
r dis-
s for

bjects.
 some

g of
 sub-

 the

 is the
port we
How can a subsystem be both
a package and a classifier?

Joaquin Miller 1 and Rebecca Wirfs-Brock 2

1 EDS, 10 South 5th Street Suite 1100
Minneapolis MN 55402 USA

joaquin@acm.org

2 Wirfs-Brock Associates, 24003 SW Baker Road
Sherwood OR 97140 USA

rebecca@wirfs-brock.com

Abstract. The UML specifies that a subsystem is both a package and a classifier.
This paper explores what that could possibly mean and explains why that was the
right choice. It points out a key to the use of the concept in CASE tools, mentions
the historical precedent for that key, and challenges CASE tools to support the
flexibility that architects and designers need. Along the way, the paper reviews a
method for discovering a good partition of a system into subsystems, describes a
scheme for using UML to build a model of a system, and suggests some changes
to the UML.

System has two clusters of meaning in English:

I: An organized or connected group of objects.
II: A set of principles, a scheme, method. [1]
We describe a system for modeling systems. That is: We review a method fo

covering a good partition of a system into subsystems. We offer a set of principle
use of the concept, system, in specifying an organized or connected group of o
And we describe a scheme for building a specification of a system. Then we pose
challenges for CASE tool builders.

We will use ‘subsystem,’ as shorthand for ‘instance of a UML Subsystem.’
The purpose of this contribution is to clarify (one interpretation of) the meanin

‘subsystem’, and to challenge tool builders to provide excellent support for using
systems in models.

The first section briefly states what we intend by ‘subsystem.’ This will narrow
subject of this paper to the meaning we have in mind.

The second section reviews one method for using subsystems to design a system.
This method discussion, though not the point of this paper, is relevant, because it
process of using subsystems in design that creates the need for the tool sup
challenge tool builders to offer.

ML
reader

stem.
ens to be

. Used
esents
hiding
cture.
n dif-

-
 use
other

 con-
itects
anag-

des.
alled
4], [5]

pro-
e the

,

In the third section we assert some principles.
The body of the paper, in the fourth section: explains our interpretation of the U

concept, subsystem; answers the question in the title of this paper; takes the
through some model changes that might take place using subsystems to design; and
makes a brief comment on UML notation.

Finally, we present our challenges.

1 What is a subsystem?

A system is an organized or connected set of parts. A subsystem is a kind of sy
Because it is a system, a subsystem has parts. It is a subsystem because it happ
a part of a larger system.

The concept, subsystem, serves as a tool for both organization and abstraction
for organization, a subsystem is a tool for partitioning a system: a subsystem repr
one of the parts of the system. Used for abstraction, a subsystem is a tool for
complexity: a subsystem hides its own parts, that is, the details of its internal stru

The UML Subsystem represents a combination of and a compromise betwee

ferent needs felt by several of the UML partners.1 We discuss only the needs for orga
nization and abstraction in designing and presenting a specification. We
‘subsystem’ only in the sense described in this section. (We will briefly discuss
uses of UML Subsystem near the end.)

2 Review of a method

Partitioning a system is one of the ways of reducing complexity by separating
cerns. Dividing a system into subsystems not only reduces complexity for arch
and designers and simplifies the work of programmers; it also provides project m
ers a way to organize the work of development.

Principles for discovering a good partition have been well known for deca
Myers identified the central concepts as module, coupling, and strength (now c
cohesion). [3] These concepts have since been restated in terms of objects. [
Many other authors have made contributions to understanding subsystems.

For two reasons we briefly review a method for partitioning a system. This will
vide a background for the principles presented in Section 3. It will also motivat
need for the tool support we challenge tool builders to offer.

We choose a particular method, [5], but another would serve as well for the pur-
poses of this paper.

1 Hewlett-Packard, IBM, ICON Computing, i-Logix, IntelliCorp, EDS, ObjecTime,
Oracle, Platinum Technology, Ptech, Rational Software, Reich Technologies, Softeam
Sterling Software, Taskon and Unisys.

ly as
g in

he

tems.
imize

 min-
 the

ntinue

f thi
 of the

in any

rk can

actor
 sub-
ifying

ny
t level,
er an
of sub-

r of
rstand
rning
al sub-
eraliza-
2.1 Things to do

Divide responsibilities. Identify a set of subsystems and assign responsibilities to each
of them. Evenly distribute system intelligence. Specify responsibilities as general
possible. Keep behavior with related information. Keep information about one thin
one place. Share responsibilities among related objects.

Model Interactions. In the context of the collaborating subsystems, identify all t
interactions between subsystems.

Simplify. Minimize the number of interactions a subsystem has with other subsys
Minimize the number of other subsystems to which a subsystem delegates. Min
the number of interfaces that a subsystem presents.

Evaluate the result. The goal is to maximize the cohesion of each subsystem and
imize the coupling between subsystems. Ask if there is opportunity to improve
design.

Repeat. Repeat the process, making changes to the design at each step. Co
design iterations while significant improvements are found.

Of course, it is good to build and execute architecture prototypes as a part o
process; this is very likely to uncover reasons to change the design. And, as parts
design appear to be stable, development may start. Certainly, this process will,
case, continue while development is underway, as the surprises come.

2.2 Direction of work

The previous section discusses the work of designing subsystems. But that wo
start from different places and proceed in different directions.

Bottom up. In [5], designers were advised to find classes, then to build and ref
class hierarchies, and finally to identify subsystems. This approach gives the
system designer a well thought out and well specified set of parts to use in spec
subsystems.

Top down. Critics of [5] said that subsystems should be identified first before a
objects or classes are modeled. Architecture should precede design at the objec
they said, or the design method will not scale to large systems. Many pref
approach that starts with the responsibilities of the system, then designs a set
systems, and specifies objects (and classes) only later in the process.

Middle out. In practice, a lot of work is actually done starting with a small numbe
potential or candidate subsystems and working in both directions. To better unde
or further specify our model we may partition one of the parts of a subsystem, tu
an object into a subsystem. And to gain a more abstract view, we may pick sever
systems and make them the parts of a larger subsystem. Or we may find a gen

ld and

com-
ystem.”

or an

mplex

 sub-
osed

e it to

ct the

 of a

 is a

ac-
n for

m easy

s

tion that permits one subsystem to do the work that was done by two. Furthermore,
subsystems or objects that are part of one subsystem may be moved to another.

This is the most practical approach for many problems.

3 Principles

The argument of the paper is based on certain principles, which the authors ho
present here simply as assertions.

A system is “something of interest as a whole or as comprised of parts. … A
ponent of a system may itself be a system, in which case it may be called a subs
[2]

“The basic elements of architectural description are components,2 connectors, and
configurations.” [6] In object modeling, a component of a system is a subsystem
object. (A connector, if it is of interest as consisting of parts, is a subsystem, too!)

During the process of designing a system, many changes will be made:
— Any object may become a subsystem as the design develops.
— Likewise, any subsystem may become an object. That is, the parts of the subsystem

may be combined into a single object.
— We may replace a subsystem with some already specified object, or with a co

part that we treat as a simple object in our design.
— We may add an object to a model, but not know whether it will later become a

system. (That is, not know whether it will later come to be of interest as comp
of parts.)

— After making an object or subsystem a part of one subsystem, we may mov
another subsystem.

Often, we will start to do something, but not be ready to complete it:
— We may fasten a connector to an object, but not know where we will conne

other end.
— Or feel an urge to specify a connector without connecting it to anything yet.
— We may add objects to models, without (yet) specifying that they are a part

particular subsystem.

Always, we will use the power of abstraction. In particular:
— At a given level of abstraction, we may wish to hide the fact that something

subsystem. (That is, hide the fact that it has parts.)

All these changes will be intermingled with shifts in viewpoint or level of abstr
tion. Neither our modeling language nor or methods, nor our tools have any reaso
limiting these changes in any way. Rather, they must enable them, and make the
for us.

2 ‘Component’ in the usual English sense: a constituent element or part. The author
of [2] and [6] do not mean UML components.

e fea-
er …
] is to
e a

roup
escribe

rts; at

ppears
. Its
stems
em are
nts fur-
cifica-
nts of
as well
t refer-

ste

It is a
hat
hese
 calls
4 A Scheme

In the UML, a subsystem “represents a behavioral unit.”3 It is defined to be both a
classifier and a package. The UML classifier is an abstraction used to specify th
tures common to classes, interfaces and other UML model elements. “A classifi
describes behavioral and structural features.” “The purpose of the [UML package
provide a general grouping mechanism.” “In fact, its only meaning is to defin
namespace for its contents.”

At first glance, it is a bit of a puzzle that something could be only a way to g
things and define a namespace for them, and at the same time be a way to d
behavior. But we will show that the UML partners made the right choice.

The model elements grouped by a UML Subsystem into three categories:
— Operations
— Specification element
— Realization elements

We will mention each of these in the next section.

4.1 Levels of description

Sometimes, we want to represent a subsystem as a single object, hiding the pa
other times, we want to show the parts.

Outside. From the outside, a subsystem is treated as a single model element. It a
as a whole, collaborating with other parts of the system to fulfill its responsibilities
collaborators treat the subsystem as a black box. Thought of in this way, subsy
are yet another encapsulation mechanism. The services provided by a subsyst
represented by interfaces and the corresponding operations. Other model eleme
ther specify the behavior. (For example, a state machine, perhaps with action spe
tions.) These other model elements are what UML calls the specification eleme
the subsystem. The operations and the specification elements of the subsystem (
as any interfaces defined for the subsystem) are what specify the system withou
ence to its parts.

An instance of a UML classifier is an appropriate representation of a subsy
when it is being treated as a whole and as a black box.

Inside. From the inside, a subsystem reveals itself to have a complex structure.
system of objects collaborating with each other to fulfill distinct responsibilities t
contribute to the purpose of the subsystem: the fulfillment of its responsibilities. T
model elements specify the subsystem in terms of its parts; they are what UML
the realization elements of the subsystem.

3 Quotations for which no reference is given are from the OMG UML specification
current at this writing, [7]. The latest specification is available at: http://uml.shl.com .

other
 other

e, col-

lified

a clas-

vel

L

to the
n. The

ular
irrele-
 if we
object

 sub-

tion of

 clear
s, key-
A UML package is an appropriate container for the objects, relationships and
model elements that are the parts of a subsystem. The package will also hold
model elements that help specify the way these parts work together, for exampl
laborations and interactions.

4.2 Solution to the puzzle

Abstraction is “the process of suppressing irrelevant detail to establish a simp
model.” [2]

We see the escape from our puzzle: how can anything be both a package and
sifier? For us, as architects or designers, a UML Subsystem is not both a package and a
classifier. A UML Subsystem is either a package or a classifier, depending on our le
of abstraction.

[As mentioned above, we use ‘subsystem,’ as shorthand for ‘instance of a UM
Subsystem.’ So we rephrase: A subsystem (an instance of a UML Subsystem) is
either a package or an object, depending on our level of abstraction.]

The relationship of the subsystem considered as a single model element
objects and relationships that are the parts of that subsystem is that of abstractio
subsystem is an abstraction of its parts.

We can think of a subsystem as simply an object, if we view it from a partic
level of abstraction and suppress the details of its realization. Those details are
vant in the black box view. Or we can think of a subsystem as only a package,
view it from a more detailed level, but suppress the detail that it is considered an
in another view

An object (an instance of a UML class) is an appropriate representation of a
system when it is being treated as a black box.

Of course, we also need to specify the correspondences between the specifica
the subsystem and the specification of its parts and their collaborations.

4.3 Drawing the pictures

This section presents what amounts to a simple modeling language. It will be
that what we propose can be expressed using the variety of relationship kind
words and stereotypes available in UML.

Outside Inside

Interfaces
Operations
Specification elements

Realization elements

ice of
ified
e.)

s on
. [The
ms in
 are

iew
e and

s0 is a

 in the
In the spirit of abstraction, we use a very simplified model. Because of our cho
words, this will appear to be a model about pictures, but actually it is a simpl
model of the UML. (The pictures are not UML notation, nor a proposed alternativ

Our model includes:

 Pages, on which we draw

 Boxes, representing objects, including subsystems.

 Lines, representing various kinds of connections.

 Adornments, which can mean many things.

In this simplified model, building a specification is represented as drawing boxe
pages, connecting the boxes with lines, and placing adornments on the lines
drawings of boxes, lines, and adornments in this simplified model are not diagra
UML notation. But the reader (in particular, CASE tool makers) will see what we
getting at.]

Let us now illustrate how we might move between levels of abstraction and v
of our model as we build one such specification. To start, we draw a box on a pag
give it a name. This box represents an object, s0. At some point, we decide that
subsystem. It still appears as a box, because we are viewing it from outside, as ablack
box.

A box on a page.

When we wish to specify the parts of s0, we zoom in, and s0, which was a box
view above, and becomes a page, as shown below.

 The box becomes a page.

name

s0

Page 1

s0

Page 2

s it as
 to our

3 is a
re we

of the

L pro-

nd not
ncon-

ML

ts to
s from
We will use this page to specify s0 when seen from the viewpoint that consider
being composed of parts. Since no parts yet exist, we specify them and add them
model.

 We specify the parts of s0.

If we zoom back out, we will see s0 as a box, unchanged. If we decide that s
subsystem, we can zoom in on it, and we will see another page, labeled s3, whe
can specify the parts of s3. But let’s zoom back out and specify the connections
parts of s0.

 We connect the parts.

[In this diagram, the lines are connectors, and mean: is connected to. The UM
vides a rich selection of relationships and relationship stereotypes.]

When we zoom back out again, what do we want to see? Not the parts of s0, a
the connections of the parts. But we do want to be able to specify that the two u
nected interfaces, a and b, are to appear as interfaces of s0.

 We zoom back out.

[Reminder: These are drawings in our simplified model, not diagrams using U
notation.]

Now we will work on our design at this level of abstraction. We add some objec
this page. We specify interfaces on the new objects, and make some connection
the objects to subsystem s0.

s0

s1

s3 s4

s2

P age 2

s0

s1

s3 s4

s2

Page 2 a

b

e

s0

Page 1

a

b

s.

rested
re con-
of sub-

o it are
t [the]

ther

 of the
nector

low-
model

er sub-
 We add some more parts and connection

Now we decide to make s9 a subsystem. [It means we decide that we are inte
in s9 as composed of parts.] We zoom in on s9. We see those connectors that a
nected to s9, and we know that connections must be made to some part or parts
system s9.

 We zoom in on a different part.

What we want to see on when we zoom in on a box that has lines connected t
the lines, “adornments attached to the main part of the path” and “adornments a
end where the path connects to the” box.

Obviously, this requires either:
— relaxing the current UML requirement that “paths are always attached to o

graphic symbols at both ends (no dangling lines),” or
— adding a new graphic symbol to represent the model element at the other end

line (perhaps a small open pentagon, which is widely used as a off page con
symbol).
Adding a new graphic symbol would provide a place to attach a hyperlink. Fol

ing that hyperlink would lead to another page, the outer diagram, focused on the
element at the other end of the line.

We also need to be able to easily change our mind about our design. Consider the
parts of the subsystem, s0, again.

We must be free to decide that we want s4 to be, not a part of s0, but anoth
system appearing as a peer of s0. When s4 is moved, the model will be:

s0

Pa g e 1

a

b

x

z

s7

s9

P a g e 3 x

z

s 9

s0

s1

s3 s4

s2

P ag e 2 a

b

e

g the

ecify

d of
stance
is an

e can

 real-
e com-

ems.

ften
blem,
ta mem-
 should
 as an
ations.

ed to
fy
tes of
ight be
 This should be a single step for the modeler, with the modeling tool makin
several necessary changes.

As we said at the start of this section, this model is about what we want to sp
with UML. Obviously, we would like our drawing tool to work this way also.

4.4 UML Notation

We believe it will be a clarifying improvement to consider a subsystem to be a kin
object (or, when reduced to code, an instance of a component) rather than an in
of some other kind of classifier. (When not reduced to code, the subsystem
abstraction, since some details are hidden, since it is a simplified model.)

UML does not consider a subsystem to be an object. However, the ideas abov
be implemented while adhering to the adopted UML specification.

The three-compartment notation allows operations, specification elements and
ization elements to be shown at once in separate compartments. But any of th
partments can be suppressed.

4.5 Desirable subsystem properties

A modelling language needs to provide rich capabilities for specifying subsyst
UML already deals with some aspects quite nicely, others it left out.

Attributes. UML specifies that a subsystem may not have attributes. But it is o
very useful to attribute attributes to a subsystem. This should present no pro
especially if we are able to see an attribute as an abstraction, rather than as a da
ber of a programming language object. We mean to say that an attribute can and
be expressed at the same level as its object. So, if we think of a subsystem
abstraction, then attributes should not be understood as code-specific declar
Instead, for example, as responsibilities of the subsystem.

The specifier of such an abstract attribute will then need to show how it is relat
the realization elements of the subsystem. (For example, a designer might specithat
the value of an abstract attribute is derivable from the values of some attribu
some objects among the realization elements. Or an attribute of a subsystem m
refined as an operation on an object among the realization elements.)

s0

Page 1

a

b

x

z

s7

s9

s4

e

s0

s1

s3

s2

Page 2 a

b

nvari-
 such

 we
trical
 how

code,
ppear
ts in the

o call

g a

e to
there
ance in
 might
rse of

 time
 of the

Enter-

ort, or
 is no

 of the
ishes
ve

ingle
 that
n ele-
We can use such an abstract attribute, for example, in the specification of an i
ant or a state machine; a tool simulating a model could display the values of
attributes. Yet another reason it will be useful to model a subsystem as an object.

Interfaces needed. In addition to specifying the interfaces a subsystem provides,
need to specify those it needs. This may be specified in UML. A more symme
approach would treat provided and needed interfaces uniformly. [8] and [9] show
to do this.

Component. When construction of a system reaches the point where we have
UML adds another concept, component. A subsystem in the specification may a
as a component in the code. The parts of a subsystem may appear as componen

code.4 If a subsystem is implemented as a component, it is proper and correct t
this component a subsystem.

Generalization. A UML Subsystem is a generalizable element. That’s good. Bein
generalizable element, a subsystem may be abstract or not. That’s good, too.

Instantiability. A UML Subsystem may be instantiable or not. This is not the plac
discuss what the UML specification might mean by ‘is instantiable.’ Nor whether
might be a difference between having an instance in a model, and having an inst
the universe of discourse of the model (for example, at run time). (Whether there
be an instance in a model that did not correspond to a concrete thing in the unive
discourse. Whether a model might include an instance of an abstract class.)

However all that may be, allow us to mention some possibilities:
In an implementation using the Façade pattern, a subsystem will appear at run

as a single programming language object that corresponds to the outside view
subsystem. (This façade object will be a realization element of the subsystem.)

Following CORBA, a subsystem might appear at run time as a CORBA object.
If a component platform is used, a subsystem might appear at run time as an

prise Java Bean or CORBA component.
If whatever implements a subsystem at run time maintains an IP address and p

corresponds to a CORBA object reference, it has a unique identifier, even if there
single object that is the subsystem.

In these cases, in many other cases, and in all the cases that fall under our use
concept, ‘subsystem,’ a subsystem at run time will have the property that distingu
it from all other things: the quality that it is itself, and not something else. It will ha
identity. [1], [10]

That does not mean that at run time a subsystem will always comprise a s
object or component or even that it will have an identifier. It will often be the case
only the objects from the inside of the subsystem (the objects that are realizatio

4 Unless these two possibilities are prohibited by the UML well-formedness rule that:
“A Component may only implement DataTypes, Interfaces, Classes, Associations,
Dependencies, Constraints, Signals, DataValues and Objects.”

n time

when
 an
model
eone

in the
ds on
nswer

each

tem. It
 to
on of
aning

s
e felt
 sys-
stem.’
stem.’

ents a
ds.

port-
m has
, but

 model
tem

 used

M-
 more
side
ments of the subsystem) will appear as objects at run time. In that case, the ru
subsystem comprises this collection of objects and their links.

Abstraction. We ask the reader to agree with us that abstraction is useful even
talking about run time, about “physical,” about the real world. Whether there is
object at run time that corresponds to (is an instance of) a given subsystem in a
is both a question of levels of abstraction and an implementation decision. Som
might ask: “Is there is an object at run time that corresponds to this subsystem
model?” As to levels of abstraction, a quite reasonable answer is: “That depen
what you mean by object.” As to implementation decisions, a quite reasonable a
is: “We haven’t decided yet.”

There is no reason for UML to dictate the set of possibilities. The builders of
specification that uses UML will say what they mean.

4.6 Just what is a subsystem, anyway

We have presented our understanding of (one use of) the UML concept, subsys
is not easy to tell from the UML specification if this is included in what it wants
mean by subsystem. The structure (“abstract syntax”) is clear. And the discussi
the specification and realization elements is as we have described. But the me
(“semantics”) of the concept is murky.

How it happened. To testify to history:5 Among the UML partners different need
were felt, all of which needs could be met by something called ‘subsystem.’ Som
a need for “a grouping mechanism for specifying a behavioral unit of a physical
tem.” Others felt a need for what we have presented as our meaning of ‘subsy
There is adequate historical precedent for these different uses of the term, ‘subsy
And these different uses have much in common. The UML Subsystem repres
combination of and a compromise between ideas to meet these different felt nee

What resulted. We feel that this combination and compromise has resulted in a
manteau concept and unclear text in the specification. For example: A subsyste
operations, but “... has no behavior of its own.” A subsystem may be instantiable
“... there are no explicit instances of a subsystem; instead, the instances of the
elements within the subsystem form an implicit composition to an implicit subsys
instance, whether or not it is actually implemented.”

It appears to us that this language wants to describe the subsystem when
“merely as a specification unit for the behavior of its contained model elements.”

What to do. We suggest the UML define ‘subsystem’ along the lines of what R
ODP calls a composite object: an object expressed as “a combination of two or
objects yielding a new object, at a different level of abstraction.” [2] From the out

5 Personal experience of one of the authors (Miller).

viewpoint a subsystem will be an object. From the inside viewpoint it will be a set
objects and links. (Those who prefer the style will use UML classes and associations.)

When the object seen from the outside viewpoint is intended “merely as a specif ica-
tion unit for the behavior of” the objects seen from the inside viewpoint, and not to be
thought of as existing at run time, the model will specify that. A more down home con-
cept than is not instantiable would serve that purpose.

When we decide an object is a subsystem (has parts), let the tool create a package
for the parts.When we decide we want to compose a subsystem from a set of objects
we have already specified, let the tool put them in a package we can view as an object.

5 Challenges

Architects and designers need CASE tools that handle the UML Subsystem in a way
which reinforces the principles we have offered and which provide strong support for
designing subsystems in a middle-out, top-down or bottom-up fashion.

As illustrated by the review of a method in Section 2, the typical process of design-
ing subsystems is iterative and involves restructuring the design. During the design
process, objects (or the classes they are instances of) wi l l be moved from one sub-
system to another; subsystems will be removed from the design and others added; what
was a subsystem wil l become an simple object, and what was a simple object wil l
become a subsystem.

We challenge the builders of CASE tools to make the restructuring of a design a
easy as possible. Build your tools so it is easy for architects and designers to:
— Shift levels of abstraction (with connections mapped and preserved by the tool).
— Move objects and subsystems from one subsystem to another (as easily as cut and

paste or drag and drop).
— Change an object into a subsystem (as easily as selecting a menu item).
— Change a subsystem into an object (and have something helpful done with what

were the parts of the subsystem).
— Combine a set of objects into a subsystem.

For the day that those challenges are met, here are some easy ones. Architects and
designers wil l be well served by a UML and CASE tools that allow them to:
— Treat a subsystem as a full-fledged object, when viewed from outside.
— Specify attributes for a subsystem, to represent what [5] calls responsibilities for

knowing, to be used in specifying invariants or state machines, or to be displayed by
model simulators.

— Specify the interfaces that a subsystem requires, using a graphical notation as sim-
ple and compact as the lollipop, which indicates that an interface is provided.

— Having specified that a subsystem requires a particular interface, connect the
graphical representation of that requirement to the graphical representation of an
interface on another subsystem that satisfies the requirement.

y see
ft focus
ot new.
 used.
 and

nd

h for
nks to

X.902

 New

ach.

tice

 Pren-

 1.3.

tware

 &

LAN
6 Conclusions

Architects and designers think at multiple levels of abstraction. This means the
subsystems both as objects and as containers of parts. They find it natural to shi
between these two viewpoints. The ideas we have presented in this paper are n
Years ago, when functional decomposition was popular, data flow diagrams were
In those old, slow days, this zooming in and out, with connections preserved
mapped, is exactly how good data flow modeling tools worked.

With modest extensions to UML, and with serious effort by toolmakers, UML a
CASE tools can better support working at multiple levels of abstraction.

7 Acknowledgements

Thanks to all the reviewers for their comments. Special thanks to Jim Rumbaug
his extensive criticisms, helpful suggestions and encouragement. And many tha
all the authors whose ideas have contributed to our thinking.

 References

1. Oxford English Dictionary (Second Edition), Oxford University Press, Oxford (1994)
2. Information Processing–Open Distributed Processing–Reference Model–Foundations,

| IS 10746-2. International Organization for Standardization, Geneva (1995)
http://enterprise.shl.com/RM-ODP/

3. Myers, G. J.: Reliable Software through Composite Design. Van Nostrand Reinhold,
York (1975)

4. Cox, B. J., Novobilski, A. J.: Object-oriented Programming–An Evolutionary Appro
Addison-Wesley, Menlo Park, California (1986)

5. Wirfs-Brock, R., Wilkerson, B., Wiener, L.: Designing Object-Oriented Software. Pren
Hall, Englewood Cliffs (1990)

6. Shaw, M., Garlan, D.: Software Architecture–Perspectives on an Emerging Discipline.
tice-Hall, Englewood Cliffs (1996)

7. Object Management Group, OMG Unified Modeling Language Specification—Version
Object Management Group, Framingham, Massachusetts (1999)
http://www.omg.org/cgi-bin/doc?ad/99-06-08

8. Reenskaug, W., Reenskaug, T., Lehne, O. A.: Working With Objects: The OOram Sof
Engineering Method. Prentice Hall, Englewood Cliffs (1995)

9. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. John Wiley
Sons (1994)

10.Khoshafian, S. N., Copeland, G.P.: Object Identity, OOPSLA '86 Proceedings, in SIGP
Notices 21, 11 (1986) 406-416.

	How can a subsystem be both a package and a classifier?
	1 What is a subsystem?
	2 Review of a method
	2.1 Things to do
	Divide responsibilities. Identify a set of subsystems and assign responsibilities to each of them...
	Model Interactions. In the context of the collaborating subsystems, identify all the interactions...
	Simplify. Minimize the number of interactions a subsystem has with other subsystems. Minimize the...
	Evaluate the result. The goal is to maximize the cohesion of each subsystem and minimize the coup...
	Repeat. Repeat the process, making changes to the design at each step. Continue design iterations...

	2.2 Direction of work
	Bottom up. In [5], designers were advised to find classes, then to build and refactor class hiera...
	Top down. Critics of [5] said that subsystems should be identified first before any objects or cl...
	Middle out. In practice, a lot of work is actually done starting with a small number of potential...

	3 Principles
	4 A Scheme
	Outside. From the outside, a subsystem is treated as a single model element. It appears as a whol...
	Inside. From the inside, a subsystem reveals itself to have a complex structure. It is a system o...
	4.2 Solution to the puzzle
	4.3 Drawing the pictures
	4.4 UML Notation
	4.5 Desirable subsystem properties
	Attributes. UML specifies that a subsystem may not have attributes. But it is often very useful t...
	Interfaces needed. In addition to specifying the interfaces a subsystem provides, we need to spec...
	Component. When construction of a system reaches the point where we have code, UML adds another c...
	Generalization. A UML Subsystem is a generalizable element. That’s good. Being a generalizable el...
	Instantiability. A UML Subsystem may be instantiable or not. This is not the place to discuss wha...
	Abstraction. We ask the reader to agree with us that abstraction is useful even when talking abou...

	4.6 Just what is a subsystem, anyway
	How it happened. To testify to history: Among the UML partners different needs were felt, all of ...
	What resulted. We feel that this combination and compromise has resulted in a portmanteau concept...
	What to do. We suggest the UML define ‘subsystem’ along the lines of what RM- ODP calls a composi...

	5 Challenges
	6 Conclusions
	7 Acknowledgements
	References

