1

Rebeccé W1rfs Brock

i) @ 20}4 Wirfs-Brock Associates

n«~ ‘& "

.mn%.m
S eb.d S
O . O S
HG8 a8 e
RV, o e
eDrmmP
=R

>

j ,‘,‘“‘_&

g Des

-,
D)
=
—
A
>
e
e
mw
<
o &
S e
/)
Lo U
o[

Recommended Daily Dosage?

Redding Municipal Airport (RDD)?
Radar Detector Detector?

Responsibility Driven Design!

Initial Inspiration...
Smalltalk abstract methods

-SAIRC-

subclassResponsibility

Self error: ‘My subclass should
nave overridden one of my
messages.’

Object-Oriented Design:
A Responsibility-Driven Approach

Rebecca Wir,
rebeccaw@orca.wv.tek.co
(503) 685-2561

P.O. Box 1000, Mail Station 61-028
Tektronix, Inc.
Wilsonville, OR 97070

ABSTRACT

Object-oriented programming languages sup

encapsulation, thereby improving the ability of software to be

reused, refined, tested, maintained, and extended. The full

benefit of this support can only be realized if encapsulation is
nized during the design process.

We argue that design practices which take a data-driven
approach fail to maximize encapsulation because they focus
too quickly on the implementation of obje We propose an
alternative object-oriented design method which takes a
responsibility-driven approach. We show how such an
approach can increase the encapsulation by deferring
implementation issues until a later stage.

Introduction

The primary benefit of object-oriented prograr ning is its
ability to increase the value of a number of software metri
These metrics include being able to reuse, refine, test,

intain, and extend the code. Yet the value of these metrics
has been decreasing as the size of applic
complexity, has been increasing.

and hence their

Object-oriented programming increases the

metrics by managing this complexity. The m

available for dealing with complexity is abstraction. Many
types of abstraction can be used, but encapsulation is the main
form of abstraction by which complexity is managed in object-
oriented programming.

Programming in an object-oriented language, however, does
not ensure that the complexity of an application will be well
encapsulated. Applying good programming techniques can
improve encapsulation, but the full benefit of o ject-oriented
programming can be realized only if encapsulation is a
recognized goal of the design process.

The approach taken by a designer has a profound impact on the
degree to which encapsulation is embodied in a design. We
will describe the data-driven approach to design and why it

Brian Wilkerson
(503) 242-0725

921 S.W. Washington, Suite 312
Instantiations, Inc.
Portland, OR 97205

fails to maximize encapsulation. We will then describe an
alternative design approach, referred to as responsibility
driven, and explain why it results in designs with a higher
degree of encapsulation.

Data-Driven Design

Data-driven design is the result of adapting abstract data
design methods to object-oriented programming. The
adaptation is straightforward because classes closely resen
abstract data types.

From a purely pragmatic point of view, objects encapsulate
behavior (the implementation of an object’s responsibilit
and structure (the other objects known directly by that object).
This is similar to the definition of an abstract data type.

Before data-driven design is described, let us briefly review
abstract data type design.

Abstract Data Type Design

An abstract data type is the encapsulation of data and the
algorithms that operate on that data. Abstract data ty
designed by asking the questions

What data does this type subsum
and

What algorithms can be applied to this data?

The primary focus of these questions is to determine what data
is being represented in the system. This can be done initially
by identifying the data required by the program (or perhaps
only a portion of it). This data can then be grouped into tyy
using cohesion as a guide. (Cohesion, as applied to a g
data, is a measure of how strongly related the parts of the group
ally, identifying the alg ms associated with those
types of data often leads to the discov of other types that are
required.

Definition of Data-Driven Design

In a data-driven desi ts are designed by aski

question

1989

Designing
Object-Oriented

Software

Rebecca Wirfs-Brock
Brian Wilkerson
Lauren Wiener

1990

Class-Responsibility-Collaborator Cards

from Ward and Kent

SRS

“A Laboratory For Teaching
Object-Oriented Thinking,”

Model Kent Beck, Apple Computer, Inc.,
Maintain problem Ward Cunningham, Wyatt Software
related info Services, Inc.

OOPSLA 89
Broadcast change
notification
: Controller
View
Render the model Model ;n‘rer'pr'e‘r Uzer Model
Input
View

Tr'ansform Controller SE e Ry
coordinates

tools and

RDD emphasis...
techniques

RDD Principles

-SAIRC-

1. Maximize Abstraction
Hide the distinction between data and behavior. Think of object

V9 (0

responsibilities for “knowing”, “doing”, and “deciding”
Focus on what a class should do and how it should be used, first
Then decide on how to implement 1t

2. Distribute Behavior

G1ve objects responsibilities to perform operations based on what
they know

Make objects smart— have them behave intelligently, not just hold
bundles of data...but not too smart

Delegate responsibility

Responsibility-Driven Design
Principles

-SAIRC-

3. Preserve Design Flexibility

Design objects so interior details can be readily changed

Hide implementation details: Do not share visibility of private “helper”
classes or attributes

Create well-defined interfaces that are flexible
Implement code so that dependencies between classes are minimized

Understand design variations that need to be supported. Create places
where your existing design can be extended

10

Starting From Different Points-of-

Data-Driven
Responsibility-Driven
Event-Driven
Rule-Based

Ad-Hoc

View

SIRO

influence

Choice of key
abstractions

Distribution of data
and behavior

Patterns of
collaboration

Object visibilities

Head DJ€Signing a Horse
Y —— Speed Up

Start 4 N S
\\M Body Slow Down
Tail

Stop ;”ts)"y ﬁ@“ N

Legs (4)

i

I

Designing a Horse
Responsibly

Object Des gn

Roles, Responsihilities, and Collahorations

Rebecca Wirfs-Brock and Alan McKean

Forewords by lvar Jacobson and John Vlissides 2002

Role Stereotypes:
A tool for seeing and shaping behaviors

stereotype—A conventional, formulaic, and oversimplified
conception, opinion, or image

“Characterizing Your Objects”, Rebecca Wirfs-Brock, February 1992 Smalltalk Report

Role Stereotypes

Information holder -
knows and provides
information

Structurer - maintains
relationships between objects and

information about those
relationships

Role Stereotypes

Ve SR

Interfacer - translates information
and requests

Service provider -
performs work on
demand

Role Stereotypes

Controller - makes decisions
while closely directing
others’ actions

Using Role Stereotypes

Think about objects or LRl ﬁe e
components needed R R

Study a design

Blend roles to make objects
more responsible

— 1nformation holders that
compute

— service providers that
maintain information

— structurers that derive facts
— Interfacers that transform

Z

Pulling up a level...to compare

=)
Stog

¢
g;ﬂ

Interconnect

Get first i with C
Get next int with Container D

SRS

FIGURE 6.3-10 TRANSFER A BATCH

“The Object-Oriented Brewery: A Comparison of Two Object-Oriented Methods,”R. Sharble and S. Cohen,
Boeing Technical Report BCS-G4059, 1992.

“How Designs Differ”, R. Wirfs-Brock, Smalltalk Report, vol. 1, no. 4

BOEING BOEING
Get vaive id
Open Path to
Manifold
Valve Determine Path ‘ ‘ ‘- ose Path
Set Close
Brewmaster Pipe Brewery o
Start Scheculed, » s
J’ Get Next Othe:
o < o - o
= 4 l &7 4 Get Next
e ¢, 2 Do Schedulea 7/ PN
A you a mixing vat kems - -
Pexy Are you 8 botting vat i Dirty
t vat ref from vet id S
w Backril Vaive D Dok s
Scheduled Vat Temperature .
Transfer 0 Transfer Order g pe)i
t Manifold
o Hert You Clean? Oot "
e e to R
o vine i | \om Empy »
Get Vaiwe D 5 f.:,:w‘; "‘."' termine i Is Completed 75« aa::" r.,,f:s‘ ture
first Container 10 - — ‘empena
Get naxt Container D
Contanar Yowe Closed o t Don't Check Temperature
e T S henp 1 e [\ e Py ‘
S socucwﬂ% "\a%'n ai OIS Pump Out Stop
- - Fermenting Vat
Pump

FIGURE 7.3-10 TRANSFER A BATCH

...and characterize

Data-Driven Design Responsibility-Driven

Approach Design Approach
centralized control delegated control
controllers coordinators

inherited attributes inherited behavior
many low-level fewer, higher-level
messages messages

lots of simplistic a few smart objects that

information holders blend role stereotypes

[P 0 = o

- ~ ™~

=’

WY TR

3 P - =
13 ik i

e -

- PR T Nk - e
e I T I g S STy R A ket s e

(7, —

&S 3
v 8 S
p—) s
Cl- e B
Ao S e
o — @R
S = O EEah e
o o v et G LS
NS @ ol SR
@ i e
....up @ VJMu 3 L
g 2 = e D G
g8 = &8
w O O < O @it
gl B D

¥ =G
7 s G
< < n <

3. Blending Stereotypes
The Whole Value Pattern

SR

Classes that represent meaningful domain quantities

Examples: currency, calendar periods, temperature, color,
weight, brightness.

R Color (50% red, 30% green, 10% blue)
«® Temperature (75 degrees Fahrenheit)
@ Currency (100 U.S. Dollars)

Hold information and perform comparisons and
translations

Streamlining Collaborations

\“.‘J_/ \\
o

T-—

trust region—aﬁ

area where
trusted
collaboration)/';M;
occur
- 4 4‘4
>N ,{'

._l'

4

"ﬂ S o I —I :

Collaborate

P -_ 9
=y \

To work together, especially 1n a joint intellectual effort

Collaborate

To cooperate treasonably, as with an enemy occupation force

Trust In A Telco Integration Application

- g]
Billing System
Billing System
Adapter
collaborations A

between the core anp

i
U

Order Taking
System

any adapter were £]
DlESf«@ ned to be Application Integration Order Taking
trusted Sepices R
Ak S Components at the
e i edges take on extra
- - respowsibLLitg to
Number Portability Provisioning System
Adapter Adapter serub requests from
.) untrusted sources
/
Number L.
gy gl

Influential Early Object
Design Approaches

Shlaer-Mellor

Booch method

Object Modeling Technique > Rational Unified
Process
Objectory

OORAM - Trygve Reenskaug > BabyUML

The Driven Meme

SIS

RDD & started it!!!!

DDD

FDD
Agile Practices AMDD
& Approaches

TDD

BDD

ATDD

xx-Driven Design

&,.

Responsibility-Driven Design — Rebecca Wirfs-Brock,
Brian Wilkerson, Lauren Weiner, Alan McKean

Data-Driven Design
Domain-Driven Design — Eric Evans
Test-Driven Design — Kent Beck

x-Driven Development

-SAIRC-

Test-Driven Development — Kent Beck
Behavior Driven Development — Dan North

Contract-Driven Development AKA Design by Contract™
— Bertrand Meyer

Agile Model-Driven Development — Scott Ambler

Feature Driven Development — Jeff De Luca and Peter
Coad

Model-Driven Development™ — OMG

Model-Driven Engineering

Robert Martin’s S.O.L.1.D.
Principles

SRS

Single Responsibility Principle (SRP): A class should have only one
reason to change.

Open-Closed Principle (OCP): Extending a class shouldn't require
modifying that class.

Liskov Substitution Principle (LSP): Subclasses should be
substitutable for their superclasses.

Interface Segregation Principle (ISP): Users of a class should not be
forced to depend on interfaces they do not need.

Dependency—lnversion Principle (DIP): Abstractions should not
depend on details. Details should depend on abstractions.

Agile Software Development: Principles, Patterns, and Practices (Prentice Hall, 2003)

Major Differences

-SAIRC-

Design rhythms

Focus

Artifacts

Properties of “good” software
Ownership

Emphasis

FDD Design
Rhythm

SO

Feature by Feature:
Domain walk through
Design
Design Inspection
Code
Code Inspection

Design in the first week, code in
the second

Refactor

Red

TDD

TDD Design
Rhythm

SR
Story-by-story:
Write the simplest test
Run the test and make
it fail
Write the simplest

code that will pass the
test

Repeat until a “story” 1s
tested and implemented

Design between the keystrokes

Test-First Development

Write production
Re(write) Check if code h

_ . f‘ |

test succeeds

=

L&

C wn

E J5]

O

o
all tests o
—

succeed
Clean up code Check
(Refactor) all tests

succeed

Test-Frequent Development

Tests don’t always get written first.
Tests written & must pass before checking in production code.

Write some Re (Write) Check if

production code 2 test test fails

fal)®

test
Clean up code

(Refactor)
1 or more

tests fail

Check
all tests
succeed

all tests succeed

Agile Model-Driven Development

Requ'ir.em.ents ' l Arc}.lit.ect.ure
Envisioning Envisioning
(days) (days)

Iteration 0: Envisioning

l

Iteration Modeling

(hours) a little bit Of

Model Storming modeling then a lot

(minutes) Of cod, Z.I”lg
F

~
TDD (hours)

Iteration n: Development

Behavior-Driven Development

Specifications of desired behavior

SRS

Acceptance scenario structure:

Given some 1nitial context when an
event occurs then ensure some
outcomes.

BDD Example

WindowControl should close windows

SIRO

public class WindowControlBehavior

@Test
public void shouldCloseWindows

// Given

NindowControl control = new WindowControl ("My AFraime e
AFrame frame = new AFrame () ;

// When

Tepiretatciliosellin dow:)=

S /-Then
ensureThat (! frame.isShowing -

“a rephrasing of existing good practice...not a radical departure”

Domain-Driven Design

focus on domain model

Entity object—distinguished by who it 1s.
Has lifecycle, can change form.

“You are who you are and you are unique.” 7

 _

Value object—Needn’t be
unique. Typically describes
some characteristic.

“I don’t care which blue crayon I

Eric Evans, Domain-Driven Design ; »
!) use, just that I have one.
Addison-Wesley, [2004 J

Domain-Driven Design

focus on “strategic” design

SRS

. . |
preserving, protecting, \ 1 mmm==—--
and strengthening \ Y
domain concepts S

Software Design Values

-SAIRC-

Expressive
Understood
Coherent

Suited for use

Testable
Predictable

Changeable

Software Design Values

-SAIRC-

Habitable Software

places where designers feel comfortable growing,
extending their designs and living with them for a
period of time

Sustainable
Design

Stewardship

Follow through
Ongoing attention

Not ignoring the little things that
can undermine your ability to
grow, change and adapt your

software

rebecca@wirfs-brock.com
twitter: (@rebeccawb

.

