wlthln |
* Achievable (minimum value) O
. Relevant acceptable limits

* Timely

Good Acceptance Criteria

* Focused on a single thing (a rule or step of a
process)

* A specification of what should happen/what must
be true written in the language of the domain

* SMART

Specific
* Measurable
* Achievable
* Relevant
* Timely

J correcC

What’s Different?

Acceptance Criteria

Free 2-day shipping is offered to
Amazon Prime customers for all
items in an order that are sold
directly by Amazon

If an Amazon prime customer
wants faster shipping, they pay
standard shipping fees.

Automated tests can be written
(fairly easily)

Landing Zone Criteria

Selection of shipping options
should be completed with 99%
customer accuracy

Test, but usually in production or
staging environment

May require instrumenting
“hooks” and making several
measurements that are
aggregated/interpreted

How Architects Use Landing Zones

R EC R s,
3k o e n 0

Create them with Product
Owners and other i
Stakeholders e

ldentify high architecture
risk items

Establish/verify target
values

Explain architecture
tradeoffs and costs

Monitor architecture health

Photo by e.r.w.i.n. Used with attribution
http://www.flickr.com/photos/eherrera/5104896694/

Landing Zones on Agile
Projects

* Helps make sense of
the bigger picture: l

— What happens when
one attribute edges
below minimum? g

— When will targets be
achieved?

— What do we need to
do architecturally to
achieve targets?

Minimum Target Outstanding

Throughput (loan 50,000 70,000 90,000
payment txns per day)

Performance Average loan payment 2 seconds 1 second < 1 second
txn time
Intersystem data 95% 97% 97%

consistency between ¥,
y, z systems (per cent

Data Quality | critical data attributes
consistent)

ETL data accuracy for 97% 99% >99%
claims data

Managing Landing Zones

Too many criteria and you lose track of what’s important

Define a core set, organize and group

Break down aggregate targets into measurable architecture-specific values
Be agile! Re-calibrate values as you implement more functionality

Architecture Spikes

* Bounded

* Explore potential
solutions for
achieving landing
zone targets

 Not as tactical as an
XP Design Spike

* Try out radical
changes before
committing to them

XP Design Spike

“A spike solution is a very simple program to explore
potential solutions. Build the spike to only addresses
the problem under examination and ignore all other
concerns. Most spikes are not good enough to keep,
so expect to throw it away. The goal is reducing the
risk of a technical problem or increase the reliability
of a user story’s estimate.”

—Don Wells

http://www.extremeprogramming.org/rules/spike.html

— prototyping

— design noodling
— looking outside
— experimenting
— modeling

— proving ideas

Criteria For an Architecture Spike:
Actionable Results

* Buys information e

— Feasibility ' o Actionable

— Reasonable ‘
approach

— Alternatives

* Feeds into planning

— Adjusts the release
roadmap

— Recalibrates -
landing zone evidence .

— Drives new
development and
design

Architecture Spike Best Practices

Small, smart, goal-oriented teams
— avoid us vs. them mentality
Evidence-based answers

— working prototypes

— existing similar things
Time-boxed

— Limited scope and duration (2-6
weeks)

Failure is an option
— permit answers that may shift goals

3 Ways To Manage Architectural Tasks

Frogrem Bacog Architecture Backlog
1. Add to —r- Exoraton Tk 2. Separate
Program e 2 Ml Architecture
Backlog AcHiecios Toek Backlog
3. s Ep ara-l'a bé::r-é&., In development Ready for In fest Done
Architecture

Kanban 3] 2]
Roadmap
exploration

Prototype

In progress Done
Program Backlog
Temx || T I
W s S fem &
S - ilerm b E

|
4 —
I
i
I
) Arch Kanban In development Ready for In test Done
! Queue test
| .
: | 3 | 2 '
] rch support

oo for Zlask l

Roadmap
exploration
The architectural kanban queue Lﬁfﬁ&ﬁﬁ E-E ;;eﬁam
has strategically important features it moves to the
fleatures and exploratory features ok e B SO NG done column
needed to suppaort the product WIF'I
roadmap just in time ik & e

S

-————— = o

\.l--—r'-7

e
e

Program Backlog

ltam %

Item i

item a
itern b

In progress

Arch Kanban
Queue

In development

Ready for
test

Done

B

Roadmap
exploration

&

A5 the supDoIt tAsk mo
the team fi

shes L

h-

5 through the board,

—_-m =
- '

Queue

Arch Kanban

Frogram Backlog

item x

I[errri
T itlem a

itermn b

beg

In development

Ready for
test

ntest

.. Done

0

|
Yo W

-

Roadmap
exploration

Whenitgetstod
ariginal taskﬂ

proceed.

'-

e, it allows the

What Can Go On An Architecture

Backlog?
& & &

Design spike Architecture

Arenitecturally related task investigation

meaty feature

4 4 4

Prototype Framework Roadmap
development exploration

balance system structure a.rchitecture elegance system
design approach VI€WS, integrity and

explanations,
sketches

WHAT DO AGILE ARCHITECTS DO?

sustainability

The Agile Architecture Landscape

_,__7

Slakgnnldgr Goals

5‘*‘?&'

as Stories, Use Cases, User Stories,

Quality Attributes,
Acceptance Test Cases, elc

—

Deployment ,~” Balancing, Aligning,

Expressed as Runtime Platform \ Optimizing

Models, Network Models, Runtime j;]_ b i ’. .
Im

Expressed as
Installation Workflows, RolesS& Respongibilities
''___..-"""-'

Cependency Models = &Y o S0 U= _
Operations @
—

Expressed as Information
Models, Metadatz Medels,
Data Cwnership Models, etc.

Organization Implermentation Support

Expressed as Organizational Structures, Incentive Structures, (e.g. — Management Tools for Code, Test
Geographic Distribution, Cases, Requirements, Defects etc.]_l
Funding & Investment Models, etc Expressed as Database Schemas, File

Structures, Spreadsheet Layouts etc.

Meodels, Inter-Process
Communication Modeals,
Thread Design, Deadlock

Analysis Modela

w E
S

i

1

m i vironment
Developrent
Expressed as Architectural,
Design and Code Models
X Concurrency
Dat Expressed as Procass

raditional

Differences Between Agile and Traditional
Architecture

Big picture thinking

Produces Models and .
blue prints

Not so hands-on .

Focused on .
compliance

] \ iIe

Balances big picture &
details

Produce what’s needed to
make informed decisions

Hands-on
Focused on sustainability

52

Models

“Big M” s,

* Lots of time invested .
* Intended to last .
e “Definitive” .
e Usually formal .

 May not be widely used
or understood

“little m”

Not a lot of time invested
Intended to communicate
Often discarded

Can be formal or informal
Made to be viewed

Agile architects create models as needed

CRC Cards: A “little m” model

The First CRC Cards

Model

Maintain problem
related info

Broadcast change
notification

“A Laboratory For Teaching Object-

Oriented Thinking,”

Kent Beck, Apple Computer, Inc., Ward
Cunningham, Wyatt Software Services,

Inc.
OOPSLA 89

View

Render the model

Transform
coordinates

Model

Controller

Controller

Interpret user
input

Distribute control

Model

View

Supports interactive web and

self service applications

Provides storage for.

- Transactionsthat will affect
systems of record

- Staging information closer to the
user o support high performance
access

-Data required by end users that
comes from systems of record that
do not have 24 x 7 availability

Repository for those
business entities that are
shared across systems of

record

- Customer is an example on
such an entity

-1s responsible for managing the
synchronizing those entities
across systems

-Fundamentally a store for
business identity management

Example:
Database
“Responsibilities”

Supports the event driven and

service integration architecture .

Provides storage for.

-transformation and enrichment services

-long running transactions.

-audit and performance metrics

-messages that need replayed in case of an
unexpected failure

-error handling

Repository for business

data and transactions

-Based on business processes

- Considered the single source of
the truth as it relatesto a given
entity

- A given entity should have one
and only one system of record

Supports capturing and storing
data to support reporting and

business analytics

Provides Storage for

- Time variant/non volatile data sourced
from systems of record

- Historical record of transactional data

- Archival data for those systems of records
not capable to support historical tracking
of data

Values Important to Agile Architects

e Balance

e Testable
architectural
qualities

e Hands-on

— programming,
designing, reading
code, building
things...

Agile Values Drive Architectural Practices

e Sustainable Do
something!

development

* Responsible moments
. Prove &
* Evidence-based

decisions Refine.
e Attention to detail

Indicators You’ve Paid Enough
Attention to Architecture

Defects localized
Stable interfaces
Consistency
Performant

New functionality doesn’t
“break” existing architecture

Few areas developers avoid because they are
too unpleasant to work in

59

