
 1

The Dynamic Factory Pattern

León Welicki
ONO (Cableuropa S.A.)

lwelicki@acm.org

Joseph W. Yoder
The Refactory, Inc.
joe@refactory.com

Rebecca Wirfs-Brock
Wirfs-Brock Associates

rebecca@wirfs-brock.com

The DYNAMIC FACTORY pattern describes how to create a factory that allows the creation of
unanticipated products derived from the same abstraction by storing the information about
their concrete type in external metadata.

Context A software system uses a framework (a set of classes that embodies an

abstract design for solutions to a family of related problems, and
supports reuse at a larger granularity than classes [JF98]), where
collaborations between high-level abstractions determine the execution
flow.

Individual solutions are created by extending existing classes and
combining these extensions with other existing classes [Foote88]. The
configuration of these combinations of implementers of abstractions
should be done without the need of modifying the application.

New implementations of the established abstractions can be created by
as long as they conform to established protocols. The system should be
able to inject these new abstractions into the framework without the
need to modify its core. These new abstractions can be created after the
system has been delivered.

Example A workflow system has a rule evaluation module. Each rule implements
a well defined interface, and is injected into a container that evaluates it.
The rules can be simple or composite (using the COMPOSITE [GoF95]
and INTERPRETER [GoF95] patterns) allowing the creation of complex
expressions by composing finer-grained elements.

The creation of the rules is delegated to a factory that has a standard
interface for creating instances of the abstractions. The clients of the
rules request an instance of the rule and the factory provides it.

The workflow system vendor supplies a fixed set of rules. New rules
could be added by simply implementing the rule interface. The problem
comes at rule instantiation, since the factories that contain the logic for
creating instances of the rules may need to be modified to support new
types of rules.

 2

Problem How can we define an interface for creating objects that implement
a given contract without tying it to concrete implementations of
these contracts?

Forces Flexibility. The implementers of the products should be easily
modifiable, even when the system is running, allowing the injection
of new product types into an existing system.

 Extensibility / Evolvability. New product types should be easily
added without requiring neither a new factory class nor modifying
any existing one.

 Controlled Evolution: users can create new types of products

conforming to the product interface, but providing unanticipated
behavior or features.

 Agility. New types of products should added to the system in a quick

and agile manner, avoiding reworking of a factory class any time a
new concrete product is created.

 Simplicity. The client interface should be simple, hiding from the

client the complex details of dynamic product creation.

Solution Establish an interface for creating objects that implement a specific
contract, and store the concrete type information of the instances to
be created in metadata.

The DYNAMIC FACTORY is a generalized implemetation that is
responsible for creating instances (a single well-known location for
creating instances of a general type, similar to a REGISTRY [Fowler03]),
while not making any a priori decisions about the concrete types of
those instances. Some default types may be provided (in the form of
base cases or default implementations) but a hook for extensibility must
be always provided.

The dynamic factory alone is not enough to create the instances of the
concrete products: the factory provides the “production engine”, but the

Dynamic Factory Type Metadata
Repository

Client

Figure 1 – The Dynamic Factory

 3

type repository metadata provides the “raw material”.

The information about the concrete types is persisted in secondary
memory storage (xml file, database, plain file, etc.). The concrete type
information of an entity may contain the fully qualified name of the type
and the physical container where the type is contained (allowing the
creation of instances using reflection). The information about the
concrete type information may vary according with the implementation
platform.

Adding a new implementation of a Product interface to the system is
very simple: it only requires implementing the abstraction (which is
likely to be implemented just once to support many different product
instantiations), and adding a line in the configuration file of the factory
indicating how to load it (for example, the assembly and full qualified
name of the concrete product in the case of a .NET application).

This follows the principle “put abstractions in code and details in
metadata” [HT00]. The DYNAMIC FACTORY pattern establishes an
interface for creating instances of abstractions, but puts the information
about the concrete implementation of a product abstraction in metadata.

Structure The following participants form the structure of the DYNAMIC FACTORY
pattern:

 A DynamicFactory is a class that creates instances of other
classes using metadata at runtime to determine the concrete type
of the class to be created.

 A MetadataReader reads type metadata from a configuration

repository and delivers it to the DynamicFactory in the form of
an instance of ProductTypeInfo.

 ProductTypeInfo contains the type metadata about a concrete

product. The instance definitions are fairly constant and thus
rarely change.

 A Product represents a general abstraction in a software system.

This abstraction can often be in the form of an interface, an
abstract class, or a concrete class with virtual methods.

 A ConcreteProduct is an implementation of the Product

abstraction that provides concrete functionality or semantics
within a software system.

 A Client uses instances of ConcreteProducts through the

 4

Product abstraction (abstract coupling[GoF95]). The instances
of the products are created using the DynamicFactory.

The following CRC cards show how the participants interact with each
other:

Figure 2 – CRC Diagram

The following class diagram illustrates the structure of the Dynamic

 5

Factory pattern.

cd Data Model

DynamicFactory

+ CreateInstance(string) : Product

Product

ConcreteProductA ConcreteProductB

MetadataReader

+ Load(string) : ProductTypeInfoClient

AnotherPackage

ConcreteProductC

ProductTypeInfo

+ TypeName: string
+ TypeContainer: string

«uses»

«creates»

«uses»

Figure 3 - Dynamic Factory Class Diagram

The Product participant defines the general abstraction of the products
to be created by the factory. It can be implemented using an interface,
abstract class, or any similar mechanism depending on the target
implementation language.

The DynamicFactory creates instances of realizations of the product
abstraction. In the simplest case, a DynamicFactory creates instances
of a single type of Product. However, this can be extended using
generics [GenJava], [GenNet] to create a generic dynamic factory for
any kind of product. The ABSTRACT DYNAMIC FACTORY, variant of this
paper (listed later in the Variants section) also creates instances of
multiple types of products.

The type information metadata of the implementations of the Product
(the ConcreteProducts) is stored in a type metadata repository (xml
file, relational database, plain text file, or any suitable mechanism for
storing configuration data). The MetadataReader reads this
information from the repository and returns the type information as an
instance of ProductTypeInfo. This helps to decouple the
DynamicFactory and the type metadata repository, since it accesses it
using the Load method MetadataReader without regard of the
underlying storage support of the type metadata repository (it doesn’t
have to do any distinction whether is an xml file or a relational
database).

Consequences The DYNAMIC FACTORY adds flexibility and better modularity to an
application by abstracting the creation process of instances, exposing it
through a well-known entity in the system, and storing all the details

 6

about the concrete implementers of the products in metadata. This
removes the creation code from the application, hiding it in the factory
and the creation metadata.

Additionally, it makes easier to introduce new implementers of a
contract in a system, since the location implementation details are
encoded in metadata.

The process of dynamically creating the entities is complex, but the
proposed solution in this pattern hides all this complexity from the end
users. Taking this idea to the extreme, the DynamicFactory can be a
well-known static class, easily accessible with very simple semantics.

This helps to put in practice the principle “put abstractions in code and
details in metadata” [HT00] (in this case metadata refers to
configuration information). This also builds on the “Dependency
Inversion Principle” and “Open Closed Principle” [Martin02].

Creating the instances dynamically can bring a notorious performance
overhead. This can be reduced by applying the CACHING pattern
combined with some of the other resource management pattern
presented in [POSA3].

There are several benefits of this pattern:

 Extensibility. Adding new concrete products is a relatively
simple task consisting of two steps: implementing the concrete
product and adding the type information of this new
implementer to the metadata repository.

 Flexibility. Existing concrete products can be modified or

removed and new products can be added dynamically. This can
be done at run-time, since the creation of instances is done
dynamically using REFLECTION [POSA1] (or any other similar
technique available).

 Configurability. We can change the behavior of an application

by just changing its configuration information. This can be done
without the need to change any source code (just change the
descriptive information about the type in the metadata
repository) or to restart the application (if caching is not used –
if caching is used the cache will need to be flushed).

 Agility. New concrete products can be, added quickly having a

guiding procedure that leverages existing architectural decisions.

 7

There are several liabilities of using this pattern:

 Run-time errors. Run-time errors may appear when using this
pattern. At compile time a good test suite can prevent them, but
when adding or modifying type metadata at runtime unexpected
errors can occur (for example, very simple typos can lead to
creation errors). A good error handling strategy should be
established at the architectural level to cope with these kinds of
errors. In some cases, default implementations can be provided
when the type metadata is incorrect (using a variant of the
CHAIN OF RESPONSIBILITY pattern [GoF95])

 Complexity. The solution hides the complexity from the clients,

but is still complex. The internals of the factory are more
complex than having a “case” statement or directly invoking a
constructor. This complexity increases significantly when
CACHING is added (for a discussion on this liabilities see
[POSA03] and [Welicki06]).

 Possible “over-engineering”. If new types are not going to be

added or current implementations are never going to be modified
or switched at runtime, using this pattern is a clear over-effort
that should be avoided. A good way of avoiding this situation is
starting with simpler options (like a static class, or [GoF95]
creational patterns, or just using a constructor). You can then
evolve to use of a Dynamic Factory when it is warranted (using
an evolutionary redesign approach like in [Kerievsky03]).

Example
Resolved

All the rules in the workflow system are derived from a basic
abstraction (the Rule interface). There is hierarchy of different rule
types, but all the hierarchy shares a common ancestor (the Rule
interface).

To remove all concrete type information from the code, a DYNAMIC
FACTORY for creating Rule implementations is created.

A metadata format for specifying the types of the rules is established.
This format includes an identifier for the rule and its type information
(the container and class name of the implementer of the rule). Moreover,
the format supports composition (following the COMPOSITE [GoF95]
pattern) and the instances of the compositions are loaded dynamically at
runtime by a combination of the BUILDER [GoF95], INTERPRETER
[GoF95], and DYNAMIC FACTORY patterns.

By doing this we remove the concrete rule types from the source code,
allowing for change and extension of the workflow system through the

 8

creation of new rules (implementations of the Rule interface) that are
added to the type metadata repository.

Sample Code In this section, we will present a simple implementation of this pattern
as presented previously in figure 3. Our sample implementation is
written in .NET using C#.

Canonical implementation: creating instances of a single product

The next code snippet shows the product interface. Usually, the
implementation of this patterns starts with the definition of the
Product abstraction (which can be an interface, an abstract class, or
any similar mechanism depending on the implementation language).

public interface IProduct
{
 void DoSomething();
}

This abstraction should be implemented by all the ConcreteProducts
to be created by the DynamicFactory. The implementers of the
abstraction may not be known at design time or may change at runtime.
Therefore, the next step in the implementation of the pattern is to define
the metadata format to store the type information for each realization of
the formerly defined interface. The next code snippet shows a sample
xml file with type information. Each product node contains an
identifier of the concrete product (id attribute) and the type information
for dynamically creating the class (type attribute).

<typeInfo>
 <products>
 <product
 id="product1"
 type="DynamicFactorySample,
 DynamicFactorySample.ConcreteProducts.ProductA"/>
 <product
 id="product2"
 type="DynamicFactorySample,
 DynamicFactorySample.ConcreteProducts.ProductB"/>
 <product
 id="product3"
 type="AnotherAssembly,
 DynamicFactorySample.ConcreteProducts.ProductC"/>
 </products>
</typeInfo>

This metadata can also be stored in a relational database, plain files, etc.
To hide the storage implementation details to the factory we use the
MetadataReader and ProductTypeInfo classes. The first is
responsible for accessing the type metadata repository (the xml file
defined above) and the last is a container for the type information of a
requested ConcreteProduct.

 9

public class ProductTypeInfo
{
 private string productTypeCode;
 private string assemblyName;
 private string className;

 public string ProductTypecode
 { get { return this.productTypeCode; } }

 public string AssemblyName
 { get { return this.assemblyName; } }

 public string ClassName
 { get { return this.className; } }

 public ProductTypeInfo(
 string productTypeCode,
 string assemblyName,
 string className)
 {
 this.productTypeCode = productTypeCode;
 this.assemblyName = assemblyName;
 this.className = className;
 }
}

public class MetadataReader
{
 public ProductTypeInfo Load(string typeName)
 {
 XmlDocument doc = new XmlDocument();
 doc.Load(AppSettings["rootPath"]);

 XmlNode node = doc.SelectSingleNode(
 "/typeInfo/products/product[@id='" + typeName + "']");

 if (node == null)
 return null;

 return new
 ProductTypeInfo(
 typeName,
 node.Attributes["type"].Value.Split(',')[0],
 node.Attributes["type"].Value.Split(',')[1]);
 }
}

Following, a simple implementation of the DynamicFactory class is
presented. The Create method creates and returns an instance of an
implementer of the IProduct interface.

public static class DynamicFactory
{
 public static IProduct Create(string productTypeCode)
 {
 MetadataReader metadataReader = new MetadataReader();
 ProductTypeInfo typeInfo =
 metadataReader.Load(productTypeCode);

 ObjectHandle obj = Activator.CreateInstance(

 10

 typeInfo.AssemblyName,
 typeInfo.ClassName);
 return (IProduct)obj.Unwrap();
 }
}

public class SampleClient
{
 public void Main()
 {
 IProduct product = DynamicFactory.Create("product1");
 product.DoSomething();

 rule = DynamicFactory.Create("product2");
 product.DoSomething();
 }
}

Extending the factory with Generics

Our implementation of the DynamicFactory shown above is limited
to creating instances of IProduct interface. If we want to make it more
general, we can use generics, as shown in the piece of code below.

public class GenericDynamicFactory<T>
{
 public T Create(string productTypeCode)
 {
 MetadataReader metadataReader = new MetadataReader();
 ProductTypeInfo typeInfo =
 metadataReader.Load(productTypeCode);

 ObjectHandle obj = Activator.CreateInstance(
 typeInfo.AssemblyName,
 typeInfo.ClassName);
 return (T)obj.Unwrap();
 }
}

public class SampleClient
{
 public void Main()
 {
 DynamicFactory<IProduct> dynamicFactory =
 new DynamicFactory<IProduct>();

 IProduct product = dynamicFactory.Create("product1");
 product.DoSomething();

 product = dynamicFactory.Create("product2");
 product.DoSomething ();

 dynamicFactory = new DynamicFactory<IAnotherProduct>();
 product = dynamicFactory.Create("anotherTypeName");
 product.DoSomething ();
 }
}

Another static implementation using generics

 11

Below, another implementation using generics is shown. In this case,
the DynamicFactory is a static class and the creation method
[Kerievsky03] is generic [MSCPG], [SJPL].

public static class GenericDynamicFactory
{
 public static T Create<T>(string productTypeCode)
 {
 MetadataReader metadataReader = new MetadataReader();
 ProductTypeInfo typeInfo = metadataReader.Load(
 productTypeCode);

 ObjectHandle obj = Activator.CreateInstance(
 typeInfo.AssemblyName,
 typeInfo.ClassName);
 return (T)obj.Unwrap();
 }
}

public class SampleClient
{
 public void Main()
 {
 IProduct product = DynamicFactory.
 Create<IProduct>("product1");
 product.Execute();

 IProduct product = DynamicFactory.
 Create<IOtherProduct>("otherProd");
 product.Execute();
 }
}

The implementations shown above are simplified and don’t take into
account critical issues like exception handling, caching, security,
advanced configuration management setups, etc. More sample
implementations of this pattern can be found in [VanDeursen06],
[SunDevForum], [MK06], and [Kovacs03].

Variants • Cached Dynamic Factory: the dynamic factory can be combined
with the CACHING pattern [POSA3] (or the CONFIGURATION DATA
CACHING pattern [Welicki06]) to improve run-time efficiency
caused by repetitious acquisition of resources. There are two main
points where caching can be introduced: the retrieval of the metadata
for a type of concrete product (in this case the CONFIGURATION
DATA CACHING may be used) or directly caching the concrete
products. The first case is very simple to implement, since the
ProductTypeInfo are often inmutable. The last case is more difficult
and is feasible only when the ConcreteProducts are stateless
[POSA3].

If a cache is used, an EVICTOR [POSA3] (or similar) may be
necessary to unload outdated or not needed instances from memory.
In some scenarios the system can become more complex if you have

 12

to introduce a synchronization mechanism: a means to verify that
the cached information is synchronized with the contents of the type
metadata repository. When the type information is updated in the
metadata repository, some synchronization mechanism is needed to
synchronize the system with the new versions of the type
definitions. An easy way to do this would be to simply restart the
system or flush the cache.

• Parameterized Dynamic Factory: this variation receives

information as a parameter that is used to create the instances. There
are several options in this case and the parameter can be the type
information of the product to be created or an alias to search for it in
a type metadata repository (database, file, etc.).

• Dynamic Abstract Factory: in this case, the interface is very

simple, containing several methods to create instances of concrete
products. The type metadata about the concrete type of the instances
to be created are stored in a type metadata repository (database, file,
etc.). In this case, the DynamicFactory establishes an interface for
creating a family of products, but the details about the family
member types is stored in metadata. Therefore, flexibility and
extensibility is not based in static composition and inheritance.
Instead, it is achieved by dynamic interpretation of metadata.

• Adaptive Object-Model Dynamic Factory: in AOM based

architectures [YBJ01; YJ02; FY97; WYWJ07], the DYNAMIC
FACTORY can be used to create the instances of the PROPERTIES,
ENTITIES, ACCOUNTABILITIES, and RULE OBJECTS (and their
corresponding TYPE OBJECTS [JW98]).

Known Uses • Microsoft ASP.NET uses this pattern to configure its extensibility

features and its internal working. HttpHandlers and HttpModules are
configured using type metadata and created at runtime using this
type info. Taking this model further, there is a dynamic factory for
the factories (HttpHandlerFactories) that uses the same mechanism.

• Adaptive Object-Models. An Adaptive Object-Model is a system

that represents user-defined classes, attributes, relationships, and
behavior as metadata [YBJ01; YJ02]. The system is a model based
on instances rather than classes. Users change the metadata (object
model) to reflect changes in the domain. These changes modify the
system’s behavior. AOM-based architectures use extensively the
dynamic creation of its building blocks based on metadata.

• Rule based systems. The rules are configured using a VISUAL

LANGUAGE [RJ98], where they can be combined to be applied to a

 13

wide variety of contexts. Moreover, new rules can be added, deleted,
and changed at runtime. To add new rules, usually a general
abstraction (e.g. interface or abstract class) must be implemented
and its type information must be registered within a type metadata
repository.

• Spring XT Modeling Framework provides components for helping

develop rich domain models and making them collaborate with other
application layers without violating Domain Driven Design
principles, including the Dynamic Factory Generator that lets you
generate factory objects on the fly, providing only the factory
interface [SpringModules].

Related
Patterns

FACTORY METHOD [GoF95] and ABSTRACT FACTORY can be evolved to
DYNAMIC FACTORY. Since both establish an interface for creating
products (single in the first or families in the last), they can be evolved
to use metadata.

The DYNAMIC FACTORY can use the CACHING pattern [POSA3] to hold
the configuration data (XML metadata), a prototypical instance or the
instance itself (in case that the product is statelesss).In this case an
EVICTOR [POSA3] may be used for eviction of cached instances of
concrete products. For example, never accessed or old values may be
evicted periodically.

The DYNAMIC FACTORY can be a SINGLETON [GoF95] and can also be a
dynamic REGISTRY [Fowler03]

STRATEGY [GoF95] may be used to change the configuration storage
access strategy to fetch data (a provider may have several strategies
aimed to fetch data from different kinds of repository, e.g., XML,
relational database, flat file, etc.).

 14

References

[BR98] Bäumer, D ; D. Riehle. Product Trader. Pattern Languages of Program Design 3.

Edited by Robert Martin, Dirk Riehle, and Frank Buschmann. Addison-Wesley,
1998.

[Foote88]

Foote, Brian. Designing to Facilitate Changes with Object-Oriented Frameworks.
MSc Thesis. University of Illinois at Urbana-Champaign. 1988.

[Fowler 03] Fowler, M. Patterns of Enterprise Application Architecture. Addison-Wesley. 2003
[FY98] Foote B, J. Yoder. Metadata and Active Object-Models. Proceedings of Plop98.

Technical Report #wucs-98-25, Dept. of Computer Science, Washington University
Department of Computer Science, October 1998.

[GenJava] Sun Microsystems. Java Programming Language. Enhancements in JDK 5:
Generics. http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html

[GenNet] Microsoft Developers Network. Generics (C# Programming Guide).
http://msdn.microsoft.com/en-us/library/512aeb7t(VS.80).aspx

[GoF95] Gamma, E.; R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of
Reusable Object Oriented Software. Addison-Wesley. 1995.

[HT00] Hunt, Andrew; David Thomas. The Pragmatic Programmer: From Journeyman to
Master. Addison-Wesley. 2000.

[JF98] Johnson, Ralph; Brian Foote. Designing Reusable Classes. Journal of Object-
Oriented Programming June/July 1988, Volume 1, Number 2, pages 22-35.
http://www.laputan.org/drc/drc.html

[JW98] Johnson, R., R. Wolf. Type Object. Pattern Languages of Program Design 3.
Addison-Wesley, 1998.

[Kerievsky03] Kerievsky, J. Refactoring to Patterns. Addisson-Wesley. 2003.
[Kovacs03] Kovacs, R. Creating Dynamic Factories in .NET Using Reflection. MSDN

Magazine. March 2003. http://msdn.microsoft.com/en-us/magazine/cc164170.aspx
[MK06] Miller, R.; R. Kasparian. Java For Artists: The Art, Philosophy, and Science of

Object-Oriented Programming. Pulp Free Press, 2006
[MSNET] Microsoft .NET Framework. http://www.microsoft.com/net/
[POSA1] Buschman, F. et al. Pattern Oriented Software Architecture, Volume 1: A System of

Patterns. Wiley & Sons. 1996
[POSA3] Kircher, M.; P. Jain. Pattern Oriented Software Architecture, Volume 3: Patterns

for Resource Management. Wiley & Sons. 2004.
[RJ98] Roberts, D.; Johnson, R.: Evolving Frameworks: A Pattern Language for

Developing Object-Oriented Frameworks.
[RTJ05] Riehle D., M. Tilman, and R. Johnson. "Dynamic Object Model." In Pattern

Languages of Program Design 5. Edited by Dragos Manolescu, Markus Völter,
James Noble. Reading, MA: Addison-Wesley, 2005.

[RY01] Revault, N, J. Yoder. Adaptive Object-Models and Metamodeling Techniques
Workshop Results. Proceedings of the 15th European Conference on Object
Oriented Programming (ECOOP 2001). Budapest, Hungary. 2001.

[SpringModules] Spring Modules. Chapter 18. XT Framework.
https://springmodules.dev.java.net/docs/reference/0.8/html/xt.html

[SunDevForum] Sun Developer Forums. Reflections & Reference Objects - Dynamic Factory
Method Pattern. http://forums.sun.com/thread.jspa?threadID=573494

[VanDeursen06] van Deursen, S. A Fast Dynamic Factory Using Reflection.Emit. September 2006.
http://www.cuttingedge.it/blogs/steven/pivot/entry.php?id=9

[Welicki06] Welicki, L.. The Configuration Data Caching Pattern. 14th Pattern Language of
Programs Conference (PLoP 2006), Portland, Oregon, USA, 2006.

 15

[WYWJ07] Welicki, L.; J. Yoder; R. Wirfs-Brock; R. Johnson. Towards a Pattern Language for
Adaptive Object-Models. Companion of the ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages and Applications (OOPSLA 2007),
Montreal, Canada, 2007.

[YBJ01] Yoder, J.; F. Balaguer; R. Johnson. Architecture and Design of Adaptive Object-
Models. Proceedings of the ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPSLA 2001), Tampa,
Florida, USA, 2001.

[YJ02] Yoder, J.; R. Johnson. The Adaptive Object-Model Architectural Style. IFIP 17th
World Computer Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Software
Architecture: System Design, Development and Maintenance (WICSA 2002),
Montréal, Québec, Canada, 2002

[YR00] Yoder, J.; R. Razavi. Metadata and Adaptive Object-Models. ECOOP Workshops
(ECOOP 2000), Cannes, France, 2000.

