
1

Wirfs-Brock Associates © 2007 1

Skills for the
Agile Designer

Rebecca Wirfs-Brock

rebecca@wirfs-brock.com

www.wirfs-brock.com

Wirfs-Brock Associates © 2007 2

What makes a designer agile?

� Core values:

� Simplicity

� Communication

� Learning

� Teamwork

� Trust

� Satisfying stakeholder needs

� An attitude

2

Wirfs-Brock Associates © 2007 3

How can you become more agile?

� Learn fundamental strategies for
producing acceptable solutions

� Be curious. Learn from mistakes and
successes

� Practice different ways of seeing the
nature of problems and solutions

� Communicate

Wirfs-Brock Associates © 2007 4

Tools for Seeing

3

Wirfs-Brock Associates © 2007 5

A Designer’s Story: A tool for
seeing what’s important

� Designer’s

story—a quickly
written
paragraph or
two description
of important

ideas, what you
know, and what
you need to
discover

Wirfs-Brock Associates © 2007 6

Elements of a story…

� What is your design supposed to do?

� Is there something similar you can
draw upon or emulate?

� What will make it a success?

� What are the most challenging parts?

4

Wirfs-Brock Associates © 2007 7

Why tell a designer’s story?

� To put your spin on what’s important

� Describing the problem helps you
own it

� Sharing them builds understanding
and a common vision

� Metaphors are hard to come
by…identifying themes and key
responsibilities from designer stories
is one alternative

Wirfs-Brock Associates © 2007 8

Write a Designer’s Story

� Need to take data from various sensors and

store as “normalized” measurements

� Need to set up and monitor sensors that
are either polled or programmed to respond
on a specified time interval

� Need to analyze data and make predictions

5

Wirfs-Brock Associates © 2007 9

Problem Frames: A tool for seeing
typical patterns of software tasks

frame—a

structure that
gives shape
or support

Wirfs-Brock Associates © 2007 10

A Problem Frame…

“… defines the shape of a
problem by capturing the
characteristics and
interconnections of the
parts of the world it is
concerned with, and the
concerns and difficulties
that are likely to arise. So
problem frames help you to
focus on the problem,
instead of drifting into
inventing a solution.”

—Michael Jackson

6

Wirfs-Brock Associates © 2007 11

Framing strategy:
divide and conquer

� Decompose problems

� Focus on the
requirements and the
concerns of each
subproblem

Wirfs-Brock Associates © 2007 12

Tactics for decomposing problems

� Identify the core problem

� Sending and receiving mail

� Look for ancillary problems

� Constructing mail

� Managing mail folders

� Sorting mail

� Reading mail

� Maintaining address lists

� Examine problem concerns for more

7

Wirfs-Brock Associates © 2007 13

Five basic problem frames

� Workpiece- a tool that allows users to create and
manipulate structures (Email editor)

� Transformation- converting input source to some
output according to certain rules (MIME Decoding)

� Information- information is needed to be derived
from something’s observed state and/or behavior
(Determining a “junk mail” rating)

� Commanded behavior- controlling the behavior of
some “thing” according to operator commands
(Sending an email message)

� Required behavior- controlling the behavior of some
“thing”

(Sorting incoming mail according to pre-defined filters)

Wirfs-Brock Associates © 2007 14

Stylized Workpiece Questions

� Will it take different forms?
� Does it have an interesting
lifecycle (or is it something
that is changed and then
treated as “static” after
each change)?

� Is it passed around
between various users? Is
there a workflow
associated with it?

� Should it be published or
printed?

8

Wirfs-Brock Associates © 2007 15

Stylized Transformation Questions

� What do you start with?

� How will it be changed?

� Is the transformation
complex?

� Will it always work?
What should happen
when you encounter
errors in the input?

� Is the transformation
“lossy” or reversible?

� What speed, space, or
time tradeoffs are there?

Wirfs-Brock Associates © 2007 16

Stylized Information
Display Questions

� How precise does the
information need to be? Is the information
“fuzzy”?

� How much computation does your software
have to do to come to an observation?

� Is the user only interested in current
information? Or is historical information
important?

� Are there questions that the user may want to
ask about the information? What are they?
How easy are they to accurately answer?

9

Wirfs-Brock Associates © 2007 17

� What does the use need
to know to “command”
the system to do things?

� Do certain commands
need to be inhibited? Do they always make sense?

� Is there a lag between issuing and performing the
command?

� What happens when a command fails?

� Should certain commands be ignored?

� Do commands need to be reversible? logged?
monitored or tracked?

Stylized Commanded
Behavior Questions

Wirfs-Brock Associates © 2007 18

Stylized Required Behavior
Questions

� What external state must be controlled?
� How does your software find out whether
its actions have had the intended effect?

� What should happen when
things get “out of synch”?

� How does your software
decide what actions to initiate?

� Is there an action sequence?
� Are there complex interactions
with your software and
the thing under its control?

10

Wirfs-Brock Associates © 2007 19

Problem frame expectations

� For each frame there is an expectation of

where complexities lie

Transformation

User Work pieces

domain

Simple

Workpieces

Information

display

Interpretation/deri

vation of

information

Information

display

Operator

commands

The thing you are

changing/modifyi

ng

Commanded

behavior

The thing you are

controlling

Required

behavior

SimpleComplexFrame

Input and Outputs

Wirfs-Brock Associates © 2007 20

The ideal…

� Your software has a
straightforward

connection with things
it observes or interacts
with

� A rich interface gives
access to phenomena

it needs to detect or
control

11

Wirfs-Brock Associates © 2007 21

Reality…

� An “intermediary”
often lies between

� This connection can
be quirky
� Design your software
to react in the face of
potential time-delays,
conflicting states
between the
“connected” thing you
are controlling or
interacting with

Wirfs-Brock Associates © 2007 22

What framining in an agile world?

� Jackson advocates fully understanding
problems before starting design

� Agile developers expect to incrementally
discover requirements. Framing

� …can focus design spikes

� …can help you write tests

� …can help you estimate stories

� …can lead to deeper understanding of user
stories and dependencies

12

Wirfs-Brock Associates © 2007 23

Where problem frames don’t fit

� Framing doesn’t help describe or
understand:

� Mathematical computations or algorithms

� Graphics user interfaces

� Compiler design

� …

Wirfs-Brock Associates © 2007 24

Frame the First Release
� Release 1 will only process data from
programmable sensors (not polled sensors
yet). We need to program them to report on a
specified interval, and then receive and process
their measurement data

� Identify the problem frames in this first release

� List clarifying questions for one frame

13

Wirfs-Brock Associates © 2007 25

Thinking in concepts…

vegetarian _________________

Wirfs-Brock Associates © 2007 26

Role Stereotypes

“A well-defined object
supports a clearly defined
role. We use purposeful
oversimplifications, or role
stereotypes, to help focus an
object’s responsibilities…Once
we assign and characterize an
object’s role, its attendant
responsibilities will follow.”

—Rebecca Wirfs-Brock & Alan
McKean

14

Wirfs-Brock Associates © 2007 27

Role Stereotypes: A tool for seeing
and shaping object behaviors

� stereotype—A conventional, formulaic, and

oversimplified conception, opinion, or image

Wirfs-Brock Associates © 2007 28

From Responsibility-Driven Design:
Object Role Stereotypes

� Information holder –
knows and provides
information

Measurement
� Structurer - maintains
relationships between objects
and information about those
relationships

SensorRepository,
PollingSchedule

15

Wirfs-Brock Associates © 2007 29

Object Role Stereotypes

� Coordinator – mechanically
reacts to events
SensorPoller

� Controller - makes decisions
and closely directs others’
actions DataCollector

Wirfs-Brock Associates © 2007 30

Object Role Stereotypes

� Interfacer - transforms
information and requests
between distinct parts of a
system Sensor

� Service provider - performs
work on demand
ConfidenceRater

16

Wirfs-Brock Associates © 2007 31

Three Uses for Object Role
Stereotypes

� Early, stereotypes help you think about the

different objects you’ll need

� Blend stereotypes to make objects more
responsible and intelligent

� information holders that compute

� service providers that maintain information

� interfacers that transform information and hide
low-level details

� Study a design to learn what types of roles

predominate and how they interact

Wirfs-Brock Associates © 2007 32

CRC Cards: An informal tool
Candidate, Responsibilities, Collaborators

Sensor Sensor Sensor Sensor
Purpose: Represents what the Arbor 2000 system knows about Purpose: Represents what the Arbor 2000 system knows about Purpose: Represents what the Arbor 2000 system knows about Purpose: Represents what the Arbor 2000 system knows about
devices that reports data that is physically sensed from the devices that reports data that is physically sensed from the devices that reports data that is physically sensed from the devices that reports data that is physically sensed from the
environment. Sensors can report light intensity, temperature, environment. Sensors can report light intensity, temperature, environment. Sensors can report light intensity, temperature, environment. Sensors can report light intensity, temperature,
wind speed and direction, rainfall and other physical readings. wind speed and direction, rainfall and other physical readings. wind speed and direction, rainfall and other physical readings. wind speed and direction, rainfall and other physical readings.
Some kinds of sensors can sense multiple physical Some kinds of sensors can sense multiple physical Some kinds of sensors can sense multiple physical Some kinds of sensors can sense multiple physical
characteristics and are capable of reporting readings at differecharacteristics and are capable of reporting readings at differecharacteristics and are capable of reporting readings at differecharacteristics and are capable of reporting readings at different nt nt nt
intervals (such as every minute, hourly, weekly, monthly) or intervals (such as every minute, hourly, weekly, monthly) or intervals (such as every minute, hourly, weekly, monthly) or intervals (such as every minute, hourly, weekly, monthly) or
based on a significant event (temperature rising x degrees in a based on a significant event (temperature rising x degrees in a based on a significant event (temperature rising x degrees in a based on a significant event (temperature rising x degrees in a
period of time, x amount of rainfall, etcperiod of time, x amount of rainfall, etcperiod of time, x amount of rainfall, etcperiod of time, x amount of rainfall, etc.)..)..)..).

Stereotypes: Service Provider, InterfacerStereotypes: Service Provider, InterfacerStereotypes: Service Provider, InterfacerStereotypes: Service Provider, Interfacer

17

Wirfs-Brock Associates © 2007 33

creates measurements from reportscreates measurements from reportscreates measurements from reportscreates measurements from reports

knows if activatedknows if activatedknows if activatedknows if activated

knows locationknows locationknows locationknows location

knows sensor make and modelknows sensor make and modelknows sensor make and modelknows sensor make and model

maintains configuration parametersmaintains configuration parametersmaintains configuration parametersmaintains configuration parameters

MeasurementMeasurementMeasurementMeasurementknows reporting intervalknows reporting intervalknows reporting intervalknows reporting interval

ParserParserParserParserknows physical characteristics it can knows physical characteristics it can knows physical characteristics it can knows physical characteristics it can
detectdetectdetectdetect

SensorSensorSensorSensor

CRC Cards: An informal tool
Candidate, Responsibilities, Collaborators

ResponsibilitiesResponsibilitiesResponsibilitiesResponsibilities

CollaboratorsCollaboratorsCollaboratorsCollaborators

Wirfs-Brock Associates © 2007 34

Seeing abstractions

� We can see objects and
behavior at different
levels:

� At the conceptual
level- a set of
responsibilities

� At the specification
level- set of methods
that can be invoked

� At the implementation
level- code and data

18

Wirfs-Brock Associates © 2007 35

n-tier web applications

RDBMS, Queues,
Enterprise Service Bus

Service
Provider

Database,
Enterprise Services

Resources

JavaBean, Entity EJBInformation
Holder,
Structurer

Domain ModelData Access

POJO, Session EJBControllerBusiness DelegateBusiness
Logic

ServletCoordinatorCommandControl

JSPInterfacerPage LayoutPresentation

HTML, JavaScriptInterfacerUser InterfaceClient

TechniqueRoleFunctionalityLayer

Wirfs-Brock Associates © 2007 36

� In 10 minutes, come up with a list candidates and their
stereotypes:

� What work needs to be done? (Controllers,
Coordinators, Service Providers)

� What information does the software need to track
and/or produce? (Information holders)

� What needs to be structured and managed?
(Structurers)

� How does it connect to other systems and external
devices? (Interfacers)

Identify Candidates

19

Wirfs-Brock Associates © 2007 37

Tools for Shaping

Wirfs-Brock Associates © 2007 38

Control centers and collaboration
styles: Tools for shaping solutions

control center—a place where

objects charged with controlling
and coordinating reside

aDhfjkl

aDhfjkl aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

aDhfjklaDhfjkl

aDhfjklaDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

20

Wirfs-Brock Associates © 2007 39

Control Centers

� Deciding on and developing a consistent

control style is one of the most important
design decisions. There are many control
centers in your design, each may have a
different style

� Handling web interactions

� Managing complex software processes

� Designing how objects work together within a
subsystem

� Controlling external devices or external
applications

Wirfs-Brock Associates © 2007 40

Control Design

� Involves decisions about

� how to control and coordinate tasks,

� where to place responsibilities for making
domain-specific decisions (rules), and

� how to manage unusual conditions (the design
of exception detection and recovery)

� Goal: develop patterns for distributing the
flow of control and sequencing of actions
among collaborating objects. Make similar
parts of your system consistent

21

Collaboration Styles

aDhfjkl

aDhfjkl aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

aDhfjklaDhfjkl

aDhfjklaDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

Centralized Delegated

Dispersed

Control styles range from

centralized to fully

dispersed

Wirfs-Brock Associates © 2007 42

Centralized Control

� Generally, one object (the controller)
makes most important decisions.
Tendencies to avoid:

� Overly complex control logic

� Changes rippling among controlling and
controlled objects

� Objects coupled indirectly through
controller actions

Benefits:

Easy to see what’s going on. Easy to test.

22

Wirfs-Brock Associates © 2007 43

Delegated Control

� Some decision making passed off to
objects surrounding a control center.

� Messages tend to be higher-level

� Objects outside the control center do
work, make local judgment calls, and
grab info they need when needed

Benefits:

Changes typically localized and simpler

Easier to divide interesting design work among a team

Wirfs-Brock Associates © 2007 44

Dispersed Control

� Spreads decision making and action
among objects who individually do
little, but collectively their work adds
up. Tendencies to avoid:

� Hardwired dependencies between

objects/components in the call chain

� Little or no value-added by those
receiving a request

Benefits:

Plug-and-play service providers can be used in novel ways

23

Wirfs-Brock Associates © 2007 45

� You need to keep track of polling intervals
and what sensors need to be polled

� A sensor’s polling interval can be changed
by the user

� A system has fewer than 100 sensors

� Discuss/sketch your ideas for handling
polling

Explore Control Style Elements

Wirfs-Brock Associates © 2007 46

Trust Regions: A tool for seeing where
“defensive” behavior is or isn’t needed

trust region—an

area where
trusted
collaborations
occur

24

Wirfs-Brock Associates © 2007 47

Definition: Collaborate

1. To work
together,
especially in a
joint intellectual
effort

2. To cooperate
treasonably, as
with an enemy
occupation force

Wirfs-Brock Associates © 2007 48

Implications of trust

� Components and objects at the
“borders” may take on extra
responsibilities

� Within a trust region, collaborations
can be more collegial

� Check once, then proceed…

� Code deep inside a trust region need not
check for well-formed or timely requests

25

Trust In A Telco Integration Application

Collaborations Collaborations Collaborations Collaborations
between the core and between the core and between the core and between the core and
any adapter were any adapter were any adapter were any adapter were
designed to be designed to be designed to be designed to be
trustedtrustedtrustedtrusted

Collaborations Collaborations Collaborations Collaborations
between an adapter between an adapter between an adapter between an adapter
and any external and any external and any external and any external
application were application were application were application were
untrusteduntrusteduntrusteduntrusted

Number Portability

Adapter

Billing System

Adapter

Provisioning System

Adapter

Order Taking

Adapter

Billing System

Number

Portability

System

Provisioning

System

Order Taking

System

Application Integration

Services

Wirfs-Brock Associates © 2007 50

Collaboration Cases To
Consider

� Collaborations between objects or
components…

� that interface to the user and the rest of

the system

� in different layers or subsystems

� inside your system that interface to
external systems

� you design and those designed by
someone else

26

Wirfs-Brock Associates © 2007 51

� Where are the trust boundaries in the system?

� Our system receives data from physical sensors that
are self-reporting or polled

� Measurement data is stored and analyzed to make
predictions and analyze weather trends

� Vendor supplied or open source plug-ins can provide
additional tools for data analysis and visualization

Identify Trust Regions

Wirfs-Brock Associates © 2007 52

Tools for Design Collaboration

27

53

Design problem types: A tool for
balancing priorities

Each type of
design problem
category warrants

a different
approach and has
a different rhythm
to its solution

Photo courtesy Drum Journey www.drumjourney.com

Wirfs-Brock Associates © 2007 54

Design tasks aren’t alike

� Core design problems include those
fundamental aspects that are
essential to your software’s success

� Revealing design problems when
pursued, lead to a fundamentally
new, deeper understanding

� The rest, while not trivial requires far
less creativity or inspiration

28

Wirfs-Brock Associates © 2007 55

How to decide what’s core

� What are the consequences of
“fudging” on that part?

� Would the project fail or other parts of

your design be severely impacted? Then
it’s definitely core

� When there are fundamentally different
expectations, dig deeper. Someone may
know something that others have

ignored

Wirfs-Brock Associates © 2007 56

Sorting out the rest

� If you know that something is just
basic design work that has to be
there, nothing special, nothing fancy,
it’s probably part of the rest

� Core problems should be given more
attention. That doesn’t mean the rest
gets slighted. They just aren’t at the
top of your list

29

Wirfs-Brock Associates © 2007 57

Revealing design problems

� What distinguishes
revealing problems is
their degree of difficulty
and the element of
surprise, discovery and
invention

Wirfs-Brock Associates © 2007 58

Revealing design problems are
always hard…

� coming up with a solution is difficult—

even though it may be straightforward

� they may not have a simple, elegant
solution

� they may not be solvable in a general
fashion—each maddening detail may

have to be tamed, one at a time

� they may require you to stretch your
thinking and invent things

30

Wirfs-Brock Associates © 2007 59

Some problems are really hard

� Wicked problems
characteristics
� They are hard to state concisely

� They can be symptoms of other
problems

� Solutions

� have unforeseen
consequences

� are open to value judgments

� can be hard to describe

� may be hard to verify

Wirfs-Brock Associates © 2007 60

Observations on solving wicked
problems

� Time is required to let things “soak in”

� They either squarely demand your
attention or lurk in your thoughts

� They are rarely solved by a committee

� Nearly impossible to predict when they
will be solved

31

Wirfs-Brock Associates © 2007 61

Agility and design problem types

� Sort work into “problem buckets” making sure
each iteration gets enough core work
accomplished

� Track how much time is spent on “the rest”

� Use post-iteration reflections to ask why things
were harder than they first appeared

� Break out of planned iteration cycles to tackle
revealing problems (they’ll need more than just
a design spike)

� Make sure the team gets involved on core
design issues

Wirfs-Brock Associates © 2007 62

� We are planning for the first release

� We must be able to receive data from sensors,
convert that data into normalized
measurements and store them in the database

� We must keep track of physical sensors, their
location, operational status, and physical
characteristics

� We must predict fire danger rating

� What seems core? What is less interesting?

Sort Stories into Buckets

32

Wirfs-Brock Associates © 2007 63

Group Decision Making

� Common ways to
decide don’t always
contribute to a
design’s integrity
� Voting

� …Beware of the
democratic fallacy

� Dictatorship

� Reaching consensus

� Gathering

� Sub-committee

Wirfs-Brock Associates © 2007 64

A Two-Stage Decision Process

� When weighing
options, a common
approach goes
something like this.
After gathering your
options:

� Sort through them
rapidly: No, no, no,
maybe, no, no, no,
no, maybe

� Examine remaining
options carefully

33

Wirfs-Brock Associates © 2007 65

Handling Criticism
Valid

Not Valid

Aesthetics

Judgmental

Complexity

Personal

Great

Wirfs-Brock Associates © 2007 66

Appropriate responses…

Ask critic for more
specific info

Negative reaction
with/without enough info to
indicate a problem

Judgmental

Optionally, probe
behind the praise

May or may not be
judgmental/specific

Great!

Explore. May need to
educate about inherent
complexity

Value judgment with
implicit assumption that a
simpler solution exists

Complexity

Acknowledge, defuse by
explaining your position

Negative reaction reflecting
form vs. substance

Aesthetic

Improve your ability to
explain

Clear misfit between your
idea and criticism

Not valid

Refine your idea—but
don’t lose its
advantages

Info indicates a flaw or
weakness in idea

Valid

Appropriate
Tactic

Characteristics of
criticism

Type of
criticism

34

Wirfs-Brock Associates © 2007 67

Probing Questions

� Clarification…what did you
mean by

� Purpose…why did you
suggest that

� Relevance…does this apply
here

� Completeness…is that all
� Accuracy…is that so
� Examples…can you give an
example

� Extension…tell me more
� Evaluation…how good do
you think it will be

Wirfs-Brock Associates © 2007 68

Clarifying Questions

� Get them to think:
� Why do you say that?

� What exactly do you
mean?

� How does this relate
to what we discussed
earlier?

� Can you give me an
example?

� Are you saying ... or
... ?

� Can you restate your
concern?

35

Wirfs-Brock Associates © 2007 69

Responding to questions

� Pause. Collect your thoughts

� Acknowledge and give an answer
� Answer with a candid response

� Bury them in detail

� Answer with another question
� Ask them to explain more

� Question the question

� Question the questioner

� Ask a different question

Wirfs-Brock Associates © 2007 70

Resources

Problem frames website: http://www.ferg.org/pfa/

Designer’s stories, stereotypes, trust regions, control
styles:

Object Design: Roles, Responsibilities, and
Collaborations, Rebecca Wirfs-Brock and Alan McKean

www.wirfs-brock.com/resources

www.wirfs-brock.com/rebeccasblog.html

Argumentation: Thinking from A to Z, Second Edition,
by Nigel Warburton

36

Wirfs-Brock Associates © 2007 71

-Rebecca

rebecca@wirfs-brock.com

www.wirfs-brock.com

Skills for the Agile Designer Tutorial Notes 1

Skills for the Agile Designer

Supplementary information and notes

Rebecca Wirfs-Brock
rebecca@wirfs-brock.com

Tools for Seeing: Problem Frames ... 2
Tools for Seeing: A designer’s story .. 7
Tools for Seeing/Shaping: Concept Forming ... 10
Tools for Seeing/Shaping: Object Role Stereotypes... 11
Shaping Tool: Control Center Design... 13
Tools for Shaping: Trust Regions ... 15
Design Collaboration: Handling Criticism ... 16
Design Collaboration Tool: Argument Moves ... 18
Design Collaboration Technique: Sorting your design work 21
Resources .. 23

Problem Frames .. 23
Designer’s Stories, Role Stereotypes, CRC Cards, Trust Regions, Control Styles,
Design Problem Types.. 23
Argument Moves .. 23
Creative Problem Solving ... 23

Data Collection Problem OOPSLA DesignFest™ Problem... 24

Skills for the Agile Designer Tutorial Notes 2

Tools for Seeing: Problem Frames

Problem frames are a way of mentally dividing your software’s purpose into
manageable chunks. Software systems can be thought of as a set of sub-problems or
“problem frames”. By breaking down a problem into its constituent problems, you can
consider a large system one smaller piece at a time. Michael Jackson, who invented the
notion of problem frames, writes about them in Problem Frames: Analyzing and

structuring software development problems. Jackson suggests that because software
serves so many purposes, developers should start by describing and structuring their
problems in a way that, according to Jackson, is “rarely necessary in other engineering
disciplines, where the diversity of problems to be solved is much smaller.” Agile
designers must become adept at asking: What kind of problem is this? What is our
software all about? What purpose does it serve? What behavior and properties must our
software have to achieve that purpose?

Each different class of problem frame has specific concerns and issues. When you think
about a problem, if you can “fit your problem (or a piece of it) into a relevant frame” then
it will lead you to ask appropriate questions and make appropriate tradeoffs. Here are
definitions of Jackson’s five problem types or frames and example frame diagrams:

• Required behavior—controlling state changes of something outside your software
machinery according to specific requirements.

• Commanded behavior—controlling changes based on an operator or user’s
commands

Skills for the Agile Designer Tutorial Notes 3

• Information display—produce information about some observable phenomena

• Simple workpieces—a tool that allows users to create and manipulate structures,

so that they can be copied, printed, analyzed, or used

• Transformation—convert input to one or more outputs according to specific

requirements

Frame diagrams are just a convenient iconic way to represent the structure of a problem,
but don’t worry they are secondary to the real value of framing—a thinking tool to help
you gain understanding and focus your requirements and design. If you understand the
nature of the problem your software needs to address, you can ask relevant questions that
help shape and focus your work. You can use problem framing without adopting
Jackson’s formal approach.

Skills for the Agile Designer Tutorial Notes 4

In agile development there are a number of areas where framing is useful:
o To initially brainstorm what kinds of design challenges will predominate

and what parts of your software they are likely to impact. In all but the
simplest system there are usually multiple problems (and frames) that are
evident. Problem framing is a good way to get teammates acquainted with
upcoming design work and identify the potentially hard parts.

o As you discuss specific user stories with your customer. While I don’t
even mention problem frames to customers, I keep them in mind as we
discussing any issue. I use them as a mental tool to sharpen my thinking. If
you think about which problem frame is relevant (and what concerns there
are) you will find yourself asking questions that buy you more
information. And you can have more meaningful discussions with your
customer about what your software should or shouldn’t do.

o To assess additional work during a design spike. As you dig deeper into
implementation you need to rethink and occasionally reframe the
problems you are solving. A design spike happens whenever something is
more complex than you had thought. It could be that reframing the
problem might bring clarity.

When discussing what the system should do (and how things are) with you customer, it
can be useful to distinguish truths or facts (indicative qualities) from desired (optative)
behavior which is often imprecisely expressed as statements beginning with “shall” or
“should”.

Frame Concerns. Your goal is to design and build software that will behave
appropriately and solve the customer’s problem. Jackson advocates that you convince
yourself and your customer that your proposed software will tackle the right problem by
writing an appropriate set of descriptions about the problem domains. As a problem
framer, your central task is to investigate and describe problem domain properties. Each
class of frame has a different set of concerns that are typically addressed.

This is one area where Jackson and agile developers diverge on their approaches (and
value equation). While I may advocate for formal descriptions when they add value, I
find Jackson’s insistence on writing descriptions of various domain properties to be a
difficult task for most developers whether agile or not. I find these formalisms to be less
valuable than knowing what questions to ask and what issues are commonly encountered
in particular problem frames. So instead of going formal, I find myself asking probing
questions about a particular frame. Once I’ve framed a problem, I can start asking
questions. Or conversely, as I am asking questions I’m exploring what frames seem to fit
and push harder to gather appropriate requirements.

Following are some stylized questions I’ve come up (consider them proto-questions) to
ask about each type of frame as you are digging for understanding.

Skills for the Agile Designer Tutorial Notes 5

Questions to ask about a workpiece frame:

• What are the basic elements of the workpiece?

• Will it take different forms?

• Does it need to be shared? If so, how?

• Does it have an interesting lifecycle (or is it just something that is changed and
then treated as “static” after each change?

• Is it passed around between various users? Is there a workflow associated with a
workpiece?

• Should it persist? In what forms? Should it be published or printed?

Here are some questions to ask about required behavior problems:

• What external state must be controlled?

• How does your software find out whether its actions have had the intended effect?
Does it need to know for certain, or can it just react later (when the state of some
thing is not as expected)? What should happen when things get “out of synch”
between your software and the thing it is supposedly controlling?

• How and when does your software decide what actions to initiate?

• Is there a sequence to these actions? Do they depend on each other?

• Are there complex interactions with your software and the thing under its control?

• Can you view the connection between your software and the thing under control
as being direct (easier) or do you have to consider that it is connected to
something that transmits requests to the thing being controlled (and that this
connection can cause quirky, interesting behavior)? If so, then you may need to
understand the properties of this “connection domain” that stands between your
software and the thing being controlled?

Here are some questions to ask about transformation problems:

• What data do you start with?

• How will it be changed?

• Is the transformation complex?

• Will it always work? What should happen when you encounter errors in the
input?

• Is the transformation “lossy” or reversible?

• What speed, space, or time tradeoffs are there for performing any transformation?

Here are some questions to ask about commanded behavior problems (in truth these are
only the tip of the iceberg):

• What’s a good model of user-system interaction?

• What does the user need to know in order to “command” the system to do things?

• Do certain commands need to be inhibited based on the current state of the
system? Do they always make sense? Does a sequence of actions make sense?

• Is there a lag between issuing a command and the system performing the action?
Is that a problem?

• What happens when a command fails? How should users be involved in
“steering” the software when a command fails?

Skills for the Agile Designer Tutorial Notes 6

• Should certain commands be ignored (e.g. how many times do you need to press
the elevator button to call the elevator to your floor)?

• Do commands need to be reversible? logged? monitored or otherwise tracked?

Here are some questions to ask about information problems:

• What is the form of “observation” that the software must make about some event
or fact or thing? Is it difficult to ascertain when an event has occurred? (For
example, if your software is trying to record how many “vehicles” passed over
sensors place on the road it may be very difficult to characterize what constitutes
a vehicle—is it two axles passing within a time period, but what about
motorcycles, backed up slow traffic, etc., etc.)?

• How precise does the information need to be? Is the information “fuzzy”?

• How much computation does your software have to do to come to an observation?
(For example, consider assigning a “junk mail rating” to an email, based on
Bayesian analysis of the contents of the current message based on sample data
currently loaded into the junk mail box?

• Is the user only interested in current information? Or is historical information
important?

• Are there questions that the user may want to ask about the information? What are
they? How easy are they to accurately answer?

• Does your software need to construct a “model” of the phenomena being observed
in order to answer questions about it?

Skills for the Agile Designer Tutorial Notes 7

Tools for Seeing: A designer’s story

A designer’s story is a way for you to put your own spin on the system you are working
on and a substitute for XP’s elusive metaphor. Early on in any project I now write a
designer’s story. Originally, I used a design story as a private way to organize my
thoughts. Lately, I’ve been encouraging teams to individually write designer’s stories and
then share them at the beginning of a project. This has been a good way to voice
individual visions that can complement and be melded into a shared perspective. And it’s
a good ice-breaker for newly formed teams or in situations where some voices dominate
and others’ voices don’t get heard.

Here are four reasons fro writing a designer’s story:

• To restate any requirement from your design perspective

• To put your own spin on what’s important or hard or easy or similar to what
you’ve done before

• Boiling it down helps you grasp the problem

• To own the problem

Sharing your design stories with teammates allows you to:

• Have a voice

• Get others’ perspectives

• Develop collective thoughts

• Build mutual understanding and trust

Technique: Write a designer’s story.
The technique is very simple. Even those who only want to write code can bang out a
story if it is short, sweet, to the point, and only take 15 minutes. I tend to pump out lots of
words when I am put in front of a word processor. So I prefer to write my stories by
hand, especially when I want to share them with others. This makes them more personal
and shorter. They look rough and less polished which is a good thing.

A designer’s story should be short—two paragraphs or less is ideal. Write about your
application’s essential characteristics: the themes. Take about important ideas such as:

• What is your application supposed to do? How will it support its users? Is it
connection to a real world example that you can study or emulate? Is it similar to
what you have done before?

• What will make you application a success? What are the most challenging things
to design?

• What don’t you know that you’d like to.
Tell what you know and what you need to discover.
Designer’s stories are different than user stories or even descriptions of design objects.
They are your impressions of your software.

Here is an example of an online banking application I worked on with 10 others. It was a
system built for a consortium of South American banks. After reading the “spec” that the
technical architect wrote after he came back from South America, I sat down and wrote a

Skills for the Agile Designer Tutorial Notes 8

story to wrap my head around the system (after all I was the project leader and had to
“own” the problem and the ensuing design). I never shared this story with my teammates
and I was chatty as I wrote it in a word processor. I’ll only show an excerpt:

“This application provides internet access to banking services. It should be easily
configured to work for different banks. A critical element in the design is the
declaration of a common way to call in to different backend banking systems. We
will define a common set of banking transactions and a framework that will call
into banking-specific code that “plugs into” the standard layer implementing the
details. The rest of our software will only interface with the bank-independent
service layer…At the heart of our system is the ability to rapidly configure our
application to work for different backends and to put a different pretty face on
each. This includes customizing screen layouts, messages and banner text. The
online banking functions are fairly simple: customers register to use the online
banking services, then log in and access their accounts to make payments, view
account balances and transaction histories, and transfer funds…”

Technique: Identifying application themes. Although you could stop after merely
writing and sharing stories, I’ve found it useful to use them as a source of inspiration for
identifying key aspects or important areas of design focus. I substitute “theme
harvesting” when I cannot find an elusive metaphor to guide my design.

The themes I pulled from the online banking story were:

• Modeling online banking activities

• Representing common bank functions

• Configuring system behavior

• Access scarce resources (that was in the elided part of the story)

Themes can be broad or narrow depending on how you write your story. If you get into
nitty gritty details, your story may be centered on one particular aspect. If they are too
narrow, there may not be many objects to harvest, either. The broader a theme is, the
more work it takes to drill down to an appropriate level to identify candidate objects. The
idea is to hunt for an initial bunch of objects by mining a story’s themes.

Technique: Leveraging themes to identify key areas of activity and initial
candidates. Once you have identified major themes, you can use them (and your stories
or story cards) as one source of inspiration. Make educated guesses about the kinds of
inventions you’ll need in your design based on the nature of your application and the
things that are critical to it. I consider any candidates I harvest out of this brief dip into
the system as “seed corn” that starts up my design thinking.

To hunt for candidate objects, consider each of these perspectives for any theme:

• The work your system performs

• Things affected by or connection to your application (other software or physical
devices)

• Information that flows through your software

Skills for the Agile Designer Tutorial Notes 9

• Decision making, control and coordination activities

• Structures and groups of objects

• Representations of real-world things your application needs to know something
about

If you find that a particular perspective doesn’t yield any insights or ideas, move on.

For example, for the theme “online banking functions”, considering the work our system
performs led us to consider candidates that specifically supported performing financial
transactions and querying accounts. Lots of information flowed through our system to
accomplish banking functions—information about transactions, accounts, account
balances, transaction amounts, account history, payments….many of these ended up as
domain objects.

Identifying candidates that support each theme is a quick brainstorming activity.
Sometimes candidates readily pop out when you look at a perspective. Often different
themes and perspectives reiterate and reinforce certain candidates. This is good. It builds
confidence in a candidate’s relevance. At other times, ideas do not come so quickly and
you must stretch your thinking to come up with potential candidates. You won’t find all
important candidates in this first pass look through your system and your ideas will
certainly change—but it’s a start.

In a brainstorming session a team can work up a candidate list in a couple of hours.

Skills for the Agile Designer Tutorial Notes 10

Tools for Seeing/Shaping: Concept Forming

According to Richard Fobes in The Creative Problem Solver’s Toolbox, concept thinking
is “yet another alternative to thinking in words.” He suggests and I have found this true in
my own design experience, that “it can be useful to become aware of a promising abstract
concept before translating that abstract concept into something specific and concrete.”

Concepts may be eventually become mechanisms, algorithms, ways of doing something,
or eventually one or more “objects” in object design exist separately from words. In the
slide for this tutorial I’m showing a diagram that graphically says, “Meat is to a
vegetarian as what drugs are to an unnamed entity.” That entity surely can be described in
words “Someone who abstains from taking drugs for a variety of social, moral, or ethical
reasons”….but you don’t have to put a single word to that concept to understand it. (I
know, those clever folks among you will be trying to come up with a single word—
teetotaler, ex-junkie, …?, but that’s not the point.

It still can be a good design concept or idea, even if you can put a neat, tidy single word
name to it. Useful concepts you incorporate into design solutions can literally come from
anywhere. I think this is in the spirit of what Kent Beck has talked about as “finding” the
right metaphor. Point is, when you need to invent some new thing in your software, you
can get inspiration by recognizing similarities between challenging problems that have
been solved before and something that’s seemingly unrelated.

It’s interesting to note that some really creative ideas had their roots in making
connections between unrelated things—for example the idea for typewriter keys came
from watching a musician play an organ. If you can see similarities in what’s different,
then you can come up with a new concept.

To express unnamed concepts in words you can use examples or analogies.

For example, on one project, we envisioned a tool that “sliced” the right amount of
interest based on the loan’s amortization parameters. In fact, for want of a better word for
a while we called this process a “slicer”. And I’ve visualized account entries (and
balancing of transactions) as analogous to balls (entries and counter entries) bouncing
around in a pachinko machine of a network of accounts.

Skills for the Agile Designer Tutorial Notes 11

Tools for Seeing/Shaping: Object Role Stereotypes

Agile designers need to see and describe their ideas to others. If you all share the same
way of talking about your design inventions and objects, then you’ll improve how you
communicate. Role stereotypes, from Responsibility-Driven Design are a fundamental
way of seeing objects’ behaviors. A stereotype is a “purposeful oversimplification” that
you can use to identify the gist of an object’s behavior. Later on you can stereotype
objects or classes to characterize your implementation or somebody else’s design:

Here is a synopsis of six stereotypes:

• Information holder—knows and provides information

• Structurer—maintains relationships between objects and information about those
relationships

• Service provider—performs work and in general offers services

• Controller—makes decisions and closely directs others’ actions

• Coordinator—still makes decisions, but primarily delegates tasks to others and
keeps out of the way (there’s a spectrum of behaviors from overly-dominating
controller to laissez-fair coordinator)

• Interfacer—transforms information and requests between distinct parts of a
system. There are user interfacer objects, for example, and external interfacers
that may wrap other systems and objectify their services. But interfacers can be
go-betweens from layers or subsystems, too.

Technique: Stereotyping a candidate
Can an object have more than one stereotype? Sure. Each candidate fits at least one. They
often fit two. Especially if you are following the design principle of “making objects both
know and do things”. Common blends: service provider and information holder,
interfacer and service provider, structurer and information holder. Identify the major
stereotype you want to emphasize and check your initial ideas against your current
implementation from time to time.

Technique: Identifying a candidate’s purpose
I write a purpose statement on the unlined side of a CRC card. Not surprisingly, the
candidate’s purpose matches its stereotype. A candidate does and knows certain things.
Briefly, say what those things are. A pattern to follow:

An object is a type of thing that does or knows certain things. And then mention
one or two interesting facts about the object, perhaps a detail about what it does or
who it works with.

Here’s a concrete example of a purpose statement:

A FinancialTransaction represents a single accounting transaction performed by
our online banking application. Successful transactions result in updates to a
customer’s accounts (that was to distinguish financial transactions from Queries
that had no affect on account balances and didn’t require the same audit trail)

Skills for the Agile Designer Tutorial Notes 12

What do you do with a purpose statement? It can be recycled into a class comment, once
you believe a candidate will stick around.

Technique: Identifying responsibilities
Whether an object primarily “knows things”, “does things”, or “controls and decides” is
based on its role stereotype. Exploring an object’s character will lead to an initial set of
responsibilities. For example, information holders answer questions. They are responsible
for maintaining certain facts that support these questions. Rather than listing out all the
“attributes” of an object, or going into details about its variables, responsibilities are a
higher level view of an object. Instead of talking about a customer’s first name, last
name, surname, nickname, etc…. you can state this general responsibility as “knows
name and preferred ways of being addressed.

When designing a service provider as “what requests should it handle”? Then, turn
around and state these as general statements for “doing” or “performing” specific
services. Again, responsibilities can be written at a higher-level than a single method or
operation. For example, you can talk about “compares to other dates” instead of listing
out “>”, “<”, “<=”, etc.

Skills for the Agile Designer Tutorial Notes 13

Shaping Tool: Control Center Design

Deciding on and developing a consistent control style is one of the most important
decisions designers make. Agile designers can benefit from a vocabularly to describe
their design choices. A control center is a place where objects charged with controlling
and coordinating reside.

Developing a control style involves decisions about:

• How to control and coordinate application tasks

• Where to place responsibilities for making domain-specific decisions, and

• How to manage unusual expected conditions (the design of exception detection
and recovery)

While it is true that many frameworks make some of these decisions for you, there is
much room for judgment (and lots of options to explore). It isn’t just a matter of style.
Control design affects complexity and ease or difficulty of your design to change. Your
goal should be to develop a dominant, simple enough pattern for distributing the flow of
control and sequencing of actions among collaborating objects.

A control style can be centralized, delegated, or dispersed. But there is a continuum of
solutions. One design can be said to be more centralized or delegated than another.

If you adopt a centralized control style you place major decision-making responsibilities
in only a few objects—those stereotyped as controllers. The decisions these controllers
make can be simple or complex, but with more centralized control schemes, most objects
that are used by controllers tended to be devoid of any significant decision-making
capabilities. They do their job (or hold onto their information), but generally they are told
by the controller how to do so.

If you choose a delegated control style, you make a concerted effort to delegate decisions
to other objects. Decisions made by controlling objects will be limited to deciding what
should be done (and handling exceptions). Following this style, objects with control
responsibilities tend to be coordinators rather than control every action.

Choosing a dispersed control style means distributing decision-making across many
objects involved in a task. I haven’t worked on systems where I’ve consciously used this
style, although you could consider a pipes-and-filters architecture or chain-of-
responsibilities patterns to be a dispersed control style.

Nothing is inherently good about any particular style. They all have plusses, minuses, and
things to watch out for. But generally, I prefer a delegated control style as it seems to
give more life (and responsibilities) to objects outside a control center and avoids what
Martin Fowler calls “anemic domain models”. In a nutshell, here are characteristics of
each style.

Skills for the Agile Designer Tutorial Notes 14

Centralized control: Generally, one object (the controller) makes most of the important
decisions. Decisions may be delegated, but most often the controller figures out what to
do next. Tendencies to watch for with this strategy:

• Control logic getting overly complex

• Controllers becoming dependent upon information holders’ contents

• Objects becoming indirectly coupled as a result of the controller getting
information out of one object and stuffing it into another

• Changes rippling among controller and controlled objects

• The only interesting work (and programming effort) being done in the controller
Delegated control: A delegated style passes some of the decision making and much of
the action off to objects surrounding a control center. Each neighboring object has a
significant role to play:

• Coordinators tend to know about fewer objects than dominating controllers. They
are easier to test.

• Message between coordinators and the objects they collaborate tend to be higher
level requests (e.g. instead of setters and getters and minute calls, there are more
“Nike” requests—justDoIt()).

• Changes are typically more localized and simpler

• Easier to divide interesting work among a team

Dispersed control: A dispersed control style spreads decision making and action among
objects that individually do little, but collectively, their work adds up. This isn’t an
inherently bad strategy; but avoid these tendencies:

• Little or no value added by those receiving a message and merely delegating to
the next object in the chain

• Hardwiring dependencies between objects in long collaboration chains

Technique: Control Center Design
Don’t adopt the same control style everywhere. Develop a control style suited to each
situation:

• Adopt a centralized style when you want to localize decisions in one place

• Develop a delegated style when work can be assigned to specialized objects

• Several styles can and should co-exist in a complex application

• Look at how a particular framework (or accepted style of programming, say, how
a J2EE application “typically does things”) impacts the control styles you adopt
and whether it injects undue complexity into your design. For example, a style
that separates business rules from information holder objects results in 2x the
number of classes, but arguably makes it easier to unit test information holders.

• Assess whether your ideas about control style line up with other experts or pattern
authors

Control styles within subsystems vary widely. But as a general design rule, make
analogous parts of your design be predictable and understandable by making them work
in similar ways.

Skills for the Agile Designer Tutorial Notes 15

Tools for Shaping: Trust Regions

One way to get a handle on where collaborations might be streamlined and simplified is
to carve your software into regions where trusted communications occur. Generally,
objects located with the same trust region communicate collegially, although they still
encounter exceptions and errors as they do their work. Within a system there are several
cases to consider:

• Collaborations among objects that interface to the user and the rest of the system
(unless information it is verified before it is sent to the rest of the system, it
shouldn’t be trusted to be valid)

• Collaborations among objects within the system and objects that interface with
external systems

• Collaborations among objects outside a neighborhood or subsystem and objects
inside

• Collaborations among objects in different layers

• Collaboration among objects you design and objects designed by someone else

• Collaborations with library objects

When objects are in the same layer or neighborhood, they can be more trusting of their
collaborators. And they can assume that objects that use their services call on them
appropriately.

If a request is from untrusted or unknown sources, extra checks are typical before a
request is honored.

When an object uses a collaborator outside of its trust region, it may take extra
precautions, especially if it has responsibilities for making the system more reliable. It
may need to:

• Pass along a copy instead of sharing data

• Check on conditions after a request completes

• Employ alternate strategies when an exception is raised

Objects at the “edges” of a trust region typically take on more responsibility. For
example, an object receiving a request from an “outsider” may make initial checks, only
passing along know good requests or data to others.

Skills for the Agile Designer Tutorial Notes 16

Design Collaboration: Handling Criticism

OK, you have ideas and you want to get them out there. Criticism of any new or novel
idea is inevitable (whether justified or not). While it may be desirable to handle criticism
in a dispassionate way, I used to find myself getting caught up in defending my ideas
instead of learning from what others were saying. Sure, you’ve got to get buy in from
your team, and because you value the wisdom of your team you want to listen to and
respond appropriately to what they say. But not all comments should carry the same
weight nor should they be treated the same way.

Knowing what tactic to take when someone levels a question or comment at an idea is
invaluable to keeping your creative juices flowing, improving on your design ideas (and
knowing when to let a comment roll off your back).

Here’s a summary of the types of criticism you may receive and how you might react:

Valid Criticism- The person has pointed out a flaw or weakness in your idea. You can
quickly see that they’re right because they’ve included enough information in their
comments. In this case, the best action isn’t always to fold up your tent and give up your
idea. Before doing that, you might want to see how you could refine your idea to handle
the valid criticism. You also might want to ask them to give more details. Depending on
the complexity of the problem or the nature of the criticism you may want to take some
time to think about it before thinking or reacting with a counter solution. If the person is
willing to brainstorm with you about that, great. But not all valid criticisms have to be
immediately handled in real time. The most useful criticism to receive is specific valid
criticism.

Judgmental Criticism- If someone responds to your idea with “that won’t work” or “I
don’t like that solution” they’re being judgmental. They have some valid criticism (or
not), but until you get more information that allows you to determine whether they
revealed some flaw in your idea…you can’t do anything with a judgment. To counter
their judgment you need to ask, “What part won’t work?” or “Why don’t you like that?”
and then listen. You may find out that they have a valid criticism (or partially valid
criticism) or not. At the point you understand the specifics of their criticism, then you can
take action. If they can’t articulate why, well, there’s not much you can do except keep
asking them clarifying questions.

Invalid Criticism- If someone is giving you a clearly invalid criticism it may be because
1) they have a different perspective than you do, or 2) they don’t fully understand your
idea. Your job, should you choose to take it on (and this is an option), is to figure out how
to better communicate your idea. Maybe the person doesn’t “get it” because he needs to
see concrete examples, or maybe he needs to see a picture or rough sketch (instead of
some quickly hacked code), or maybe he needs to see some code (instead of a quickly
hacked picture), or maybe you need to write some tests to demonstrate…if you want to
communicate, you need to learn how to explain it in terms that the person can understand.
Not everyone has the same frame of reference as you do.

Skills for the Agile Designer Tutorial Notes 17

Personal Criticism- Instead of making a judgment about your idea, they’re stating a
judgment about you: “You’re stupid.” If this shakes your confidence, ouch! Personal
integrity attacks shouldn’t be tolerated and can really drag a team down. (It is outside the
scope of this tutorial on how to handle those cases. The best immediate reaction is to not
rise to the bait).

Aesthetic Criticism- Someone has just leveled a comment that indicates he’s coming
from a different perspective than you and finds your solution to “not fit with his idea of
good”. There are many acceptable different ways to solve a design problem, and which
one among several solutions may arguably be a toss-up. If you want to keep your idea
alive, there’s no need to cave in to aesthetic arguments. Just let them go. If you are
responsible for solving that part, then your aesthetics should be permitted and
encouraged. If aesthetic arguments persist, this usually it is a sign of egos clashing that
needs to be addressed before the team can really establish trust.

Compliments- Someone just said your idea was good. Or great. There’s not much you
can learn from those kind of compliments. In fact, I find if people say, “great” too often,
it may mean they are disinterested, too busy, haven’t thought things through, or just don’t
feel comfortable enough to level a constructive useful criticism because of how you react
(you have to be in tune with both them and the situation to make a call on why).

For another look at the types of criticism you may receive, read a recent IEEE Software
Design Column, Handling Design Criticism, I wrote. I added another type of criticism
that is common on agile teams (your design is too complex) and talk about how to
address that kind of criticism.You can find a copy on my website:
http://www.wirfs-brock.com/PDFs/handlingcriticism.pdf

Skills for the Agile Designer Tutorial Notes 18

Design Collaboration Tool: Argument Moves

A designer, especially one in an agile team, has to be a good communicator. Part of being
a good communicator means knowing how to tell a sound from an unsound argument,
and then knowing techniques for countering certain arguments. By the way,
argumentation isn’t the same as “shouting” or “having a fight”. When I’m talking about
argumentation, I’m talking about having a discussion on some topic. What’s important to
spot is when someone introduces faulty reasoning into an argument that momentarily
throws you off track. The following are definitions of moves in an argument drawn from
Thinking from A to Z by Nigel Warburton.

1. Red herring: Deliberate introduction of irrelevant topics into discussion. A red herring
is literally a dried fish that when dragged across a fox’s trail leads the hounds to chase the
wrong scent. Introducing a red herring particularly effective because it may not be
obvious at first that the trail is a false one, and red herrings are intrinsically interesting
and may appear to be relevant.

2. Correlation = cause confusion: Two events may be correlated (that is, when one is
found, the other is usually found) without there being a direct causal connection between
them. Nevertheless many people act as if any correlation provides evidence of a direct
cause and effect. Correlations may stem from coincidence rather than causal links.

3. Contraries: Two statements which cannot both be true, though they can both be false.
This is especially relevant to consider when examining claims about goodness. For
example, two vendors make claims to be “the best” at something, when in fact, neither
may be the best.

4. Proof by ignorance: Where lack of known evidence against a belief is taken as an
indication of it being true. For example, just because no one has provided conclusive
evidence that ghosts exist (or gremlins that cause bugs in our software) it would be
extremely rash to treat this as proof that they exist. Part of the temptation to believe that
proof by ignorance is real proof may stem from our legal system, where a defendant is
presumed innocent unless proven guilty.

Skills for the Agile Designer Tutorial Notes 19

5. Slippery slope argument: A type of argument which relies on the premise that if you
make a small move in a particular direction it will then be extremely difficult to prevent a
much more substantial move in the same direction. For example, the belief that if Oregon
permits doctors to issue life-ending prescriptions to the terminally ill, then euthanasia of
the aged or disabled without their consent will be even closer to happening. This form of
argument can have some force, but in order to judge it we need information about the
alleged inevitability of the descent; it is not enough to claim there is a slippery slope.
Typically, slippery slope arguments obscure the fact that in most cases we can decide
how far down a slope we want to go.

6. Pseudo-profundity: Uttering statements which appear deep, but are not. One of the
easiest ways to generate pseudo-profound statements is to speak in paradoxes. For
example: “Knowledge is just another form of ignorance. Shallowness is an important
kind of depth. Effective resource allocation is a matter of freeing up the computer.”
Another way to achieve pseudo-profundity is to repeat banal statements: “Computers
help people compute.” A third way of generating pseudo-profundity is to ask strings of
questions and leave them hanging in the air: “Will we ever have a source code
repository? Can we ever keep source code up to date?”

7. False dichotomy: A false dichotomy occurs when someone sets up choices so that it
appears there are only two possible conclusions when in fact there are further alternatives
not mentioned. Most of the time the phrase “if you’re not for us you must be against us”
is a false dichotomy. There is another possibility, that of being totally indifferent to the
idea, and yet another, that of being undecided.

8. Shifting the goal posts: Changing what is being argued for in mid-debate. This is a
common move to avoid criticism: as soon as an arguer sees a position becoming
untenable, he or she shifts the point of discussion to a related, but more easily defended
one.
:

Skills for the Agile Designer Tutorial Notes 20

9. Companion in guilt move: Demonstrating that the case in question is not unique. This
is usually intended to dilute the force of your argument by showing that demands of
consistency should lead you to apply the same principles to further cases, something that
you may not want to do. When encountering a the companion in guilt move, you may be
forced to be explicit about what you take to be unique to the topic in question.

10. Democratic fallacy: The unreliable method of reasoning which treats majority
opinion as revealed by voting as a source of truth and a reliable guide for action on every
question. There are many areas where taking a vote would be an extremely unreliable
way of discovering the most appropriate course of action, especially if the majority of
voters are largely ignorant of the matter.

What are some ideas you have on ways to effectively head off or counteract one of

these moves when appropriate?

Skills for the Agile Designer Tutorial Notes 21

Design Collaboration Technique: Sorting your design work

As a designer, you are expected to be a good problem solver. You can be prepared with a
toolkit full of design techniques and practices, but design is never predictable. There are
always surprises, additional complexity, and new twists. To keep on track, fit your
development tasks into these categories:

• Core design problems—the core is the core because without it there is no reason
to build the rest. You application won’t meet its users’ needs without a well-
designed core. Core design problems absolutely, positively must be dealt with.

• Revealing design problems—when pursued, these problems lead to a deep
understanding about your software. Just because some part of a design is tricky or
difficult, however, doesn’t make it revealing.

• The rest. Although not trivial (well, not all the time), the rest requires far less
creativity or inspiration.

Each task warrants a different approach and has a different rhythm to its solution. Core
problems must be solved. You’ve got to give them proper attention. Revealing problems
are squishy and hard to characterize or even know when they are solved. Each time you
look into a revealing problem it teaches you something. Revealing problems can’t be
solved in tidy ways—they must be tamed. But the rest can’t be ignored either. It is always
present and pressing. If you don’t budget your time, it can soak up all spare cycles.

Technique: Sort design tasks into buckets
At the start of each iteration or sprint, some teams sort their tasks into “core” and “the
rest”. This can help you pick tasks to work on from a backlog.

Depending on your design, you might nominate as core:

• Key domain objects

• Design of important control centers

• Key algorithms

• Mechanisms that increase reliability such as exception handling and recovery,
synchronization and connection with other systems, performance tuning,
caching,…

To decide whether something is core ask what are the consequences of “fudging” on that
part? Would the project fail or other parts of your design be severely compromised? Then
it’s core. When a team disagrees about whether certain tasks are core or not, dig deeper.
It may be that someone isn’t getting listened to (so in order to be heard they want to
elevate the importance of particular tasks that they find comfortable or familiar). Or, it
may be that you don’t listen to them (and they may have something to teach you).
Whether you classify something as “core” or “the rest”, you’ll still have to deal with it—
it’s just a matter of emphasis. In any iteration give design tasks the attention they deserve
and be clear on the team’s priorities.

Skills for the Agile Designer Tutorial Notes 22

At the end of a sprint you may want to sort through your work in a reflection and judge,
well, which tasks are soaking up time (but they aren’t core), which things are not getting
the attention they deserve, and what should be done about them.

You also may want to assign core tasks as “paired tasks” (e.g. requiring that two heads
look at core problems), but any of the “rest” may be done solo.

Skills for the Agile Designer Tutorial Notes 23

Resources

Problem Frames

Last year I wrote a paper with Paul Taylor and James Noble that was accepted at the
patterns conference (PLoP) that described Problem Frames in pattern form. You can
download a copy of this from my website.

Problem Frame Patterns, Rebecca Wirfs-Brock, Paul Taylor, and James Noble,
PLoP 2006
available at http://www.wirfs-brock.com/PDFs/ProblemFramePatterns.pdf

This is the definitive book by Jackson on Problem Frames. Be aware that it contains formal
descriptions of events and shared phenomena between domains, state diagrams, as well as a
definite slant towards software machinery interacting with physical domains in the real world. I
had to get over this bias before I could start framing software intensive systems’ frames.

Problem Frames: Analyzing and structuring software development problems, Michael
Jackson, Addison-Wesley, 2001

A website devoted to Problem Frames and the Problem Analysis approach. You can find links
there to articles and papers that have demonstrated the use of problem framing in requirements
analysis. But be aware. The general belief held by this site (and Jackson) is that Problem Frames
and XP practices don’t mix very well. I agree that if you take problem frames and equate them
with formal descriptions, they don’t mix well. But if you use framing as a questioning technique,
they do.

http://www.ferg.org/pfa/

Designer’s Stories, Role Stereotypes, CRC Cards, Trust Regions,
Control Styles, Design Problem Types

This book, in addition to my website resources page contains the latest on various techniques and
ways of seeing that are part of Responsibility-Driven design practices. In the book, we call them
“design stories” but I like “designer’s stories” name better. This is to avoid confusing designer’s
stories with user stories and story cards in XP development:

Object Design: Roles, Responsibilities, and Collaborations, Rebecca Wirfs-Brock and
Alan McKean, Addison-Wesley, 2003
http://www.wirfs-brock.com/Resources.html

Argument Moves

This handy little book is a lexicon of argument moves. It is easy to read, well written, and
only costs $12.21 on amazon.com.

Thinking from A to Z, Second Edition, Nigel Warburton, Routledge Taylor &
Francis Group, 2000

Creative Problem Solving

The Creative Problem Solver’s Toolbox, by Richard Fobes is an interesting read. I gleaned two
ideas from that book for this tutorial: that of concept formation and the other about how to
creatively handle criticism. If you are looking for other ideas on how to foster your own
creativity, build new ideas or ways of looking at problems, this book might provide you some
inspiration. To order the book, see www.galenpress.com

Skills for the Agile Designer Tutorial Notes 24

Data Collection Problem OOPSLA DesignFest™ Problem

Note: The following design problem description will be used in several exercises

we’ll do (the exact number depending on time permitted). This example is used with

permission by OOPSLA DesignFest folks who, by the way, publish past design fest

descriptions on their website (so that anyone can use them in classroom or training

settings)…I’ve made a few technology modifications to reflect a more modern

world.

Background
A local forest technology company, Forests ‘R’ Us, wants to build and sell a system for
gathering and analyzing weather information to predict forest fires and help with water
table management. The Arbor2100 will be sold to National Forests, Environment Canada,
the U.S. Forest Service, and large private landowners. It will consist of hardware and
software both locally in the owner’s office building and remotely in the forests.

The data sensors in the forest report at various intervals to our system computer via
satellite, packet radio, cell phone, or dedicated line. The system stores and analyzes the
information. The users run a wide variety of reports, browsers, historical trend analysis,
and future prediction algorithms over the data. Furthermore, given the inherently
geographic nature of the data, many of the reports incorporate maps.

The sensors, such as temperature, sunlight intensity, wind speed and direction, rainfall,
and so on, com in three basic types:

1. those that report on a regular basis (every minute, hour, day, month),
2. those that only report when a significant event occurs (a certain amount of rain
has fallen, the temperature rises above a threshold), and
3. those that must be queried.

Some sensors fall in multiple groups; for example, they report events but can also be
queried.

The sensors are produced by different manufacturers and return numeric values in a wide
variety of units (miles/hour, km/hour, lumens, watts, calories/day, etc.) and at widely
varying intervals and tolerances.

Additionally, not all data links are necessarily reliable, and yet the system must deal with
all these issues while presenting both a uniform and a detailed view of the data to the user
and his or her agent/analysis programs.

Desired Programs
Forests ‘R’ Us needs three categories of programs:

1. one to gather the sensor data as it arrives and store it in a database,
2. one to configure the field sensors, and

Skills for the Agile Designer Tutorial Notes 25

3. one to provide the user interface for browsing and analyzing the data.

Gathering the sensor data is relatively simple: the field sensors send information packets
to the central computer, and the central computer stores them. Each packet contains a
sensor ID, the time stamp, and the numeric sensor measurement. Some sensors may also
report GPS coordinates (more modern ones) while older equipment may not. For cost
reasons, many sensors are grouped into sensing units which send their data together (e.g.,
wind speed, direction, humidity, and temperature).

Configuring the field sensors consists of telling the software where each sensor is
physically located and what type of sensor it is. Additionally, many sensors have
different settings for measurement units and errors, reporting intervals, etc., so these too
are configured. Because this is a 7 x 24 system, sensors can be replaced at any time,
usually with an upgraded model and thus with different measurement units, error
tolerances, etc.

The browsing and analyzing programs are the heart of the system. The analysis
algorithms provide fire danger ratings, water table estimates, flash flood warnings, and so
on. The browsing interfaces provide detailed information, both tabular and geographic,
from the database. For example, the temperature maps similar to those seen on the
evening news are one of the possible graphical outputs. The user should be able to
navigate through the information in many ways including:

1. Map browsing multiple sensor types (temperature and rainfall) or multiple time
periods (temperature over the previous month).
2. Browsing the type and status of the sensors at any location or locations.
3. Browsing the reliability and age of the information for any sensor and/or
location.

To provide for future expansion, each of the predicted values available for display (e.g.
temperature, rainfall, fire danger, flash flood risk, etc.) should be computed via a plug-in
module. (Forests ‘R’ Us intends to sell additional modules for other risk factors, such as
earthquake prediction, in the future.)

Common Situations
The following are typical scenarios and conditions that the Arbor2000 software is
expected to handle.

Situation #1
There are sixteen sensor groups, each with three or four sensors, placed in the Rumbling
Range National Forest. The sensors are randomly chosen from rainfall, temperature,
sunlight, wind speed, wind direction, and snowpack sensors. The sensors report from
once a minute to once a day and in a variety of units.

Jane Arden, a National Park Service Ranger, wants to post the fire danger results outside
the Visitor Information Center, so she uses the Arbor2100 to examine the graphical view

Skills for the Agile Designer Tutorial Notes 26

of fire danger in the forest. Overall, the fire danger is “moderate” with one area of “low
danger + high uncertainty”. Looking into the uncertain area, she finds that a number of
the sensors have not reported for quite a while, leading to the uncertainty. Further
investigation reveals that none of the sensors in group 2 and 4 have reported, and further
checking shows that groups 2 and 4 are the only two which use the 555-3473 phone
modem. She dispatches a repair crew to figure out the problem with the phone line while
she posts the “moderate” fire danger sign in front of the visitor’s center. She also checks
the fire danger last year, and finds out that it was “low” over the entire forest, so she calls
the Rumbling Range Spokesman-Review and asks them to print a story about how the
fire danger is higher this year due to lower than expected rainfall.

Situation #2
The Rumbling Range National Forest buys two additional sensor arrays and hires a
helicopter crew to plant them in the forest. After they return with Global Positioning
System confirmation of the latitude and longitude of the sensors, Jane configures the
system to receive the new data. Fortunately, the Arbor2100 is clever enough to store the
unidentified incoming data until Jane had time to indicate where the arrays were located
and what sensor types they were.

Situation #3
Forests ‘R’ Us comes out with a new plug-in module that it generously gives away free
over the Internet. This new module computes trend analysis of the sunlight sensors to
detect premature failure. Ms. Arden downloads and runs the module against the
Rumbling Range database, only to discover that sensor #372 on Bald Mountain shows
signs of age—its measured output has slowly declined over the past four years. Jane
decides to hike to the top of the mountain and replace the sensor.

When she reaches the top, she discovers that the problem is not the sensor, but
rather a small pine tree shielding the sensor from the sun. Unwilling to cut down
the only tree on Bald Mountain, she relocates the sunlight sensor 100 meters to
the south. When she returns to base, she updates the database with the sensor’s
new location.

