
Skills for the Agile 
Designer

Presented at Software Development 2004

Rebecca Wirfs-Brock
Wirfs-Brock Associates

rebecca@wirfs-brock.com



Agenda

� What is agility?
� Tools for seeing
� Tools for shaping solutions
� Agility and Design Rhythms



Agility Means Finding a 
Balance

Those who pursue agile development practices, “seek 
to restore credibility to the concept of methodology. 
We want to restore a balance. We accept modeling, 
but not in order to file some diagram in a dusty 
corporate repository. We accept documentation, but 
not hundreds of pages of never-maintained and 
rarely used tomes. We plan, but recognize the limits 
of planning in a turbulent environment.” —Jim 
Highsmith



Disturbing Beliefs and Trends
Some mistakenly equate agility with following these 

practices:
� Problem solving must occur in two week increments.
� Only talking informally about code “smells” instead of 

having deeper design discussions.
� Equating coding with designing and thinking the only way 

to improve a design is to refactor the code.
� Doing whatever works without regard to process.
� Equating Formal = Bad & Informal = Good.
� Believing that upfront design and design documentation 

add no value.



What Fueled these Trends
� Analysis paralysis.
� Endless high-level discussions with little regard 

for implementation concerns.
� Not appreciating the value of code. Code 

restructuring does add value. Design doesn’t 
stop when coding starts. Cleaning up code helps 
preserve design integrity.

� Not acknowledging that being formal or precise 
takes time and isn’t always needed.

� Piles of models. No useful results. Many design 
artifacts that are never read.

� Hope that if extra stuff is omitted, we’ll get to 
market sooner.



Tools for Seeing



How Do You Learn to Be An 
Agile Designer?

� Practice seeing the nature of the design 
problem.

� Learn fundamental strategies for producing 
acceptable solutions.

� Use patterns and good design techniques. 
Explore and study good designs.

� Examine your results. Maintain a healthy 
curiosity.



How Responsibility-Driven 
Designers See

An object supports one or more roles. A class 
implements one or more roles. Roles can be 
stereotyped. Stereotypes are purposeful 
simplifications:
� Information holder - knows and provides information
� Structurer - maintains relationships between objects and 

information about those relationships
� Service provider - performs work and, in general, offers 

services
� Coordinator - reacts to events by delegating tasks to 

others
� Controller - makes decisions and closely directs others’

actions
� Interfacer - transforms information and requests between 

parts of a system



The Generative Power of Role 
Stereotypes

� Pushing on an object’s stereotype(s) leads to 
initial responsibilities and collaborators.
� Ask of a service provider, “what requests should it 

handle?” Turn around and state these as 
responsibilities for “doing” or “performing” specific 
services.

� What duties does an interfacer have for translating 
information and requests from one part of the system to 
another (and translating between different parts of an 
application)?

� What important events does a controller handle and 
what other objects does it direct?

� Blending stereotypes makes objects smarter.



How Peter Coad Sees…

����������	�
���
	�������	��	�	�
��

		�
�������
��
�	��
��
��	��		��
��

�		��
�����������������	�������	����

�	�����

�	����������	��������	���	��	�	�
���

����������
�����
����������		�
����

��
��
���������		��	�
�
�

��		��	�
�
�������	����	���
	�����	��

��
�������
�����������	�������

��
������

 ��	����	�����
�������	��	�	�
����

�	�����
����������	����������
����!��
�"������#�$%&�'
	�	�
��	������(�����

)���	
��	���'
	��	������	�

*�����*"'	�
+�,-��,..,



How Ivar Jacobson Classifies

�����
�����

������������

��	�
�
���

)��	�
�
����������	+�*
���	�

��
����
��
	�������
���+

/���������������
	�	�
��	�������0�1	�
��������������
����

2$�

)����
������1	�
����
����

��
	���
������	
�		��������	�
���

�����1	�
�+�*
�������������	������


������	����	+

)������������1	�
���	�����
�	

�	����	������
�	����
	�+�*


��
	���
����
������3���������

��1	�
�+



Seeing Should Generate 
Design Ideas
Classification is useful but not an end unto itself…role 

stereotypes, “seeing in color”, and finding a role in a 
pattern help you generate design ideas:
� "Black-and-white conveys basic information. Color reaches 

out and grabs you.” –Peter Coad
� “…archetype[s] have more or less the same sort of 

attributes and operations and tend to interact with other 
archetypes in generally predictable ways. These patterns 
of characteristics and behavior can help us very … quickly 
identify attributes and operations… and give us increased 
confidence in the structure of our code.” –Stephen Palmer



Seeing at Different Abstraction 
Levels

View objects and behavior at different levels:
� At the conceptual level, an object is a set of 

responsibilities
� At the specification level, an object is a set of 

methods that can be invoked by other objects or 
itself

� At the implementation level, an object is code and 
data



Pull Up a Level
Reverse engineer a class into responsibilities…

public final void set(int year, int month, int date)

This method sets the values of the year, month, and day-of-the-month fields of this 
Calendar.

public final void set(int year, int month, int date, int hour, int minute) This method sets the 
values of the year, month, day-of-the-month, hour, and minute fields of this Calendar.

���������	
�����������	���
����	�� �	�����	�
�����	��������	�� �	������	�
����	�

This method sets the values of the year, month, day-of-the-month, hour, minute, and second 
fields of this Calendar.

public void setFirstDayofWeek(int value)

This method sets the day that is considered the beginning of the week for this Calendar. This 
value should be determined by the Locale of this Calendar. For example, the first day of the 
week in the United States is Sunday; in France it's Monday.

public void setLenient(boolean lenient)

This method sets the leniency of this Calendar. A value of false specifies that the Calendar 
throws exceptions when questionable data is passed to it, while a value of true indicates that the 
Calendar makes its best guess to interpret questionable data. For example, if the Calendar is 
being lenient, a date such as March 135, 1997 is interpreted as the 135th day after March 1, 
1997.

public void setMinimalDaysInFirstWeek(int value)

This method sets the minimum number of days in the first week of the year. For example, a 
value of 7 indicates the first week of the year must be a full week, while a value of 1 indicates 
the first week of the year can contain a single day. This value should be determined by the 
Locale of this Calendar.

public final void setTime(Date date)

This method sets the point in time that is represented by this

Calendar.

public void setTimeZone(TimeZone value)

This method is used to set the time zone of this Calendar.

The Java Calendar class

Internally, Calendar keeps track of a point in time in two ways. First, a “raw” value is 
maintained, which is simply a count of milliseconds since midnight, January 1, 1970 GMT, or, 
in other words, a Date object. Second, the calendar keeps track of a number of fields, which are 
the values that are specific to the Calendar type. These are values such as day of the week, day 
of the month, and month. The raw millisecond value can be calculated from the field values, or 
vice versa.

Calendar also defines a number of symbolic constants. They represent either fields or values. 
For example, MONTH is a field constant. It can be passed to get() and set() to retrieve and 
adjust the month. AUGUST, on the other hand, represents a particular month value. Calling 
get(Calendar.MONTH) could return Calendar.AUGUST.

Calendar Methods

public int getFirstDayOfWeek()

This method returns the day that is considered the beginning of the week for this Calendar. 
This value is determined by the Locale of this Calendar. For example, the first day of the week 
in the United States is Sunday, while in France it is Monday.

public abstract int getGreatestMinimum(int field)

This method returns the highest minimum value for the given time field, if the field has a 
range of minimum values. If the field does not have a range of minimum values, this method is 
equivalent to getMinimum().

public abstract int getLeastMaximum(int field)

This method returns the lowest maximum value for the given time field, if the field has a 
range of maximum values. If the field does not have a range of maximum values, this method is 
equivalent to getMaximum(). For example, for a GregorianCalendar, the lowest maximum 
value of DATE_OF_MONTH is 28.

public abstract int getMaximum(int field)

This method returns the maximum value for the given time field. For example, for a 
GregorianCalendar, the maximum value of DATE_OF_MONTH is 31.



To Get The General Picture: 
Calendar Revealed



Tools for Shaping 
Solutions



Traits of An Agile Designer
� Understands the nature of the problem 

and reflects it in the solution
� Doesn’t fudge on complexity
� Doesn’t blindly apply design patterns as 

“best solutions”
� Uses patterns as archetypes
� Explores alternatives
� Develops a consistent control style
� Has a sense of aesthetics and 

compromises them when time gets tight



Frame Your Design Problems

Software systems can be thought of a set of 
related and interconnected sub-
problems—and as a consequence may be 
comprised of several different problem 
frames. Each different class of problem 
has different concerns and design issues.
“When you turn on a light, you probably think of 

your movement of the control button and the 
illumination of the light as a single event. In 
fact, of course, something more complex is 
going on.”
— Michael Jackson



5 Problem Frames

� Control Problems - controlling state changes of external 
devices or machinery.

� Connection Problems - receiving or transmitting 
information indirectly through a connection.

� Information Display Problems - presenting information in 
response to queries about things and events known by 
your software.

� Workpiece Problems - allows users to create and 
manipulate computer-processable objects or “workpieces.”
Just like a lathe is a tool for woodworking, software help 
users create documents, compile programs, compose 
music, perform calculations, manipulate images…. 

� Transformation Problems - converting input to one or 
more output formats. 



How a Connection Problem 
Affects Your Design

Basic strategies for dealing with connection 
issues:
� Consider that your software is really interacting 

with “something in the middle” that is connected to 
“something out there” that doesn’t always work.

� Design your software to react in the face of 
potential time-delays, conflicting states between 
“connected” system as well as faulty connections.



Problem Frames and Design 
Focus
� The ideal: Jackson advocates fully 

understanding the nature of the problems 
your software is trying to solve before you 
start design.

� The agile reality: The world is full of 
imperfect knowledge and time constraints. 
Quickly characterize what problem frames 
your design must address… realize that 
more may crop up as you work on your 
design.



A Case Study: 
Design for 

“Build A Message”
Use Case



“Build A Message” Use Case
������������	������������	������������	������������	���� 
�	�����	���	��������	
�	�����	���	��������	
�	�����	���	��������	
�	�����	���	��������	����

�����������	�����	�������������������	�����	�������������������	�����	�������������������	�����	��������
	�������	�������	�������	�����������

����

�����������������		���
�����������������		���
�����������������		���
�����������������		�������

��������������������������������������������������������������������������������

����
����
����
�����������������������	�����������������������������	�����������������������������	�����������������������������	������
����������������������������
����
����
�����������������������	�����������������������������	�����������������������������	�����������������������������	������
��������������������
����
����
���� ����
����
�����������������������	�����������������������������	�����������������������������	�����������������������������	������
	�������	�������	�������	�����������

���������� ������������ ������������ ������������ ������	���������	���������	���������	�����
!��������������	������������!��������������	������������!��������������	������������!��������������	������������
	����"	����"	����"	����"����
�����
����������������
����������������
����������������
���������������
������������������������������������������������������������������������������������������������
����
�����
�����	���������
�����	���������
�����	���������
�����	��������
������������������������������������������������������������������������������������������������
	�������	�������	�������	�����������
�����
������������������
������������������
������������������
�����������������
����
�����
�����	������������
�����	������������
�����	������������
�����	�����������
���������	���������������������������	���������������������������	���������������������������	������������������
�		����		����		����		�������
�����
���������	������������
���������	������������
���������	������������
���������	�����������

#����������	��#����������	��#����������	��#����������	��		���		���		���		�������

���� �����$����		�����������$����		�����������$����		�����������$����		����������
�����!	���������	����	�	"�����!	���������	����	�	"�����!	���������	����	�	"�����!	���������	����	�	"����

��������	�
��

	����	����

�		�	���

������	����	��
��

���������
	



Presentation
Layer

Application
Layer

Domain Services
Layer

Technical Services
Layer

Controller

Centralized Use Case Control



Build a Message

MessageBuilder

A

Timer

Selector

Alphabet

Vocabulary

Message

SentenceDictionary
UserProfile

Word

Presenter



Centralizing Control
� Many decisions make the controller 

difficult to manage …
� What does it do when a user selects 

something? It could be a letter, a word, a 
space, a sentence, a command, a 
destination.

� When does it present each of the above to 
the user? It depends on the state of the 
message, what the user did last, and on 
the state of the software.



Controlling the Guessing

MessageBuilder

A

Timer

Selector

Alphabet

Vocabulary

Message

SentenceDictionary
UserProfile

Word

Presenter



Handling the Selections

MessageBuilder

A

Timer

Selector

Alphabet

Vocabulary

Message

SentenceDictionary
UserProfile

Word

Presenter



Delegating Control

� Factors decision-making into helper objects.
� Replaces complex control with simpler 

coordination and delegation.
� Distributes focused logic into classes that 

implement singular, smaller roles.
� More classes and objects.



aClient aCoordinator anInfoHolder

aService
Provider

aService
Provider

aService
Provider

aState

aState

Controller = Coordinator + 
State

aClient aController
anInfoHolder

aService
Provider

aService
Provider

aService
Provider



Applying the State Pattern to
Simplify the Controller

/�����
�
	�

��1	�
�
��	��

�	����������
��

�������������

		�
��

�	�	��
	��
���
�

���
�	�

%	����	 ����	�

/�����
�
	�

��1	�
�
��	��

�	����������
��

�������������

		�
��

�	�	��
	��
���
�

���
�	�

%	����	 ����	�



MessageBuilder

A

Timer

Selector

Alphabet

Vocabulary

Message

SentenceDictionary
UserProfile

Word

States timeout

selection

handleTimeout()
handleSelection()

returns next state

Applying the State Pattern

(����	4�
�����

�
��������
	�������

5���
�����	�
	�6+�

(����	����������


�	����
����

�	�
	�����������

�
�	����1	�
��

���	�

�	����������
�7

(����	4�
�����

�
��������
	�������

5���
�����	�
	�6+�

(����	����������


�	����
����

�	�
	�����������

�
�	����1	�
��

���	�

�	����������
�7



Inventing a common role—
a Guess

� In our first attempt, Letters, Words and 
Sentences didn’t have many responsibilities. 
They held the item that the user could select and 
knew their spoken representation.

� But…if each of these objects (sharing the 
common role of a Guess) were responsible for 
directly adding themselves to a Message, type-
based decisions could be eliminated! 

� Message still knows about different kinds of 
Guesses, but collaboration between the 
MessageBuilder and Guesses are simplified.



Delegating Message 
Construction
to Guess—our preferred design

handleSelection(Guess)

addTo(Message)

addLetter(Letter)

:Selector :Message
Builder

/Guess
:Letter :Message

Letters, Words,
Sentences,
and commands
can all be guesses

Message is
responsible for
handling specific
Guesses by name



From Controlling Everything …

Alphabet
VocabularyMessage

Dictionaries collaborate with
the MessageBuilder

SentenceDictionary

UserProfile

MessageBuilder decides what
to add to the message

MessageBuilder decides what dictionaries to
access and which items to present



To Delegating Responsibilities

Letters, Words, and Sentences
know how to add themselves to

a Message

Alphabet

Guesser

Vocabulary

/Guess

Guesser is responsible for
accessing dictionaries and

making guesses

MessageBuilder coordinates activities

Dictionaries collaborate with
the Guesser

SentenceDictionary

UserProfile

Message



Further Delegation
a new invention

� A Guesser assumes responsibilities for 
guessing that were previously performed 
by an all controlling MessageBuilder.

� The Guesser hides the mechanisms of 
guessing, providing a black box for 
developing the guessing machinery.

� Since guessing is a complex task, maybe 
the Guesser can delegate some of its 
responsibilities, too.



The Blackboard Architecture
for “best guess” solutions

Blackboard

Knowledge
Source

Control

Knowledge
Source

Knowledge
Source

Knowledge
Source

%�������
���#�8	����9
����
	����
�	���������������	�
��+�0����

��
	��
�	���	�������	����5��	��6 �����	������
�
��
�	��	����	+

��	��	�

:��
������	�

%	����	



SentenceDictionary

Vocabulary
Guesser

Alphabet

bidOn(message)

Message

getContents()

evaluate()

bidValue

chooseHighestBid()

getGuess(message)

guess

Control

Knowledge
Sources

Blackboard



Trust Regions

� Carve your software into regions where 
“trusted communications” occur

� Objects in the same trust region 
communicate collegially, although they 
may still encounter exceptions and errors

UserLoginController Passw ordChecker

isValid(password)

I am sending you a request at the right
time with the right information

I assume that I don’t have to check to see
that you have set up things properly for
me to do my job



Collaboration Cases To 
Consider

� Collaborations between objects…
� that interface to the user and the rest of the 

system
� inside your software and objects that interface to 

external systems
� in different layers or subsystems
� you design and objects designed by someone 

else



Using An Untrusted 
Collaborator

� Extra precautions may need to be taken. 
Especially if the client is responsible for 
making collaborations more reliable
� Pass along a copy instead of sharing data
� Check on conditions after the request completes
� Employ alternate strategies when a request fails



Implications of Trust

� In Speak for Me, all objects in the 
application “core” are within the same trust 
region

� Objects in the application control and 
domain layers assume trusted 
communications between each other

� Objects at the “edges”—within the user 
interface and in the technical services 
layers—make sure outgoing requests are 
honored and incoming requests are valid



“Edge” Objects Take On Added 
Responsibilities

MessageBuilder Timer

Selector Presenter

Message

Guess

Guesser

Guess
Dictionaries

Controls pacing

guess letters, words, and sentences

coordinates guessing

knows contents and delivers itself

adds itself when selected

signal when user selects voice or display the guess

coordinate everything

:	�����	�

	�	�������

:	�����	�

	�	�������

(��������
	��

��
��%���	��


��
������	��

	4�	�
����

(��������
	��

��
��%���	��


��
������	��

	4�	�
����

)����	��

5
���
	�6

�	;�	�
�

)����	��

5
���
	�6

�	;�	�
�

)����	��

5
���
	�6

�	;�	�
�

)����	��

5
���
	�6

�	;�	�
�



Agility and Design 
Rhythms

����	����%��������	����������� ����&�	��

	���� ����	������	�����'���	���	

revising the plan

dead end

Success!



Design Isn’t All Alike
� Software design problems vary:

� Core design problems include those fundamental 
aspects of your design that are essential to your 
design’s success (no not every part can be 
fundamental).

� Revealing design problems when pursued, lead to a 
fundamentally new, deeper understanding. 

� The rest. While not trivial, the rest requires hard work, 
but far less creativity or inspiration.

� Each type of design problem warrants a different 
approach and has different rhythms to solving it.



Core Design Problems

Depending on your design requirements, you might 
nominate for the core:
� Mechanisms that increase reliability. These could 

include the design of exception handling and recovery, 
or connecting and synchronizing with other systems

� Mechanisms that increase performance
� Key objects in a domain model
� The design of important control centers
� Algorithms
� Mechanisms that enable specific areas of your software 

to adapt and flex
� To changing environmental conditions
� To evolving requirements



How Do You Decide What’s Core?

� What are the consequences of fudging on that 
part of the design?
� Would the project fail or other parts of your design be 

severely impacted? Then it’s core.
� When people have fundamentally different 

expectations, dig deeper. Someone may know 
something that others have ignored.

� Whether you classify something as part of the 
core or not, you’ll still have to deal with it—it’s a 
matter of emphasis.
� Give design tasks the attention they deserve and be 

clear on your priorities.



Sorting Out The Rest From The Core

� It’s easy to get caught up in a debate of what’s core and 
what’s in the rest. Don’t.

� If you know that something is just basic design work 
that has to be there, nothing special, nothing fancy, it’s 
probably part of the rest.
� What about exception handling? Why isn’t the 90% of 

your design work that supports the unhappy path 
scenarios a core design task? Well, depending on your 
project, they might be.

� Core problems should be given more attention. That 
doesn’t mean the rest gets slighted. The rest just isn’t at 
the top of your list.



Revealing Design Problems

� Sometimes you discover a core problem to be 
revealing, too.

� What distinguishes revealing problems is their 
degree of difficulty and the element of surprise, 
discovery and invention.

� Revealing design problems are always hard. 
They may be hard because…
� Coming up with a solution is difficult—even though 

implementing it may be straightforward. 
� They may not have a simple, elegant solution.
� They may not be solvable in a general fashion—each 

maddening detail may have to be tamed, one at a time. 
� They may require you to invent things that you have 

never before imagined.



Example: Redefining the Problem
� Often, redefining a problem doesn’t 

simplify; it just opens up new possibilities.
� In Java, C#, or Smalltalk, memory is 

automatically recovered from objects that are 
no longer used. Early implementations used 
reference counting to manage memory. This 
technique is simple, but very expensive. To 
speed up garbage collection algorithms, 
implementers of the languages redefined the 
problem—and now use sophisticated 
scavenging algorithms.



Some Revealing Problems Are
Really Hard

Wicked problem characteristics:
� They are hard to state concisely
� They can be symptoms of other problems
� Solutions are open to value judgments
� Solutions can be fuzzy or hard to describe
� There is no obvious way to verify that a 

proposed solution fixes the problem
� Their solutions have unforeseen 

consequences

. . . they are “tamed” not “solved”.



Observations On Solving Wicked 
Problems

� To solve, you need to make connections 
between the problem and your past experiences 
and then experiment, extrapolate, combine 
partial solutions, and think. 

� They either demand your undivided attention or 
lurk in your background thoughts.

� You may not get it right the first, second, or third 
try. They are hard to schedule. 

� They cannot be solved by committee, although a 
proposed solution can be tuned by a group.



Agility Recognizes Design 
Values
� Agile designers acknowledge that:

� Not all problems are alike. No single solution or 
approach fits all situations.

� Agility isn’t a single event; it’s an ongoing process. 
Learn as you do.

� Modeling should have a specific purpose. 
Documentation should add value.

� Articulate your design values and then focus on 
what’s important.

� Sharpen your seeing, shaping, and problem 
solving skills.



Resources

� Read more about 
seeing and thinking, 
wicked problems, and 
object design 
strategies in our new 
book 
Object Design: Roles, 

Responsibilities and 
Collaborations,
Rebecca Wirfs-Brock 
and Alan McKean, 
Addison-Wesley, 2003 

� www.wirfs-brock.com
for articles & 
resources


