
1Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Rebecca Wirfs-Brock
rebecca@wirfs-brock.com
Wirfs-Brock Associates, Inc.

What Every Java Developer Should
Know About Roles, Responsibilities

and Collaborative Contracts

What Every Java Developer Should
Know About Roles, Responsibilities

and Collaborative Contracts

2Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Design Constructs

an application = a set of interacting objects

an object = an implementation of one or more roles

a role = a set of related responsibilities

a responsibility = an obligation to perform a task or
know information

a collaboration = an interaction of objects and/or
roles

a contract = an agreement outlining the terms of a
collaboration

3Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Java Constructs
package ProblemDomain;

import java.math.BigDecimal;

/** @stereotype mi-detail */

public class CashSaleDetail {

/** This indicates how many of this item are being purchased. */

private int qty;

/**

* This would allow you to use units like: each, pounds, case.

* Of course, you would have to have the intelligence on the

* product pricing side as well. We won't be using this <g>.

*/

private int UOM = 0;

// private BigDecimal negotiatedPrice;

/**

* This is the item being scanned in/sold. This object holds all the pertinent details.

* @clientCardinality 0..*

* @supplierCardinality 1

*/

private ProductDesc product;

/* ==

* Constructors

* == */

public CashSaleDetail(ProductDesc prod) {

product = prod;

qty = 1;

}

/* ==

* Business Methods

* == */

public BigDecimal calcTotal() {

return product.calcPriceForQty(qty);

}

public boolean verifyAvailability() {

return false;

}

public void deductQty() {

}

/* ==

* Accessor/Mutator Methods

* == */

public int getQty() {

return qty;

}

public void setQty(int aQty) {

qty = aQty;

}

public ProductDesc getProductDesc() {

// Should probably return a clone to be safer.

return product;

}

} // ENDCLASS CashSaleDetail

Packages
Classes
Interfaces
Declarations of Classes with

method signatures that include
access rights,
exceptions and arguments

4Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

The Dilemma

How do you express design constructs in Java code?

How can you describe your design so other
programmers don’t misuse you classes?

Can you do this without a lot of work or tool support?

5Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Why Roles?

Each object serves a purpose. Each plays at least one
role in a given context:

A role is a category of objects that can be used
interchangeably

When a role is always played by the same type of
object, the two are equivalent

If more than one kind of object can fulfill the same
responsibilities, a role represents a “slot” in the
software that can be fulfilled by different players

6Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Unlined Side of an RRC Card:
Describing an Object

Role Name

Purpose: Brief Definition
Stereotypes: Information-holder, information-

provider, structurer, coordinator, controller,
service-provider, or interfacer

Utility level: Application-specific, generic, or
enterprise-wide

Patterns: Singleton, Whole Value, etc.

7Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Describing Roles During Design

Build a definition that explains an object’s purpose
and any distinguishing traits:

A RazzmaFrazzer accurately and speedily translates
Razzmas into Frazzes

More generally:
An object is a type of thing that has certain
characteristics

8Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Stereotypes

“A conventional, formulaic, and oversimplified
conception, opinion, or image.”

—American Heritage Dictionary, Third Edition

“Something conforming to a fixed or general pattern;
especially a standardized mental picture held in common
by members of a group and representing an oversimplified
opinion.”

—Webster’s Seventh New Collegiate Dictionary

9Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Stereotypical Descriptions

A service provider does specific work

A controller makes decisions and closely manages the work of
others

A coordinator make simpler decisions and delegates work

An information holder contains certain facts

A structurer manages an organization of objects

An interfacer conveys requests between different levels

10Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Preserving the Purpose in Class
Comments

/**
* This class implements a hashtable, which maps keys to values. Any

* non-<code>null</code> object can be used as a key or as a value.

* <p>

* To successfully store and retrieve objects from a hashtable, the

* objects used as keys must implement the <code>hashCode</code>

* method and the <code>equals</code> method. ….

A Hashtable manages a store of objects, each
referenced by a unique “key”. Hashtable maintains
the associations between each key and its stored
object. It provides services for adding, deleting,
querying about, and retrieving objects.

Guideline: Include both an overview and details in comments

11Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Role Name

Purpose:

Stereotypes

Utility Level:

Patterns:

Role Name

Responsibilities Collaborators

RRC Cards: Describing Candidate
Objects

12Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Describing Responsibilities in
JavaDoc

Responsibilities are high-level. Often, JavaDoc includes low
level information

Developers need both perspectives

In class and method comments include a responsibility-based
overview:

Describe what a client needs to understand about the class in
general—describe what the class does and any important behaviors
and characteristics
Describe its major responsibilities and how the class can be used
and/or extended

…then go into the details.

13Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Design Roles

a role = a set of related responsibilities

a responsibility is implemented by one or more methods

A role is a higher abstraction than a Java class or interface

Roles can be
primary – consisting of a set of responsibilities that make an object
uniquely what it is
secondary – responsibilities an object assumes to fit in to a community
of technical libraries, environments and business domains

14Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Implementing Roles

In Java, a role can be:
specified by an interface, and/or
implemented by one or more classes

15Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Constructing Classes

Define a class to implement any singular, primary role

B a n k A c c o u n t
K n o w s i ts c u s to m e r
K n o w s i ts a c c o u n t ID
M a in ta in b a la n c e
M a in ta in tra n s a c t io n h is to ry

BankAccount

 <<class>>
Currency currentBalance;
Currency dailyWithdrawalLimit;
AccountID accountIdent;
. . .

public currency getBalance();
public void postDebit(Currency amount
Calendar date);
public void postCredit(Currency amount,
Calendar date);
public void postInterest(Currency amount,
Calendar date);
public historyRecord getHistory(String
accountPeriod);
public historyRecord
getRecentHistory(String accountPeriod);
…

Primary
role

class

16Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Defining Java Interfaces

Declare an interface for a role that many different
objects could support as being part of a larger
“community”

Objects that represent a FinancialAsset of the bank can be
assigned a current and projected valuation
The FinancialAsset role is specified by a FinancialAsset
interface
(A domain-specific role)

17Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Declaring Interfaces for
Secondary Technical Roles

Framework designers also define roles that objects can
assume to fit into a framework specific environment

EntityBean
Knows its context

Initialize
Retrieve and Store
Delete from persistent store
Activate/passivate

EntityBean

<<interface>>

public void setEntityContext();
public void unsetEntityContext();
public void ejbCreate();
public void ejbPostCreate();
public void ejbLoad();
public void ejbStore();
public void ejbRemove();
public void ejbActivate();
public void ejbPassivate();

18Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Adding Secondary Roles to
Class Definitions

Add roles to a class that it should implement as part of
fitting into the community

The BankAccount class implements the FinancialAsset
interface and assumes the secondary role of FinancialAsset
Since we also intend to use it in an EJB environment, it
also implements the EntityBean interface

Rename classes to fit within their technical
environment

If we are implementing a BankAccount in an EJB
framework, rename it BankAccountEntityBean

19Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Class = Primary Role +
Secondary Roles

BankAccount
Knows its customer
Knows its account ID
Maintain balance
Maintain transaction history

FinancialA sset
K now s current valuation

Calculates projected valuation
Calculates accum ulated value
over tim e

EntityBean
Knows its context

Initialize
Retrieve and Store
Activate/passivate

BankAccountEntityBean

20Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Collaborative Contracts

“An agreement between two or more parties,
especially one that is written and enforceable by law.”

—The American Heritage Dictionary, Third Edition

21Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Responsibility-Driven Design
Contracts

“The ways in which a given client can interact with a given
server are described by a contract. A contract is the list of
requests that a client can make of a server. Both must fulfill the
contract: the client by making only those requests the contract
specifies, and the server by responding appropriately to those
requests. …For each such request, a set of signatures serves as
the formal specification of the contract.”

—Wirfs-Brock, Wilkerson & Wiener, Designing Object-Oriented
Software

22Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Finding Contracts

A class which implements a single role that is viewed by its
clients in identical ways offers a single contract

Classes whose responsibilities are partitioned by distinctly
different client usage should support multiple contracts

Example: BankAccount Contracts
Balance Adjustment
Balance Inquiry
Managing Challenge Data
Transaction History

23Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Preserving Contracts

In a good implementation, any class that inherits a
contract should support all of it and not cancel out any
behavior

A subclass can extend a superclass by attaching new
responsibilities and by defining new contracts

24Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

A Java interface may map to
one or more contracts

For example, the EntityBean
interface defines two
contracts:

“Bean Initialization”
One, used by the container to
initialize a well-formed bean

“Pool Management”
Another, also used by the
container, to manage its
pooled bean resources

Reconstructing Contracts from
Existing Interface Definitions

1

2

EntityBean
Knows its context

Initialize
Retrieve and Store
Delete from container store
Activate/passivate

1

1
2

2
2

25Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Specifying the Fine Print:
Bertrand Meyers’ Contracts

“Defining a precondition and a post condition for a
routine is a way to define a contract that binds the
routine and its callers…. A precondition-post condition
pair for a routine will describe the contract that the
routine (the supplier of a certain service) defines for its
callers (the clients of a service).”

—Bertrand Meyer, Object-Oriented Software
Construction

26Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Example: A Meyer’s Contract for
a Bean Method, ejbPassivate()

(From precondition:)

Allows bean to clean up all non-
serializable state prior to container
disassociating bean and removing it
from memory

(Satisfy post condition:)

Bean must be in a state that
won’t tie up resources or that
is inconsistent

Supplier

(Bean)

(From post condition:)

Bean can now be disassociated

(Satisfy precondition:)

Call ejbPassivate() before
bean is disassociated from its
EJB object

Client

(Container)

BenefitsObligations

27Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Unifying These Two Definitions

A design can be viewed at different levels of abstraction
Responsibility-Driven Contract name and description

List of clients and suppliers
List of responsibilities defined by the contract

Method Signatures
Bertrand Meyer’s add precision precisely at the level where we left
off:

Method Signature
Client obligations
Supplier benefits

Preconditions, post conditions, invariants

28Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

What Is Missing From These
Contractual Descriptions?

From a customer’s point-of-view:
an object = interface + terms and conditions of use

The more we publish about the behavior of an
object, the more likely it will be used as its
designer intended

29Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Even More Details Are Needed

When objects do business, they
agree to certain terms:

Only make requests for advertised
services
Provide appropriate information
Use services under certain conditions
Accept the consequences of using
them

The shingle that each object hangs
when it opens for business should
describe all these terms

30Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Describing Terms and
Guarantees

An interface defines the vocabulary for collaboration, not
important behavioral semantics. Publish these additional
terms and guarantees in method and class comments:

/* If you give me shoes before noon today, they will be ready to
pick up tomorrow */

/* If you pay with a credit card, your credit rating may change.
All credit card payments for an amount over XXX result in a
credit check. Every credit check will lower the customer’s credit
rating */

/* When shining shoes, we use the best materials. Our work is
guaranteed. If you are not satisfied for any reason, we will
refund your payment without question. */

31Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Keys to Keeping Your Design
Evident in Code

Today, the best roundtrip engineering tool doesn’t
support roles, responsibilities, contracts, or terms and
guarantees….

So…
These descriptions need to be part of class and interface
comments
Roles should be declared in interfaces
Classes should preserve superclass contracts and be
constructed from primary and secondary roles

