

1

Smalltalk/V Exception Handling Proposal

Allen Wirfs-Brock

 Version 0.1, October 14, 1992
Version 0.5, March 18, 1992

This document presents a proposed exception handling model for
Smalltalk/V. The model is a synthesis of ideas from Christophe Dony
(“Exception Handling and Object-orient Programming: Towards a
Synthesis”, OOPSLA’90) as implemented for Smalltalk/V by Hal
Hildebrand, the Objectworks Smalltalk exception handling system, and
original ideas. The primary goal of this proposal is to develop an
exception model that includes a subset that is very simple for the casual
Smalltalk programmer to understand and use, while at the same time
supporting (or at least could be extended to support) the needs of the
most sophisticated commercial application developer.

This document is (well, ultimately will be) in three parts. Part 1
describes the simple, casual user subset of the model. Part 2 describes
additional features of the full model. In general this document is written
in the form of a user’s manual for the exception handling system.

Commentary on the design is presented using text like this paragraph. This
commentary is intended to explain the particular design decisions that we made in
developing this model. The commentary is not intended to be part of the end user
documentation.

Part 1: Exceptions — The Simple Story

Exceptions are unusual or unexpected events that can occur during the execution of a
Smalltalk program. When one of these exceptional events occurs we normally want
our program to take some special action. For example, if we are reading data from a
file and unexpectedly encounter an end-of-file we may want to stop processing and
display an error message.

Exception Classes

In Smalltalk, exceptions are represented as objects. Different kinds of exceptions are
defined using Smalltalk classes. Each exception class defines a default action that will
be performed upon occurrence of the exception.

2

The following table list some commonly used exception class. For each class the table
describes what exceptional event is represented by the class and what default action is
performed.

Error any program error open an error notifier
ArithmeticError any error evaluating an arithmetic operator inherited from Error

ZeroDivide a attempt to divide by zero inherited from ArithmeticError
FileError any error associated with processing files inherited from Error
ControlError any error associated with evaluating blocks or

sending messages
inherited from Error

DoesNotUnderstand a message was sent to an object that did not
define a corresponding method

open a notifier that allows the message
send to be retried.

Notification any unusual event that does not impair
continued execution of the program

do nothing, continuing executing

Warning an unusual event that the user should be
informed about

Open a notifier that describes the event
and allows the user to choose to
continue execution.

The first major design alternative is whether the various exceptional conditions should
be represented as different instances of a single universal exception class or whether
each exception should be represented by a unique class within a hierarchy of exception
classes. PPS uses the single class approach. Its advantages are fewer classes and
potentially more flexibility in organizing the relationships between exceptions. (In
theory, exceptions could be related using a lattice, not just a tree, but PPS does not do
this.) The main disadvantage of this approaches is that all exceptions must have exactly
the same protocol and the same encapsulated state. Another disadvantage is that the
hierarchy of exceptions is not directly viewable using the browser. A separate class is
required to represent the state of a signaled exception. Dony uses the multiple class
approach. Classes represent exceptions that can be signaled and instances of the classes
represent actual signaled exceptions. The relationship of the classes in the class
hierarchy mirrors the priority hierarchy of the actual signals. The major advantage of
this approach is that different types of exceptions can have unique message protocols
and instance variable structures. Additionally, the set of available exceptions and their
relationship scan be directly viewed using the browser. I choose the class hierarchy
approach because of these advantages.

I have attempted to define an exception hierarchy that only includes classes that
actually represent exceptions that a user might want to directly deal with. In
particular, I did not include any abstract classes that implement handling alternatives
such as proceedable nor not proceedable. One problem with that approach, is that the
alternatives do not form a strict hierarchy. Some FileErrors may be proceedable while
others are not. Similarly, a subset of the ArithmeticErrors might be proceedable. Dony
solves this problem in his paper by using multiple inheritance. Hal implements this
using a single inheritance hierarchy and copying behavior where multiple inheritance
would be required. This results in a hierarchy where it looks like any exception is either
proceedable or not proceedable but where in fact both attributes may apply to some
exceptions. My solution is to eliminate these structural classes and make proceedable
an attribute of each exception class.

3

Dony calls exceptions “Exceptional Events” and uses class names such as
“FatalEvent” and even “Event”. PPS uses the name Signal for its single class and
“names” its instances things like ZeroDivideSignal. I don’t like the Event
nomenclature because the word “Event” shows up in many application areas and I
don’t want to preclude users having classes of this name. Signal is not an appropriate
name for our classes because their instances are not things that can be signaled but the
object that represents the occurrence of an actual, signaled exception. Because of this I
decide it is most appropriate to ‘call a spade, a spade”. Our classes of exceptions are
named “Exceptions”. A secondary benefit of using names that are disjoint from both
PPS and Dony is that it permits the development of compatibility packages that
support those exception models.

Handling Exceptions

In some cases, a programmer may wish to do something other then the default action
associated with an exception. This is accomplished by associating an exception handler
with the execution of a Smalltalk block. For example:

 [x / y] on: ZeroDivide do: [Transcript show: ʻzero divide detectedʼ.]

This expression causes its receiver (the block containing “x / y”) to be evaluated by
sending it the message value. If a ZeroDivide exception occurs while executing the
block, the handler block (the argument to do:) is evaluated, causing a message to be
written to the transcript.

All a programmer needs to learn to handle exceptions is the names of some exception
classes and the on:do: message. PPS calls their equivalent message handle:do:.

Both PPS and Hildebrand require the argument to the do: keyword to be a block that
takes a single argument. An object that captures information about the actual
exception (exception object) is passed as the actual argument. My experience is that
most exception handlers do not actually refer to the argument. In particular, handlers
written by less sophisticated programmers seldom use the argument. For this reason I
allow the handler block to be either a zero or one argument block. Simple handlers and
simple programmers need not worry or learn about the argument.

An exception handler normally completes by returning the value of the handler block
in place of the value of the receiver block. Note that the above example would return
the transcript. If instead of displaying a message, we just wanted to return the value 0
when a division by zero occurred we would rewrite the above expressions as:

 [x / y] on: ZeroDivide do: [0]

This might be used as follows:

 fudgeFactor := [x / y] on: ZeroDivide do: [0].

4

If instead of returning a value we want to exit the current method we can place an
explicit return within the handler block:

 fudgeFactor := [x / y] on: Error do: [^ʼuncomputableʼ].

Note that in the last example, we specified Error as the exception to be handled
instead of ZeroDivide. When we specify an exception to be handled we are really
saying that we want to handle the named exception and also any exceptions that are
subclasses of the named exception. Because ZeroDivide is a subclass of ArithmeticError
which is a subclass of Error, an attempt to divide by zero, or any other error that
occurs while evaluating x/y will cause the enclosing method to return the string
ʻuncomputableʼ.

I have tried to make simple blocks used as handlers do the “right thing”. For non-
proceedable exceptions, this is to return a value from the on:do: message. For
proceedable exceptions it is to return a value to the signaler of the exception.
Hildebrand requires that all handlers explicitly terminate by sending an appropriate
message to the block’s argument. Otherwise, an “unhandled exception" exception is
raised. This is too hard for to learn and use for simple cases.

Sometimes an exception handler needs to obtain information about the specific
exception that it is dealing with. This can be accomplished by using a single argument
block as the exception handler:

 [x / y] on: Error
 do: [:theException |
 Transcript show: theException description.
 ^ʼuncomputableʼ].

An exception object will be passed as the argument to the handler block. The
exception object is an instance of the class of exception that actually occurred. In the
above example, the exception object might be an instance of ZeroDivide, instead of an
instance of Error. All exceptions respond to the message description by returning a
string that describes the actual exception. This is used in the above example to
display a message in the transcript.

The most common thing that a casual programmer needs to find out about an exception
is a textual description of what happened. Other messages may be sent to the exception
object ,including messages to explicitly control what happens when the handler exits.
See Part 2 for details.

Cleaning-up After Ourselves

The occurrence of an exception normally causes Smalltalk to discard the current work
in progress. Sometimes a method will do something that requires a subsequent action
regardless of whether or not an exception occurs. A good example is a method that
places a lock on an external file. As long as the lock is in place, other users cannot

5

access the file. Such a lock needs to be released even if an exception occurs. The
following is an example of a method that could be written in class FileStream to
implement such behavior:

whileLockedDo: aBlock
 “Lock the receiving file. Process the argument block while the file is locked

then unlock the file. Return the value of the argument block. Be sure to
release the lock if an exception occurs.”

 self lock. “set the lock”
 ^aBlock ensure: [self unlock “clear the loc"]

The message ensure: when sent to a block causes the receiver to be evaluated just as if
the message value had been sent to the block. The value returned is the result of
evaluating the receiver. The argument to the ensure: method is a block that is called
the clean-up block. After evaluating the receiver, the clean-up block is also evaluated.
The clean-up block is also automatically evaluated if for any reason the receiver block
does not return normally. In particular, if an exception occurs while evaluating the
receiver, the clean-up block will be executed. Executing an explicit return that goes
outside of the receiver block is another situation that causes execution of the clean-up
block. This is illustrated by the following example:

myFile whileLockedDo:
 [myFile atEnd
 ifTrue: [^nil]
 ifFalse: [myFile next]]

The clean-up block within whileLockedDo: will be executed even if the argument
block encounters an end of file and explicitly returns nil.

PPS uses the particularly ugly selector, valueNowOrOnUnwindDo: for the ensure:
operation. Correctly handling non-local returns from the receiver block requires some
simple virtual machine extensions. Part 2 describes a less commonly used variant of
the operations.

Signaling Exceptions

Most of the exceptions that programmers need to deal with are detected by code
within the standard Smalltalk/V class. Occasionally, a programmer needs to write a
new method that signals the occurrence of an exceptional condition. This is especially
true if the programmer has also created new classes of exceptions. An exception is
signaled by sending the message signal to the class that defines the exception. For
example:

 Error signal

6

creates an error exception. If there is an active handler that deals with the Error
exception, it will be executed. Otherwise the default handler will be executed. It is
often useful to provide a textual description when signaling an exception. This is
accomplished by sending the message signal: to an Exception class:

 Warning signal: ʻthe disk is almost fullʼ

The argument string will be incorporated into the value returned when the message
description is sent to the resulting exception object.

I have tried to make the most common cases very simple. Dony also uses the selector,
signal, but things get rapidly more complicated. PPS uses the selectors, raise and
raiseWithErrorString: for these operations.

Error exceptions normally do not return to the method that signaled the exception.
However, the default behavior for Notification, Warning, and some other exceptions
is to return from the signaling message after executing the active handler for the
exception. This is accomplished by returning the value returned by the exception
handler as the result of the signal or signal: method:

 (Warning signal: ʻyes or no?ʼ) = ʻyes'
 ifTrue: [Transcript show: ʻyesʼ].

Exceptions whose default behavior is to return from the signaling message are called
resumable exceptions becuase the resume exectution rather than returning from the
exception.

This section has described the basic functionality of Smalltalk/V exception handling.
These functions should be adequate for most uses. The exception class also supports
additional protocol that is useful in special circumstances.

Part 2: The Rest of the Story

Conditional Clean-up

The ensure: message is used to guareentee that a block of code will always be
executed after the receiver block, whether or not the receiver block completes
normally. Occationally, it is necessary to guarrentee that a block of code will execute
only if another block does not complete normally. This is accomplished using the
curtailed: message. For example:

Just like ensure:, the message curtailed: when sent to a block causes the receiver to be
evaluated just as if the message value had been sent to the block. The value returned

7

is the result of evaluating the receiver. The argument to the curtailed: method is a block
that is called the clean-up block. Curtailed: differs from ensure: in that the clean-up block is
only evaluated if for any reason the receiver block does not return normally. In
particular, if an exception occurs while evaluating the receiver, the clean-up block will
be executed unless the exception resumes execution1. Executing an explicit return that
goes outside of the receiver block is another situation that causes execution of the
clean-up block.

Explicitly Exiting Handlers

A handler block normally completes by executing the final statement of the block.
The value of the final statement is then used as the value returned by the exception
handler. Exactly where control is returned with that value depends upon the
resumability attribute of the exception. A resumable exception returns from the the
message that signaled the exception. A non-resumable exception returns from the on:do:
expression that created the handler blocks. For example the following expression
returns 5 as the value of the on:do: message:
 ([Error signal] on: Exception do: [5]) "returns 5 here"
while the next expression returns 5 as the value of the signal message:
 ([Notification signal "returns 5 here"] on: Exception do: [5]).

Most exception classes specify whether they are always resumable or non-resumable;
however, it is possible for an exception class to specify for each signaled exception
whether or not it will be resumable.

Note that resumability is a an attribute of an exception not of the exception handler. If
a handler block is invoked for a resumable exception, tha handler block will return to
the signaler. If it is invoked for a non-resumable exception, it will return from its to:do:
message. This can be seen in the above example.

An instance of an exception can be explicitly tested to determine whether it is
resumable. This is accomplished by sending it the message isResumable. The following
example, the exception handler either returns 5 to the signaler or 10 from the do:on:
message depending where the exception class defines proceedable or non-proceedable
exceptions.

 [someExceptionClass signal] on: Exception
 do: [:theException|
 theException isResumable ifTrue: [5] ifFalse: [10]]

Occassionally it is desirable to conclude processing of a handler block before reaching
the final statement of the blocks. This can be accomplished in several ways by
sending appropiate messages to the argument of a handler block. The message exit:

1This rule also applies to ensure: clean-up blocks.

8

causes its argument to be returned as if it was the value of the final statement of the
handler blocks. The following two handlers have exactly the same behavior:

 [Error signal] on: Exception do: [5] .

 [Error signal] on: Exception do: [:theException| theException exit: 5].

The most common use of exit: is in a conditional expression of a complex handler
block. If the argument of a handler block is a resumable exception, the message
resume: can be used in place of exit:. For a resumeable exception, resume: behaves
exactly the same as exit: but it is an error to send resume: to a non-proceedable
exception. Doing so causes a ControlError exception to be signaled.

Another alternative to exit: are the messages return and return:. These messages cause
the handler block to return from its on:do: message. The value returned is the
argument of return: or nil if return is used. When sent to a non-resumable exception
return: has the same effect as exit: but when sent to a resumable exception control is
forced to return from the on:do: message instead of from the signal message that
created the exception.

Another way to exit an handler block is with the retry message. This message
terminates the handler block and retrys the evalutation of the receiver of the on:do:
block. Any ensure: or curtailed: clean-up blocks that we created by the original
evaluation of the receiver block or by he handler block are executed before retrying
the evaluation.

 [^ x / y]
 on: ZeroDivide
 do: [:ex|
 y := 0.00000001. " make the divisor very small but > 0"
 ex retry]

The message retryUsing: is similar to retry but instead of evaluationing the original
receiver block, the argument to retryUsing: is evaluated in its place. For example:

 [self doSomeTaskTheFastWay]
 on: LowMemory
 do: [:ex| ex retryUsing: [self doSomeTaskTheSpaceEfficientWay]]

Other Features that Need More Commentary

The message pass can be used inside a handler block to terminate the block and
execute any enclosing handler blocks for the current exception. For example:

 [[1.0 / 0] on: ZeroDivide do: [:e| Transcript show:'1 '. e pass]]
 on: Error

9

 do: [:f| Transcript show:'2 '.]

will cause the text "12" to appear in the transcript because the Z [self someAction]
 on: Warning
 do: [:e|
 self initialWarningAction.
 e pass. "let any enclosing handlers deal with it"
 self finalWarningAction]

Complex Signaling

 ex := SomeException new.
 ex establishExceptionState: foo.
 resumptionValue := ex signal.
 ex testState "if resumable"

Exception Environment of Handlers – Handler blocks execute in the exception
environment of the on:do: message, not in the environment of the signaled exception:

 [[[1.0 / 0]
 on: Warning do: [Transcript show: 'inner warning';cr]
]
 on: ZeroDivide do: [Warning signal: 'zdiv']
] on: Warning do: [Transcript show: 'outer warning';cr]

causes "outer warning" to appear in the transcript.

