
10/4/24

1

getAccessTokenFromCode: aCode clientId: aClientId clientSecret:
aClientSecret
 "Complete an OAuth request from Github if 'code' GET variable is set”

 | accessTokenString response|
 accessTokenString :=
'https://github.com/login/oauth/access_token?client_id={1}&client_secret
={2}&code={3}'
 format: {
 aClientId.
 aClientSecret.
 aCode
 }.
 response := ZnClient new
 url: accessTokenString;
 get;
 response;
 contents.

 ^ response at: #access_token ifAbsent: nil

Discovering
Alexander’s

Properties in
Your Code

Rebecca Wirfs-Brock

1

…and in Your Life

2

10/4/24

2

Christopher Alexander’s
Magnum Opus: 4 Volumes on The Nature of Order

Volume 1: The fifteen properties
 of things that have life

Volume 2: Unfolding processes
 for creating “lively” things

3

An Approachable Summary and
Personal Interpretation

by Jenny Quillien

4

10/4/24

3

WHOLENESS AND CENTERS AND
LIFE

Core principles

5

Wholeness and Centers
There is a class of entities which I call centers appearing everywhere in
space. They appear where they do, as a result of the con�guration which
appears in the world. Every part of the world, at every scale, has centers
appearing in it.

…Although the system of centers is �uid, and changes from time to time
as the con�guration and arrangement and conditions all change. Still, at
any given moment, these centers form a de�nite pattern. This pattern of
all the centers appearing in a given part of space—constitutes the
wholeness of that part of space. It is this structure, which is responsible
for its degree of life.

 —Christopher Alexander

6

10/4/24

4

Centers

In a user interface, centers include the geometrical entities . . .
graphical elements, textual design elements (titles, bullets,
paragraphs, sidebars)

In the actual software it depends on what we consider to be
the equivalent of geometry, space, and structure: text—the
source code itself, the program run trace

James Coplien, “Space: The Final Frontier,” C++ Report, March
1998

7

Alexander’s 15 Properties of Things
Which Have Life

1. Levels of scale
2. Strong centers
3. Boundaries
4. Alternating repetition
5. Positive space
6. Good shape
7. Local symmetries
8. Deep interlock and ambiguity

9. Contrast
10.Gradients
11.Roughness
12.Echoes
13.The void
14.Simplicity and

 Inner calm
15.Not-separateness

8

10/4/24

5

9

Levels of Scale
relationships between

centers (2:1, 3:1)

different areas of interest in a
design and relationships
between the areas

No class, object, method, or
service too big

Assemblies of objects into
components

Systems of software systems…

In software…

10

10/4/24

6

Scale in Building upon Core
Abstractions

An Example found in the
Smalltalk Collection Hierarchy

11

Collection Hierarchy

12

10/4/24

7

Collection Responsibilities
Three abstract methods as building blocks

add: anObject

remove: anObject ifAbsent:
exceptionBlock

do: aBlock

13

Additional Behaviors
Implemented by template methods

which use those building blocks

addAll:

remove:

removeAll:

isEmpty

includes:

ocurrencesOf:

collect:

detect: aBlock

detect: ifNone:

inject: into:

reject:

select:

14

10/4/24

8

Levels of Scale
In your life…

Fearless Change Patterns
• Elevator Pitch – High level summary
• Town Hall Meeting – Interactive invite to

share about the new idea and get feedback
• Personal Touch – Custom message reaching

out to them on a personal level

Music Patterns
• Concerts/Piece/Movement/Riff/Phrase/Beat
• Orchestra – Strings, Brass, Woodwinds, Percussion
– Concert Violinist, Saxophonist, Conductor

15

Strong Centers
symmetrical shapes

complementary to
the whole

16

10/4/24

9

Centers in Software

• Well-defined roles and patterns of interactions
• Control Centers
• Domain models: A network of entities, values,

aggregate roots. Domains and relationships
between them

• Abstract classes and inheritance hierarchies
• Algorithms

17

Responsibility-Driven Design (RDD)

1990

2002

18

10/4/24

10

RDD Role Stereotypes
knowing, doing, deciding

• Typical behaviors in an object-oriented design
• Information holder—knows and provides information.
• Structurer—maintains relationships between objects.
• Service provider—performs work on demand.
• Coordinator—reacts to events by delegating to others.
• Controller—makes decisions and directs others’ actions.
• Interfacer—transforms information and requests between

distinct parts of a software system.

19

RDD Concept: Control Center
Tools for shaping collaboration/interaction style

control center—a place where objects
charged with controlling and coordinating
reside

aDhfjkl

aDhfjkl aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

aDhfjklaDhfjkl

aDhfjklaDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

Centralized

Delegated

Dispersed

20

10/4/24

11

Boundaries
enclose and

strengthen centers

21

Boundaries in
Software

Unites the enclosed center with the
world around it and intensifies the
identity of the center itself
• Interfaces
• Contractual agreements (terms

and conditions of
collaborations)

• Tests defining expected
behavior

• Subclass / superclass
responsibilities & obligations

• Aggregate roots
• Domain anti-corruption /

translation layers

22

10/4/24

12

Domain Aggregates

•A domain aggregate is a
cluster of associated objects
that is treated as a unit for
the purpose of data changes
•The aggregate root has
responsibility for managing
access to its parts

Engine

Car

Tire

Wheel

Position

Customer

1

4

14

An object outside
the aggregate

boundary may not
hold a reference to
an object inside the

boundary

<<Aggregate Root>>

<<Aggregate Root>>

Pattern in Eric Evans’ Domain Driven Design

23

Alternating Repetition
wave-like repetition

24

10/4/24

13

25

Alternating
Repetition in Code

• Consistent patterns of
collaboration

• Domain entities
composed of value
objects related to other
domain entities

• Double Dispatch /
Delegation

• Visitor / Chain of
Responsibility /
Composite

26

10/4/24

14

How Quality Scenarios and Quality
Testing Fit Into An Agile Process

Product
Envisioning

/
Roadmap

Deploy to
Stakeholders

Functional
Acceptance

Testing

Develop
and Manage
the Backlog

Plan a Sprint Run a Sprint

Daily Review

Incorporate Feedback

Identify Key
Quality Scenarios

Can
Include
Quality
Scenarios

Include
relevant
quality
tasks

Quality
Testing

27

Positive Space
no fragments

28

10/4/24

15

Positive Space In Code
• Every center has a coherent

presence…not a fragment or a bad
factoring
– Objects with a singular purpose
– Role stereotypes and good

stereotype “blends”
– Public and private responsibilities
– Tests for expected and exceptional

behavior
– DRY Principle
– Whole Objects / Complete

Constructors
– Parameter Object

29

Local Symmetry

30

10/4/24

16

31

• Symmetrical behaviors
• Common and

consistent naming
• Methods containing same level of

code detail
• Collections

– add: remove:
– select: reject:

• Stacks
– push / pop

• Do/Undo

Local Symmetries
work to create coherence

32

10/4/24

17

Good
Shape

recursive, compact
coherent centers

33

Good Shape
a shape that comprises recursive
compact coherent centers, each

exhibiting characteristic properties

• Roles and patterns of
collaboration

• Adaptor, Decorator,
Façade, Layers, Pipes,
Filters, Services,

• Sub-assemblies, Modules
• Domains, Separation of

Concerns

34

10/4/24

18

render() {
 var completed = Todos.completed().length;
 var remaining = Todos.remaining().length;

 if (Todos.length) {
 this.$main.show();
 this.$footer.show();

 this.$footer.html(
 this.statsTemplate({
 completed, remaining
 })
);

 this.$('#filters li a')
 .removeClass('selected')
 .filter(`[href="#/${TodoFilter || ''}"]`)
 .addClass('selected');
 } else {
 this.$main.hide();
 this.$footer.hide();
 }

 this.allCheckbox.checked = !remaining;
 }

35

+addPlanItem(SubscriptionQuantity)
+deletePlanItem(String)
+getPlanItems()
+getPlanItem(String)

+id: Long
+name: String
+subscribableItemName: String
+deliveryBasis

<<Aggregate Root>>
SubscriptionPlan

Operations

+id: Long
+name

<<Aggregate Root>>
Offer

addOffer(Offer)
getOffers()

+id
+promotionCode
+channel
+beginDate
+endDate

Promotion

+id
+/deliveryBasis - derived from
SubscriptionQuantity
+quantity: SubscriptionQuantity
+basePrice: Amount

SubscriptionPlanItem

+getSubscriptionPlanItem()

+id
+discount
+discountQuantity
+subscriptionPlanItem

OfferItem
*

*

* * *

createPlan(String, DeliveryBasis, String,
Set<SubscriptionPlanItem>): SubscriptionPlan
updatePlan(SubscriptionPlan): SubscriptionPlan
findByName(String): SubscriptionPlan

SubscriptionPlanService

If a plan is deleted, its
associated offers are deleted

Revision 1.3 of
SubscriptionPlan, Offer and

Promotion
June 8, 2013

+id:Long
+name: String
+publisher: String
+issuesPerYear: int
+publicationFrequency:
deliveryFrequency
+description: String
+shippingRestrictions:
String
+issn: String
+format:
SubscriptionFormat

SubscribableItem

36

10/4/24

19

Deep Interlock and Ambiguity
centers hook into surroundings

37

38

10/4/24

20

Deep Interlock
and Ambiguity in

Code
the interface zone, both
system and context,
where centers hook into
their surroundings

• Collaborations between roles
• Interface and Contract

Definitions
• Dynamic Client-Supplier

Relationships

39

Contrast
centers created by strong

boundaries

40

10/4/24

21

Gradients
gradual variation of a quality across space

41

Roughness
adapts to its environment

hand crafted custom code

42

10/4/24

22

Roughness in Software

• My programming differs from yours, even
though we agree to the same “style
guidelines”.

• Hand-crafting means you don’t blindly apply a
pattern without thinking of how it should be
adapted in this situation.

• We’re always tweaking things…for
performance, scalability, aesthetics…

43

Echoes
similarities between small

and larger centers

44

10/4/24

23

Echoes in Programs

• We find and repeat:
– Recursion
– Interfaces
– Intentional names
– Relationships, complex and basic structures
– Ways of decomposing responsibilities (helper

methods, classes, components, services)
– How we handle errors and exceptions

45

The Void
infinite depth surrounded

by the clutter of stuff

46

10/4/24

24

Simplicity and
Inner Calm

slowness, majesty, and quietness
with no extras

47

Simplicity and
Inner Calm in

Code

• refactored, clean code, easy to
understand

• spare use of programming
language frills

• lack of excessive features in a
framework

• Fold out interfaces
• “Works out of the Box”

48

10/4/24

25

Not Separateness
when a center having deep life evokes a feeling of connectedness
to what surrounds it and is not cut off, isolated, or separated

49

BREAK UP INTO GROUPS AND PICK
AN AREA OF YOUR LIFE AND A FEW
PROPERTIES AND GIVE EXAMPLES
OF THEM

Group Exercise

50

10/4/24

26

Relating

“The key thing about these many different
wholes we see, is that each of them has a
relation with us, me, you. Each shape is made in
such a way that you can establish a relationship
with it; indeed, you want to establish a
relationship with it.”
 —Christopher Alexander, The Luminous Ground

51

…make us
comfortable
…fit their
environment
…are made by
hundreds of small
acts

Living Structures

52

10/4/24

27

“In a good
process…each person
working…is—and—feels
responsible for
everything.”
—Christopher Alexander

53

The Process of Unfolding

“An unfolding … describes "how to get there from here", how and when a particular
emerging morphology is to be injected into an emerging design, and what actions
must be taken to make the appearance succeed geometrically. Thus an unfolding is a
hugely different thing from a pattern, and a most important step forward.”
http://www.livingneighborhoods.org/ht-0/whatisanunfolding.htm

54

10/4/24

28

55

Acknowledgements
• Rebecca Wirfs-Brock photographs of Kyoto, Portugal, Greece,

Sweden, and Opal Creek, Amity, and Sherwood, Oregon USA
• Joe Yoder is a friend, collaborator and fellow pattern /

Alexander enthusiast whose ideas have stimulated my
thinking.

• Richard Gabriel is a thinker and doer, and inspiration too.
• Allen Wirfs-Brock photographs of Oslo, Greece, and Jenny
• Brian Foote photo of Joseph Yoder/Mary Lynn Manns
• Code by TasteJS http://blog.tastejs.com/rewriting-a-webapp-

with-ecmascript-6
• Code by Jon Tedesco http://www.jontedesco.net/2013/05/18/github-

oauth-tutorial-gists/
• Dodgson (Stephen Dodgson 1924) - Etude - caprice (to Joan

York) - guitar sheet music notes

56

10/4/24

29

57

