
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Valuing Design Repair

Rebecca J. Wirfs-Brock

Vol. 25, No. 1

January/February 2008

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

design

76 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

E d i t o r : R e b e c c a J . W i r f s - B r o c k ■ W i r f s - B r o c k A s s o c i a t e s ■ r e b e c c a @ w i r f s - b r o c k . c o m

Valuing Design Repair
Rebecca J. Wirfs-Brock

The time to repair the roof is when the sun is shining. —John F. Kennedy

O
ne of my favorite activities in any of the ar-
chitecture or design courses I teach is to
discuss antipatterns—design ideas hatched
with good intentions that prove problemat-
ic over time. The few books on antipatterns
focus primarily on introducing problems

and straightforward solutions, which makes them
hard to distinguish from better-known books that

present design or programming
guidelines or refactoring advice.

However, there’s a slight but
signifi cant difference between an-
tipatterns and style guidance. A
style guide typically covers good
practices—what to do and what
to avoid. An antipattern is some-
what more ambitious. It seeks to
explain how good intentions can
go awry and suggest meaningful

ways to repair broken systems. The point isn’t so
much to say “do this” or “avoid doing that” as to
suggest ways to prevent a problem or to skillfully ap-
ply a set of corrective actions.

Deconstructing antipatterns
Because of antipatterns’ prevalence and impact

on system integrity, I ask students to share their en-
counters with an antipattern of their choosing. I start
by asking what, if anything, they could have done to
prevent the problem and what, if anything, they did
to rectify the situation. Students have been incred-
ibly inventive, presenting their own aptly named an-
tipattern case studies.

For instance, the Frankenstein antipattern came
about when too many people contributed to a critical

component’s design. Because of time pressures and
disagreements, the component’s design grew hap-
hazardly. As project pressures increased, all design
discussions stopped, some of the initial contributors
moved on to other tasks, and the implementation
continued to grow in fi ts and starts. Functionality
continuously was hacked in without any thought
to design integrity. Over time, the implementation
grew into a poorly understood monster.

On many projects, design integrity—even when
stated as a goal—is sacrifi ced in the name of deliver-
ing functionality. It’s all too easy to halt design dis-
cussions and plunge into frantic coding, especially
when team members continually argue and can’t re-
solve their differences.

Fortunately, this antipattern story had a happy
ending. The developer assigned to ongoing support
fi nally declared “Enough!” and asked for time to
clean up the implementation before adding more
functionality. After reviewing the implementation,
he requested a redesign and complete rewrite. He
also stopped accepting code written by marketing
folks and convinced them to write pseudocode specs
instead. Frankenstein was deconstructed when the
person in charge of maintenance took responsibility
for fi xing the design.

Solutions to antipatterns aren’t always easy or
satisfying. Another antipattern, Rocky Road, exhib-
its complexities that make it especially diffi cult to
solve. Similar to the Lava Flow antipattern—where
blobs of unused code are hanging around—a Rocky
Road compounds the situation by tossing into the
mix poorly designed data. You not only stub your
toes on unused code but also trip on complicated
data with overloaded, tangled, or forgotten and un-

 January/February 2008 I E E E S O F T W A R E 77

DESIGN

used encodings. The initial design inten-
tions might have been good—keep using
the same database fi elds to support more
functionality without schema redesign. Un-
fortunately, failure to rework the database
design means that, over time, the data fi elds
use increasingly arcane and obtuse encod-
ings. Programs that use the data become
unnecessarily complex because complex
logic is required to decipher the data before
it can be used by the program and to encode
the data before it can be stored.

What I particularly like about this anti-
pattern is its name’s dual meaning—a tasty
ice cream fl avor and a travel hazard. What
started out as a seemingly sweet, quick fi x
(overloading data fi eld defi nitions) turned
into a development landscape that’s diffi cult
to navigate owing to an overused encoding
technique.

Navigating a Rocky Road becomes es-
pecially treacherous when a business aban-
dons data encodings. The program code
must still support these encodings because
no one can be certain they were really aban-
doned. The Rocky Roads I’ve encountered
have proven extremely diffi cult to repair.
My student’s case study didn’t have a happy
ending, either. After living with the Rocky
Road for several years (it was already en-
trenched when he starting working on the
system), he moved to a new job.

The only perfect ending to a Rocky Road
story I know of was when the project leader
took the time and effort to banish the un-
used data and code. After explaining for the
umpteenth time why several hundred bytes
of data weren’t used, he fi nally decided to
excise the offending patch of Rocky Road
to simplify ongoing support. There was
no time allocated in the schedule—he just
did it. Fortunately, although that patch of
Rocky Road passed through several differ-
ent applications, it was under his control.

Planning for repair
and redesign

Usually, a Rocky Road receives attention
only after severe consequences or extreme
diffi culty in adding new functionality. Mak-
ing an informed diagnosis before making
repairs usually involves several individuals
assessing any programming, reporting, and
data dependencies. Ferreting out the costs
and impact of such revisions can be daunt-
ing. Furthermore, this task can be com-
pounded when data becomes retargeted for

other uses by other distant and poorly un-
derstood systems.

So, development teams typically make
only modest, safe, and limited improve-
ments. Rarely do they signifi cantly redesign
database schemas for the sake of simplify-
ing software programs or overall system
integrity. Usually, there must be compel-
ling reasons to make deep and signifi cant
changes (think Y2K or a forced migration
to a new technology platform). Modest,
compromised repairs don’t improve the sys-
tem’s overall habitability that much. Those
who make the repairs often feel that they’ve
merely delayed disaster for a while.

Recently, I wrote a blog entry on antipat-
terns, asking others to share their experienc-
es in successfully tackling them. Instead of
glowing success stories, I got a healthy dose
of reality. One person stated,

I see a trend in business lately, espe-
cially big businesses, where projects
are done in phases. Instead of sticking
with a design process and trying to
fi x the bugs within it, executives get
concerned that the problem is within
the development methodology, and
discount what should have been done
at the beginning of the project which is
adequate planning. …All the AntiPat-
terns in the world won’t get you there
if you don’t leave the time for thought
and proper planning on the front end.

Prevention is preferable to repair, but
upfront thinking and planning can’t avoid
all future problems. What appeared to be
a solid design decision might in hindsight
seem incredibly naïve. During an incremen-
tal development process, a system’s design
context rarely stays constant.

To preserve design integrity while sup-
porting change and evolution, some soft-
ware thought leaders propose that we con-
stantly refactor our code and data. Several
popular refactoring books present simple
techniques for making relatively localized
improvements: Refactoring: Improving the
Design of Existing Code, by Martin Fowl-
er, Kent Beck, John Brant, William Opdyke,
and Don Roberts (Addison-Wesley, 1999);
Refactoring to Patterns, by Joshua Kerievsky
(Addison-Wesley, 2004); and Refactoring
Databases: Evolutionary Database Design,
by Scott Ambler and Pramodkumar Sadal-
age (Addison-Wesley, 2006). We’d be well
advised to follow their advice.

However, on many projects, develop-
ers and their management become inured
to ever-growing complexity and don’t stop
to make timely, simple repairs. They ac-
cept increasing complexity as a natural
consequence of supporting new function-
ality. And project pressures never let up;
there isn’t time in busy schedules to merely
clean things up and make the system more
maintainable. So developers make repairs
at a later date, when problems have become
widespread, invasive, and more diffi cult to
correct.

Michael Feathers’ Working Effectively
with Legacy Code (Prentice Hall, 2004)
presents techniques for cracking open and
improving ugly code in systems. But refac-
torings, while useful, won’t solve more sys-
temic problems. Often, signifi cantly im-
proving an ailing system requires more than
a few, safe refactorings. It warrants signifi -
cant redesign and rework.

P erhaps repair, rework, and redesign
should be more central to any iterative
development process. As a community,

we need to adopt better practices for repair-
ing and reworking complex systems and for
determining when a redesign is required.

Repairs and redesigns are often more
complicated than the design and imple-
mentation of a greenfi eld project. Careful
analysis might be required before launching
into any major repair effort. Even rework
often introduces a series of related changes
with unpredictable outcomes. So develop-
ers must test the changes to assess whether
they’ve had the desired effect. Things might
get better, but the developers can’t guaran-
tee miracle cures. This makes for a tough
sell—“trust us, with a little time, we know
we can make things somewhat better.”

Because we can’t prevent certain anti-
patterns, we need to better plan for and per-
form necessary repairs. The optimal time
to remedy an antipattern isn’t when a proj-
ect is in crisis but when there’s a slight lull
in the action, yet an urgent need to make
improvements.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates. Contact her at rebecca@wirfs-brock.com; www.
wirfs-brock.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

