

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Designing Extensible Classes

Rebecca J. Wirfs-Brock

Vol. 24, No. 5
September/October 2007

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

I
know a designer who doesn’t appreciate
his colleagues’ long-winded debates
about correct use of interfaces and inher-
itance. Enough debate and hair splitting!
He seeks design rules that guarantee well-
formed class hierarchies, appropriate in-

terfaces, and easily extensible classes. Unfortu-
nately, the detailed design of extensible class

hierarchies is filled with nu-
anced reasoning.

Nuanced reasoning
When I teach how to design

class hierarchies, I illustrate
how abstract classes can define
default behaviors and imple-
ment configurable algorithms. I
show how to use the Template
Method pattern to define a

configurable algorithm with replaceable steps.
The mental trick is to decompose an operation
into a sequence of substeps implemented by
helper methods. At your discretion, you can
provide default implementations for particular
substeps and fixed (unchangeable) implementa-
tions for others. Most static, object-oriented
languages—including C++ and Java—offer de-
signers several choices for defining a method:
Do you want the method to be visible to clients
and to subclasses? Should it provide an imple-
mentation? If so, can subclasses redefine the
definition?

Building clean abstractions with clearly de-
fined extension points is satisfying, but the
best design choice isn’t always obvious. How
much access should you give a subclass to a
class’s inner workings? How much freedom
should you give a subclass designer to “bend”
inherited behaviors to make a new abstraction
fit in or to extend an existing one? These deci-
sions involve nuanced reasoning. The contract
between a class and its subclasses requires
thoughtful design, experimentation, and care-
ful specification.

Constraints: Avoid extremes
Kryzsztof Cwalina and Brad Adams, two

designers of the .NET framework, advise,
“Do not make members virtual [overridable]
unless you have a good reason to do so and
you are aware of all the costs related to de-
signing, testing, and maintaining virtual mem-
bers” (Framework Design Guidelines, Addi-
son-Wesley, 2005). They further propose
“limiting extensibility to only that absolutely
necessary through use of the template
method.” So you shouldn’t provide overrid-
able methods unless a template method in-
vokes them, and you shouldn’t let subclass de-
signers override template methods. So, in most
cases, public methods can’t be overridden.

As a former framework designer, I understand
this reasoning—abstract algorithms embodied in
a template method are hard to get right. Once

0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 1 5

design
E d i t o r : R e b e c c a J . W i r f s - B r o c k ■ W i r f s - B r o c k A s s o c i a t e s ■ r e b e c c a @ w i r f s - b r o c k . c o m

Designing Extensible
Classes

Rebecca J. Wirfs-Brock

When you have great songs that are going to live longer than the composers, everything you can
do to bring those different elements and nuances out serves the song. —Michael Bolton

you’ve taken the time to specify a configurable
algorithm, you should only let subclass designers
change prescribed substeps in a tightly controlled
manner. But Cwalina and Adams go one step
further: they suggest precluding any public
method from being overridden.

This seems overly restrictive. I realize that
limiting access to a class’s methods lets class
designers conceal implementation details, so
they can change them with little or no impact
on the class’s users. However, taking this to an
extreme can be a problem for the subclass de-
signer. It isn’t always clear whether something
is an implementation detail or an important,
albeit nuanced, behavior that a subclass de-
signer needs to slightly adjust to make his or
her class work.

When extending a class, I might need to add
on explicit behavior to the inherited behavior.
When you expose any interior design detail of
a class, you let subclass designers make subtle
shifts in implemented behavior (whether or not
these methods are public). These subtle adjust-
ments let the subclass designer exploit behav-
iors you’ve provided and tune them to their
specific context.

Admittedly, a subclass designer must seri-
ously study and experiment with a class before
he or she can extend it in this way. It’s easier—
and perhaps safer—if the designer declares
only the barest amount of behavior that a sub-
class designer can alter.

The need for freedom
As a framework consumer, I’m often un-

happy with such rigid class definitions. I pre-
fer having the freedom to tinker over promises
of safe-to-use but immutable definitions.
There are times when I might need to change
default (inherited) behaviors. When you lock a
class’ implementation to prevent mistakes (so
I can’t break your pretty abstraction), you also
preclude me from making any necessary
changes. If you know you don’t want me read-
justing the ordering of steps in a template
method, by all means declare that order im-
mutable. But if you’re merely suggesting a de-
fault ordering, or providing reasonable default
behavior in a method (whether it’s part of an
abstract algorithm or not), let me change and
adjust those definitions.

Otherwise, I have to resort to workarounds.
I might have to reimplement my own equiva-
lent classes or wrap your immutable ones in
mine and write mindless code that delegates to
your classes. The end result is always more

complicated. I’ve also had to create classes that
aren’t extensions to yours. Unless you’ve speci-
fied an interface that my classes can also imple-
ment, my classes can’t readily plug in to your
preexisting frameworks. This might protect the
framework designer in a business or legal sense,
but it isn’t helpful to me as a sophisticated
framework consumer.

It seems natural to allow subclass designers
to change inherited behaviors—at their own
peril, of course, but also to suit their own pur-
pose. This bias toward openness comes from
my Smalltalk programming roots. In Smalltalk,
as well as other dynamically typed languages
such as Ruby, class hierarchies are open, exten-
sible, and thus, to some extent, fragile.

Challenges
In “Issues in the Design and Specification

of Class Libraries,” Gregor Kiczales and John
Lamping wrote about the challenges frame-
work designers face (Proc. OOPSLA 92,
ACM Press, 1992). Inherited code can break
when a subclass implements an inherited
method that violates the implicit constraints a
superclass requires. Indeed, a class offers two
contracts—one for users of its publicly de-
fined interface and another for subclasses that
can modify and configure the class’s opera-
tions and data members. The latter contract is
especially difficult to define programmati-
cally, so extending a class correctly can be
surprisingly difficult.

Kiczales and Lamping introduced terminol-
ogy that lets framework designers distinguish
between changeable and fixed class and
method specifications. A specified definition
for a class or method is listed in a library spec-
ification. An implementation-specific defini-
tion is present but doesn’t appear in the speci-
fication. As these are susceptible to change
and revision, they don’t recommend extending
or using them. A framework user defines a
portable implementation if he or she relies
only on framework classes and methods that
are in the library specification.

Kiczales and Lamping also propose rules
for letting subclass designers make safe exten-
sions. Their paper was filled with nuanced
discussions. For example, what happens
when a set of specified methods that are de-
fined in a library interact with each other?
Should you let subclass implementers modify
these methods individually or only as a
group? Kiczales and Lamping assert that
when designing methods that work in con-

I prefer
having the
freedom to
tinker over
promises

of safe-to-use
but immutable

definitions.

1 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

cert, rules for overriding need to also be ex-
plicitly documented. In their opinion, you
should force subclass designers to provide
new implementations for all interacting meth-
ods in an interaction set.

According to Kiczales and Lamping,

As part of learning how to specify extensi-
ble class libraries, we must learn a new
sense of the distinction between “implemen-
tation details” and crucial parts of the speci-
fication…. We still want to hide things that
truly are implementation specific… it is just
that we need to say more about the internal
structure than we used to.

If you open up a class’s interior design, you
must specify details about method interdepen-
dencies, invariants to be preserved between
calls, and state changes that must be made at
particular points in an algorithm. Otherwise,
subclass designers might violate these con-
straints. Unfortunately, most framework design-
ers don’t specify these details because it requires
a lot of work. Furthermore, modern program-
ming languages don’t let you clearly specify
every nuance. So framework designers, if they
bother, must document design specifications
through a variety of means: method declara-
tions, comments, assertions, and working ex-
amples of correct extensions.

But most of us don’t invent frameworks or
class libraries for unknowing consumers. Our
classes are part of a subsystem, component, or
application for which we know the context of
its use. Consumers of our classes are likely to
be fellow developers working in our same
company, if not in the same physical location.
And we’re most likely building classes whose
evolution and extension we’ll continue to have
some control over. This should make our job
easier, but we still need to take the time to un-
derstand what constitutes a well-defined in-
heritance hierarchy and specify intended ex-
tension points.

Open to change
Most designers don’t need to be as restric-

tive as framework designers when it comes to
limiting extensions. For most classes, it’s rea-
sonable to make certain methods extensible,
but you shouldn’t doggedly follow the same
conventions everywhere. Some classes should
rarely change. If they aren’t intended to be
open, don’t confuse your teammates by leav-
ing everything in those classes public, visible,
and open for extension.

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 1 7

If you don’t
state how you
intend a class

to be used
or extended,
a newcomer
must make
educated

guesses or ask
an expert.

DESIGN

Other classes, more naturally, are designed
for extension. Sorting out the nuances of classes
at an inheritance hierarchy’s base requires ex-
perimentation and time. Consider letting sub-
classes make extensive changes. But don’t let
them modify something you view as fixed and
immutable. But be open to change. As you (or
others) create new subclasses, you might dis-
cover ways to improve your initial abstractions
and are likely to refactor your initial design as
you incorporate what you’ve learned.

Some developers declare every method vis-
ible and changeable to avoid making any deci-
sion that they might later need to reverse. This
is okay when working in a small, tight team,
where everyone is intimately familiar with
each detail. But too much openness can be
frustrating. If you don’t state how you intend
a class to be used or extended, a newcomer
must make educated guesses or ask an expert.
My first choice is always to ask the initial de-
signer about his or her intentions. But I usu-
ally also have to perform experiments and dili-
gently read others’ code, hoping that their
code illustrates good use. Without any con-
cern for encapsulating implementation details,
the details can easily leak out and become tan-
gled with other code. Too much freedom isn’t
good either.

A responsible class designer must strike a bal-
ance between openness, clarity, safety, and
ease of making extensions, which isn’t al-

ways easy the first time around. Yesterday’s
decision might need rethinking to meet to-
morrow’s needs. The stability of a class’s pub-
lic interface might increase with use and ex-
tension, but its interior design details are
likely to require rework. This doesn’t mean
we should throw up our hands and declare a
free-for-all or preclude any extension. Any-
thing we can do to make evident our under-
standing of our classes’ inner workings will
only enhance subclass designers’ ability to
grow and evolve our designs and make their
own nuanced decisions.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock Associates.
Contact her at rebecca@wirfs-brock.com; www.wirfs-brock.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

