

 2004 Wirfs-Brock Associates

Speak for Me! Description
Overview
Our users are paralyzed and unable to speak. Due to accident, stroke, or disease, all are confined to either a
hospital bed or a wheelchair. Some are blind. The Speak for Me! software enables users to build messages
by spelling each word. It presents letters in different orders, guesses words, sentences and commands, and
takes action in response to user selections. Users also control the software via “commands” that they spell.
They spell these special words and select the commands when the software guesses that they are trying to
spell them. These commands address and send messages via email, send them to another user on a local
network nursing station, make them appear on a nurse’s pager, or display them on the “message board” of
the users’ own machines. They will also fetch and read email messages, control small applicances for the
user, and control the message construction.

Under normal conditions, when a user is not interacting with the program, it is idling, waiting for the users
to signal with a single click on a wireless mouse. When they wish to use the program, they click the mouse
button. The program assumes that they wish to spell a message or command, and starts displaying or
speaking the letters of the alphabet. The general interaction is described in the “Build a Message”
conversation below.

Building a Message
How the software responds to a user’s selections depends on the current “state” of the word that she is
constructing. When idling, a single click will cause the alphabet to be spoken, beginning with the first letter
of the alphabet. After she selects a letter, though, the first thing she sees or hears is a “space”. Selecting the
space ends the current word and begins another. The software does not guess any words or sentences or
commands until she has selected at least two letters. Otherwise, there are too many possibilities to make
reasonable guesses. There general activities in building a message are described in the “conversation” table
below.

Conversation: Build a Message
Actor Actions System Responsibilities
Click to start speaking
 Start building a message
Repeat actions until the message is built
 Determine what to present (from letters, words,

sentences, commands, and space)
 Sort the choices (most likely first)
 Present choices to the user
(Optionally, click to select what was presented)
 Determine action to take based on selection
 If the user has selected a letter, then add the letter to

the message
 If the user has selected a word, then strip the partial

word and add the selected word
 If the user has selected a sentence, then strip the

partial sentence, and add the selected sentence
 If the user has selected the “end sentence”

command, then start “Repeat actions” with a new
sentence

 If the user has selected another command (e.g.
“send message”) then quit building the message
Otherwise, add selection to message

End actions when message is built
 Process the selected command

 2004 Wirfs-Brock Associates

Presenting Letters
We normally think of letter order as A .. Z. In “Speak for Me!” this is not always the case. A user can
choose from a few different orderings:

• alphabetic (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z)
• frequency (E, T, O, A, N, I, R, S, H, D, L, C, F, U, M, P, Y, W, G, B, V, K, X, J, Q, Z)
• either of the above plus dynamic reordering based on onset coocurrence (see section on Onset

Coocurrence)

Guessing Words, Sentences and Commands
As a user spells, the software tries to “guess” words, sentences, and commands as it sees more and more
letters. It matches her partial constructions against complete words, sentences and commands in program
dictionaries. (Guessing is an area where the application can evolve: the application can use knowledge of
word structure and linguistic rules of coocurrence of letters to be “smarter” as it presents letters. It can learn
the patterns of the user’s word and sentence constructions to anticipate her choices, and it can use the
knowledge of grammar to better predict words within a sentence.)

Commands
A message may contain more than one sentence. So, if after finishing the first sentence, how does a user
indicate that she wants to build and add a second sentence? She considers the first sentence complete, but
doesn’t want to send it yet because she has more to say! As in all other operations that she controls, she
builds a command word. The command she uses to terminate a sentence and add it to the message under
construction is “ES” (for “end sentence”). So, she begins building a new word, this time starting it with
“SE”. Each time the user makes selects a letter, the software attempts to “guess” what she is trying to say.
In this case, it knows that there is a command word that begins with “SE”, so it presents the phrase “End
the sentence” to her. If she selects it upon seeing or hearing it, the software ends the sentence and begins
another. If she doesn’t select “end the sentence”, it continues building her word that begins with “SE”.

Anytime that a user selects a command, the software will execute the command. The command will often
use the current message as it performs its purpose, e.g., send the message, display the message, etc. This
command word approach is very flexible and lets us avoid an “in-your-face” style of interaction with lots of
spoken menus and submenus.

Available Commands
The commands enable a user to perform actions with the software. If she wishes to read her email inbox
messages rather than construct a new sentence, she spells the command word for read email (RE), the
selects the command when she hears it. The flexibility of the command word approach will allow her to

• end the current sentence and continue to the next (spell ES and select “end the sentence”)
• end the message and start addressing it (spell AM and select “address the message”)
• read (or listen to) email (spell RE and select “read email”)
• clear the message board and idle (spell CB and select “clear message board”)
• review the message board (spell RM and select “review message board”)
• call for help in emergency! And idle (spell EE and select “call for help”)

The software will guess certain commands when it thinks them relevant. For example,

• send the message (after each address selection)

Onset Coocurrence
There are special rules that apply to word construction at the beginning of a word. In what is called the
onset of the first syllable, there are only a few letters that may follow the first letter. This onset coocurrence

 2004 Wirfs-Brock Associates

provides us with a relatively simple way to predict the second and third letters of a word, given the first, or
first and second letters, respectively. This enables us to present the most probable letters at the beginning of
the series, followed by the rest of the alphabet in the ordering of the user’s choice. Here is a table of the
recognized onset coocurrences:

Word begins with … Likely next letters …
B R or L
C H, L, or R
D R or W
F R or L
G R or L
K N
P R, L, H, or S
Q U
R H
T H, R, or W
W H or R
ST R
SC H or R
SH R
SQ U
PH R
TH R
CH R or L

For example, when a user is trying to spell the word “bring”, onset coocurrence rules indicate that the
initial b will often be followed by the consonants l or r. After she chooses the initial “B”, we present the
two consonants “R” and “L” first, followed by the rest of the alphabet. Further, if we can make the
construction of the first few letters efficient (as we do when we use onset coocurrence), we quickly increase
the probability that we will be able to guess the correct word from the dictionary. The number of matches
will decrease rapidly as we build the word past the first two or three letters.

Suspending
If a user is interrupted during her construction of a message, she should be able to divert her attention to her
nurse or visitor without fearing that she will lose her current work. If, at the end of the presentation of the
alphabet, she has not chosen a letter, the software suspends. When she wants to continue building her
message, she starts the software as she usually does, with a single click. Since it has been “suspended” by
reaching the end of the alphabet without her making a selection, the program reads the full message to her,
up to but not including the last word. It then spells the last, partial word to her, announces that she is
resuming at that point, and starts normal operation for completing the latest word.

Sending a Message
When the message is complete, she will send it to a destination. All destinations (email addresses, etc.)
have aliases (typically, the names of people, groups of people, or places) so that she can easily understand
the choices and designate where the message should be delivered. The availability of certain destinations
depends on the services that are available at her installation. At a minimum, all installations will be able to
send messages to her “Message Board”, which is the alias for an area of the display screen on her
computer, and all installations will offer email. So there will always be a list of user-defined names that are
aliases for email addresses or mailing lists of friends and family. If the nursing home or hospital has a
computer network, there may be a “Nursing Station”, the alias for the network computer at the main desk,
as well as a list of names of networked nurses and doctors, each wearing a pager with email capabilities.
Once the name of a person, a place, or a mailing list is selected, the program will figure out how to deliver
the message and attempt to do so. The message may be delivered to its destinations via email, local area
networking, or may be displayed on the local machine.

 2004 Wirfs-Brock Associates

Configuring the User Interface
Our users vary in their capabilities. Since some can see the screen, the software must be able to display the
letters, words, sentences and commands, as well as keep the user informed of the current state of the
message that is under construction. For those that are blind, it must be able to speak these same elements to
the users.

The software will ship with a highly configurable user interface, the particular configuration depending on
the distance from the user that the screen will be located. For example, since some users will have a laptop
close by, the screen should be able to display on a single screen a rich set of information in a relatively
small font visible from 2 feet or so. For those users that must locate their machines across the room on a
table, the screen will be able to display only a small amount of information at one time, in a font visible
from 8 or 10 feet. All users can command the software to turn the speaker on or off and to turn the volume
up or down.

Different potential choices that are presented to the user must have different “delays” before presenting the
next choice. For example, when a word is guessed, there should be a slightly longer delay before
continuing on to present the next choice. In general, anything that might surprise the user should offer a bit
longer time for the users to select them. These timing characteristics and any other user preferences should
be configurable for the user by a speech therapist, using a preferences screen that runs within the Speak for
Me! Software. When displaying words, commands, and sentences, it is sufficient to allow the same amount
of time of each type. But when speaking these choices, the software must wait until the choice has been
completely spoken, and measure a small delay after it is complete before continuing. For example,
displaying the words “ant” and “antidisestablishmentarianism” can take the same amount of time when
displayed as text on the screen, but the wait will be much longer when speaking the longer word.

The command-driven approach allows the user to specify directly what they wish to do with the software.
But the software should do as much as possible to keep the user informed of their current context without
constantly getting in their way of the task at hand. For example, it should beep to inform the user that their
selection was recognized and handled, it should voice or display information regarding the success or
failure of message delivery, and it should echo that it is “ready and waiting” when it is idling and waiting
for the users to begin message construction.

