
© 2010 Wirfs-Brock Associates 1

Understanding Design Complexity Tutorial Notes

Rebecca Wirfs-Brock
rebecca@wirfs-brock.com

www.wirfs-brock.com

What Makes Software Complex?
There are two major reasons that software is complex.
1. Intrinsic complexity in the problem leads. If the problem you are trying to solve it can
lead to complex solutions. This may be result in:

• Rich, intricate data
• Many interconnections and relationships
• Non-trivial algorithms, behaviors, rules
• Special cases
• Configurations and options
• Connectivity between many different systems
• Demanding non-functional requirements (e.g. performance, reliability…)

2. Evolution. Software that is long-lived and supports changing (growing) requirements
can be complex. The complexity found in the design can be the result of:

• Growth spurts
• Complex connections
• Technology shifts
• Extensions, customizations, hacks, patches, adaptations

In this tutorial we address one particular aspect of complexity where it is realistic to
“tame” the complexity rather than just deal with it as best we can. For these cases we can
leverage good design solutions because the complexity can be compartmentalized and
managed. There are relatively stable parts of the system, that although they may support a
great amount of variability, are not constantly changing and shifting their purpose.

Hot Spot Cards and Commonality/Variability Analysis
Software that reacts to many different situations is adaptable. Flexible designs
incorporate mechanisms that enable them to be handle new adaptations in planned,
predictable ways. A flexible design solution encapsulates changeable aspects of the
design and provides mechanisms to support needed variability. Once the basic
mechanisms are determined, new adaptations can be added without breaking or
refactoring the design.

Consider a flexible solution when:

• It is justified by tangible requirements;
• It doesn’t compromise project goals;
• Your software has a history of (relatively) predictable change and growth;
• Your software needs to adapt to different execution environments; or
• It is of high value to project stakeholders

© 2010 Wirfs-Brock Associates 2

You can simply characterize the variability your software needs to support by asking
what functions will change over time or work differently because of certain conditions. A
list of points of variation, or “hot spots” can focus your efforts. Each hot spot is a
separate design problem.

Commonality-variability analysis isn’t design. It is what you do in preparation for
thinking about appropriate design solutions. Think of commonalities as abstractions or
general descriptions of a responsibility. Variations summarize the different ways that a
general responsibility can be accomplished.

At the Agile 2008 conference, Steve Freeman and Mike Hill presented a tutorial on how
developers can untangle complex written requirements and write better automated tests.
The tangled requirements examples they presented were realistic examples of what
designers encounter in many enterprise applications. This inspired me to explain simple
techniques for understanding commonalities and variations. Ideally, this understanding
should be made in collaboration with business experts.

A Recipe for Commonality/Variability Analysis
Here is a summary of the steps you go through to understand some complex piece of your
design. Ideally, one or more user related user stories or a feature that may be supported
by several stories should guide your discussions.

1. Establish the scope—how much of the software that will be affected.
2. Identify what is common and how it varies. Write concrete examples that

illustrate variations. Give meaningful names to the specific commonalities (we
could call this abstraction or concept formation). Determine what parts of the
problem are “stable” that need to support variations. Briefly explore some
boundaries of the domain problem, before actually deciding you’ve found the
common stable parts of the problem.

3. Bound the degree of variability that will be supported. Place limits on how much
variation can be supported by your solution. Explain those limits. Write tests that
expose those limits.

4. Exploit commonalities in a design solution; while
5. Accommodate the variability using agile design principles and best practices

An Example
We’ll use the example, pricing car club rentals, to show how to analyze requirements
before designing a solution.

© 2010 Wirfs-Brock Associates 3

This FIT table is tangled mess. What is wrong with this picture? It has no structure that
reveals the repeating patterns of prices, conditions, and variables. It is very hard to make
sense of it (and create a stable design).

So first, we need to spot some patterns and ask the question: Do these make sense in the
business domain? Is there really some common abstraction (that we should support in our
design). For example, we might start by asking, is damage deductible based on insurance
type and membership?

Designers need to carefully examine requirements to spot variable behavior. Looking
more closely at the table, we see there are two membership types, two car types, and two
insurance types. A realistic system would likely support many more types (but we hope

© 2010 Wirfs-Brock Associates 4

you get the idea). Note that “standard” members get a daily rate, while “low” members
pay an hourly rental rate. All members pay an hourly rate for any fraction of a day based
on an hourly fee plus a fee per mile travelled. Right now the requirement is that all
members pay a mileage fee. Damage deductible amounts vary based on insurance type,
car type and membership type.

One way “see ” commonalities is to cluster potentially meaningful patterns and then have
a conversation about they mean.

Think of commonalities as abstractions or general descriptions of a design responsibility.
Variations summarize the different ways that a general responsibility can be
accomplished.

We’ve gone through a number of steps of shuffling and analyzing to get this point, but
our analysis of rental fees results in the following list. Commonalities are underlined.
Variations are indented.

© 2010 Wirfs-Brock Associates 5

Technique: Essential Examples
Index cards (hot spot cards) are an informal way to capture the points of variations. Hot
spot cards are divided into three sections.

• The top section includes a name for the hot spot.
• The middle section summarizes the functionality that varies.
• The bottom section is used to show at least two examples of the variation (there

may be more).

Write just enough detail so you can discriminate similarities and differences as you
consider potential design solutions that “solve” the hot spot. You could easily fill out a
hot spot card for each small variation. But it only makes sense when the variation is
complex and rich enough.

© 2010 Wirfs-Brock Associates 6

Most find it easier to understand the dimensions of a common responsibility only after
seeing several concrete examples of how it varies. On some projects we’ve written short
“hotspot” or “flex point” documents that describe variability and options for supporting
it. Cards are for conversations…you may want to capture more in documents and well-
structured acceptance tests.

When you encounter some variability it is always appropriate to consider how often do
these rules and values change?

Currently mileage charges are based on car type. Are there any other ways the
business would like to calculate mileage charges? What happens when gasoline
costs are higher? Does the business anticipate a need to add more ways to
calculate mileage charges?

What about membership categories? Right now they are used to determine daily
and hourly rental and insurance charges. Are there any other charges based on
membership? Do membership categories, charges, or benefits change often?

© 2010 Wirfs-Brock Associates 7

Business experts may not know the answers to these questions. But designers need to get
some idea of how things are expected to vary, in order to allow for easier support of
anticipated variations that support business objectives.

Flexibility has its limits. When you develop a flexible design solution it is good to state
your assumptions about what can vary, the degree of variation supported by your design
(what is and is not accommodated), as well as the binding time of that variability:

Daily mileage calculations are based on car type only. The price per mile is read
from a database, allowing pricing rates to be adjusted by updating the database
table by operations support. The mileage rate table is cached by the rental
application, so the application cache will need to be flushed and reloaded before
new rates apply.

It isn’t reasonable to expect to create solutions that accommodate all future requirements.
This has never been possible for any design process, whether agile or not. So it is
important to know and be able to succinctly state the limits of your design.

Changing Your Design
What if a new requirement add a new platinum membership category to our car rental
application? At the very least, adding a new type of member would impact:

• Daily rental rate values;
• Hourly rental rate calculations; and
• Insurance deductible amounts.

But this new requirement could have a much broader scope. It could easily impact other
business rules, calculations, and processes. We designers won’t know until the business
gives specific requirement details, such as:

• Mileage fees are waived for platinum members;
• Platinum members get preferred rental rates after renting more than 3 times in a

calendar year; and
• Platinum members get a free rental day or a weekend discount after every 4th car

rental.

Simple Techniques for Supporting Variability
Agile designers value simplicity. But there is a difference between simple and simplistic.
We recommend that you consider implementing a design solution that handles the known
variation in a way that is flexible (and somewhat adaptable), rather than rigid and brittle.

Here are a number of ways to support variability from simple to most complex:

0. Hardcoded checks—If-then-else statements to control branching. This is not
flexible. But it does support variation.
1. Parameters/data to drive behavior
2. Delegation to pluggable objects (composition)
3. Classification and inheritance

© 2010 Wirfs-Brock Associates 8

4. Define a “little language” or DSL that you interpret

For our example problem here are two ways we could solve the problem in our design:

A simple solution: hard code the calculation of mileage fees into a single method.

A simple flexible solution: invoke a MileageFeeCalulator, passing in car type and
mileage as arguments. Retrieve fee rates from an external database.

We also note that calculations vary according to membership:

Standard member price = (number of days * daily rental price) + (number of
hours * hourly rental price) + (miles driven * standard member mileage rate based
on car type)

Low member price = (number of hours * hourly rental price) + (miles driven *
low member mileage rate)

Here is a reasonable solution we came up with after some thinking:

We decided a to use the Strategy pattern because it is appropriate when a calculation or
computation needs to vary and the caller can decide which strategy to use, depending on
selection criteria that it knows. You’ll note that we designed two methods in the
MemberFeeCalculator, one for mileage charges, another for rental fees.

The fact that we pass in a Customer object to each method allows the algorithms to use
customer information to vary how they operate. This isn’t strictly necessary given the
current design requirements, but it leaves open the possibility of allowing other fee
calculation logic could use other customer attributes.

A charge object is an information holder that encapsulates a textual description of a
charge, suitable for printing on a receipt, as well as a monetary amount.

We could also create a separate family of InsuranceFeeCalculator classes based on
Insurance type. But we really don’t have enough information to anticipate future changes.

© 2010 Wirfs-Brock Associates 9

Currently fees are based on both membership category and insurance type. We could
create a single class, InsuranceFeeCalculator that accepts as arguments both the
Membership Category and Insurance Type (or perhaps Customer Insurance Type).

Agile designers don’t want to overdesign. The key is to do just enough design. You can
rework and support more variations once you have some requirements.

