
Rendering Patterns for Adaptive Object-Models
León Welicki

ONO (Cableuropa S.A.)
Basauri, 7-9

28023, Madrid, Spain
+34 637 879 258

lwelicki@acm.org

Joseph W. Yoder
The Refactory, Inc.

7 Florida Drive
Urbana, Illinois USA 61801

1-217-344-4847
joe@refactory.com

Rebecca Wirfs-Brock
Wirfs-Brock Associates
24003 S.W. Baker Road
Sherwood, Oregon USA

1-503-625-9529
rebecca@wirfs-brock.com

ABSTRACT
An Adaptive Object-Model is an instance-based software system
that represents domain-specific classes, attributes, relationships,
and behavior using metadata.. This paper presents three patterns
for visually presenting and manipulating AOM domain entity
objects.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented
Programming; D.2.2 [Design Tools and Techniques]: Object-
oriented design methods, User Interfaces; D.2.11 [Software
Architectures]: Patterns

General Terms
Design

Keywords
Visual Rendering, Adaptive Object-Models, Patterns

1. INTRODUCTION
An Adaptive Object-Model is an instance-based software system
that represents domain-specific classes, attributes, relationships,
and behavior using metadata [19, 20]. Typically in an Adaptive
Object-Model, metadata descriptions are stored in a database and
interpreted at runtime. This is similar to a UML Virtual Machine
described by [12]. The object model is adaptable and tools are
often provided with AOM systems that allow end users or domain
experts to edit and change these metadata descriptions. So when
changing requirements cause the domain model to be updated, end
users edit metadata. These changes can immediately be reflected
in the running system without any software program changes.

In contrast, in a typical object-oriented program, classes are
designed to represent domain entities and their attributes. A
change in requirements that results in changes to the domain
model causes developers to modify and/or add new classes,
leading to a new application version.

Adaptive Object-Model architectures are typically made up of
several interrelated patterns. TYPE OBJECT [8] is used to define
a domain entity. An entity has attributes, which are represented

using the PROPERTY pattern [5]. The TYPE OBJECT pattern is
used again to define the legal types of attributes, called
PropertyTypes. Thus Entity, EntityType, Property, and
PropertyType are the core set of constructs used to represent
Adaptive Object-Models [13].

An Adaptive Object-Model expresses relationships between
entities using metadata. Any rules and constraints governing these
relationships can also be described with metadata. In contrast,
with traditional object-oriented programs, relationships between
domain entity objects are implemented via a direct reference or an
appropriate structuring object (e.g. hash table or a collection).
Constraints on relationships are implemented by methods in
related classes.

In an Adaptive Object-Model, the STRATEGY pattern [6] can be
used to define the behavior of EntityTypes. If behavior is
complex, instead of using Strategies, an interpreted rule-based
language can be defined. In contrast, with a typical object-
oriented programming language implementation of an entity,
simple behavior is typically implemented in class methods.

The above core AOM patterns have been described previously.
One area that has not been described are how to implement the
user interface in an AOM system. Since an AOM is instance
based rather than class based and has metadata which drives
domain entity behavior, interpretation of the entities needs to be
considered when constructing a user interface. This paper
describes patterns for dynamically building the GUI layer which
supports the modification and visualization of AOM domain
objects.

2. TOWARDS AN ADAPTIVE OBJECT-
MODEL PATTERN LANGUAGE
Adaptive Object-Model architectures are usually made up of
several smaller patterns. In the existing literature they are
documented by the patterns TYPE OBJECT, ATTRIBUTES,
PROPERTY LIST, TYPE SQUARE, ACCOUNTABILITY
(Entity-Relationship), STRATEGY, RULE OBJECTS,
COMPOSITE, BUILDER, and INTERPRETER.

Besides these patterns, less widely-known patterns are often used
in AOM systems. In the AOM current literature descriptions of
these other patterns are scattered among a number of different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLoP'07, September 5-8, Monticello, IL, U.S.A..
Copyright 2007 Hillside Group.

Figure 1 - AOM Pattern Language Map

patterns papers with different templates and styles. Additionally,
not all these papers work through similar examples. Some patterns
have not been updated to reflect implementation trends, new
programming language environments or development platforms.
We ultimately see the patterns described in this paper as part of a
more complete pattern language for building Adaptive Object-
Models. Patterns in this pattern language are organized into these
categories:

Core: patterns that represent the basic implementation of
AOM entities, their behavior and relationships. They are the
ones that govern this architectural style.

Process: patterns that describe how to create and evolve
AOM systems. They establish guidelines and advice on when
and where the use of meta-description based approaches is
warranted.

Presentation: patterns which describe how to visually
represent and manipulate objects representing domain
entities, their attributes and relationships to other objects in
an AOM.

Creational: patterns for creating instances of AOMs

Behavioral: patterns for dynamically adding, removing or
modifying AOM system behavior.

Miscellaneous: patterns for instrumentation, usage, and
version control of AOMs. These patterns also provide
mechanisms which support non-functional requirements such
as performance or auditing.

Figure 1 from [19] is a map of our AOM pattern language as
presented at the OOPSLA 2007 Poster Session.

2.1 THE AOM VISUALIZATION LAYER
In the existing literature [5, 14, 20, 21, 22], the core architecture
of AOMs is represented by two different levels:

Knowledge Level: which defines the general rules that
govern the behavior [4] and the structure of domain
entities (TypeObjects, PropertyTypes).

Operational Level: which contains instances of the
domain (in our case, instances of entities and properties
for representing values) whose behavior is governed by
associated objects in the knowledge level [4]

Because of the way objects are represented in the operational
level, a specialized rendering layer is almost always needed. It
consists of “ instructions” for how to construct the UI which
presents AOM domain objects for viewing and modification. This
visualization behavior is embodied in rendering components
which can be composed at runtime (from configuration
information) and combined dynamically (and adaptively) to
generate complex views of AOM domain objects. Separating this
behavior into a rendering layer allows us to abstract and
encapsulate presentation issues [17].

3. AOM RENDERING PATTERNS
This paper contains the following patterns:
Property Renderer: describes how to render the UI code for
instances of specific properties using their data.

Entity View: describes the coordination of several property
renderers to produce more complex UI fragments for an entity
(rendered from descriptive data from the type objects).
Entity-Group View: given a set of entities, renders UI code
(including layout issues). Several different views can exist for the
same set of entities and they can be linked dynamically at run-
time (useful to present a set of entities).
The patterns presented in this paper are interrelated. While they
can be used individually, more commonly they are used in

combination. Figure 2 shows the relationships between these
rendering patterns. The most fine-grained pattern is PROPERTY
RENDERER, which renders individual property instances. It is
connected with all the other patterns: an ENTITY VIEW
coordinates several PROPERTY RENDERERS to generate a
fragment of a UI for an entity, and the ENTITY-GROUP VIEW
uses these elements to render a set of entities. The ENTITY-
GROUP VIEW is coarser-grained, since it generates a coherent
UI for related entities. To implement its behavior it can either use
the other patterns or be hand coded.
Patterns presented in this paper discuss presentation concerns
which arise when working with AOMs. Therefore, any developer
working with this kind of systems (mainly TYPE OBJECT,
PROPERTIES [8], and TYPE-SQUARE [20] or DYNAMIC
OBJECT MODEL [13] based architectures) can benefit from
using these patterns to visually represent and manipulate AOMs.
These rendering patterns may apply also to other rendering
scenarios, but our main focus is on AOM-based architectures. We
describe these patterns in that context. Use of these patterns in
other contexts is outside the scope of this paper.
If you are unfamiliar with Adaptive Object-Model based systems,
you will need to become familiar with the core AOM patterns
before you can appreciate the rendering patterns described in this
paper. An appendix at the end of this paper briefly explains the
core concepts and patterns of AOM systems. We invite the reader
visit to www.adaptiveobjectmodel.com for additional publications
that offer more comprehensive discussions and examples.

3.1 Shared Pattern Context
All the patterns in this paper share the same basic context
scenario: You are creating an application using an Adaptive
Object-Model. This model relies on a variant of TYPE SQUARE and
therefore you are using a combination of TYPE OBJECT and
PROPERTIES patterns. Each pattern then adds its own issues and
forces to this general context and presents a problem accompanied
with its respective solution.

Figure 2 - Rendering Patterns Map

Entity View Property Renderer coordinates several…

Entity-Group View
can use… can use…

3.2 Property Renderer
3.2.1 Context
You want to render the entities in your model using a standardized
approach. You want to minimize code redundancy and present a
GUI with a consistent look and feel.

3.2.2 Example
Imagine youʼve created a Content Management System (CMS)
using AOM patterns. New content types can be created by end
users. A tool allows them to compose several pre-defined property
types. For example, an instance of a content of type Document
may be composed of a property called “name” that is of type
“string property” , a property called “description” also of type
“string property” , and another property called “binaryElement”
that is of type “binary property” . Your system is implemented
using common variant of TYPE SQUARE pattern.
You have several applications that rely on this Document entity.
Application create instances of entities based on the “Document”
type object and present them to users in a UI. Each time you want
to render a property, you have to write very similar rendering
code. Your code for rendering each type of property may in the
best case be duplicated in all your applications. In the worst case,
it may be duplicated in each visualization layer as well as
additional application code (for example, when rendering the
name and description properties of the document two different
pieces of very similar code may be invoked).
This redundancy leads to a higher degree of maintenance and
potential inconsistency in your UIs. Slightly different approaches
may exist in each application for rendering the same type of
properties (for example, each application may render differently
the “binary” properties).

3.2.3 Problem
How can you encapsulate how the properties of different types are
rendered?

3.2.4 Forces
� An entity may have several properties of different types and

the properties can be attached to and detached from entities
at any time.

� You want to ensure UI consistency across applications.

� You want to encapsulate the rendering code.

� You want to avoid rendering code duplication.

� You want rendering aspects to be composable into more
complex visual representations.

� You want your UI code to evolve independently of entities.

� You want to vary the way a property is rendered according to
its rendering context (e.g., target device, state of the
application, client options, etc.).

� You donʼ t want to bloat rendering code with conditional
statements to handle each rendering context.

3.2.5 Solution
Create rendering objects that have the responsibility for
rendering the UI for a certain type of property within a given
context. Each rendering object will encapsulate the way an
instance of a property of a concrete type (when TYPE OBJECT
pattern is applied) is visualized in a certain context. We call these
objects “Property Renderers” .
A PROPERTY RENDERER contains code that generates the UI for an
instance of a property in a particular context. This renderer is
coupled both with the property type (it knows how to handle it)
and the target context (it knows how to generate appropriate UI
code for it).
To start, provide a default PROPERTY RENDERER implementation
that generally knows how to interpret all properties and to
generate minimal UI code targeted to a prototypical context. This
default implementation may not accurately render the property or
generate nice UI code, but allows you to marginally render any
property in any context. While this default implementation is
likely not suitable for production code, it can be useful when
prototyping or evolving an adaptive system.
Then, define individual PROPERTY RENDERERS as needed.
Each PROPERTY RENDERER will be responsible for rendering a
concrete visualization of some specific property type, and may be
specialized for a concrete context (it may be included in a Web
Form, an e-Mail, a report, etc.). Since individual property
renderers are specific and “ fine-grained” they can be combined to
create complex UI visualizations (see ENTITY VIEW and ENTITY-

Figure 3 - Property Renderer Structure

GROUP VIEW).
PROPERTY RENDERERS enforce a strong separation between the
domain entities and their visualization, isolating all presentation
related code into distinct objects.
Figure 3 shows the UML class diagram of the solution.
PropertyRenderer is the base class for all the renderers and
provided default implementations for behaviors that each concrete
renderer must redefine. As shown, PropertyRenderer has
two methods: one for rendering a property, render(), and other
for receiving sets of parameters setParameters() (parameters
can be any arbitrary piece of data to be used in the rendering
process). Subclasses of PropertyRenderer can either be
primitive (stand-alone renderers of strings, numbers, dates, etc.) or
composite (combining several renderers to create more complex
output). Instances of PROPERTY RENDERERs are created using a
factory (PropertyRendererFactory). Finally, the Client
uses the PROPERTY RENDERERs to compose the UI.

3.2.6 Example Resolved
Thus you can create a PropertyRenderer class for each type
of Property and use it in all applications. In our example, two
renderers may be created: one for the StringProperty and
other for the BinaryProperty. These renderers may be used
in all applications, giving consistency to their UIs and simplifying
maintenance (the property rendering code is in a single well-
known location).
In Figure 4 four property instances are shown (the name of the
property is in bold and the property type is in italic below the
name). In this example, some property renderers are applied to
instances of properties to render data entry UI widgets in a web
application. All the properties shown (Title, Description,
BinaryElement and DateCreated) belong to the Document entity
type. The PropertyRenderers create the appropriate UI
elements for the properties. Note that in the example: 1) the UI
elements have a standardized look and feel and behavior which
provides a consistent user experience; and 2) the property
renderers could also contain additional logic which analyzes
certain characteristics of the properties used when producing the
appropriate UI elements (for example, a string property renderer
might analyze the length of the input text and produce an
appropriately sized single text box or a text area for data entry).

3.2.7 Resulting Context
� Responsibility for rendering instances of properties of

concrete types is assigned to fine-grained rendering objects.
� UI code is separated from entities and encapsulated in

specialized property renderers.
� UI code can evolve independently from the model consisting

of entities, properties and relationships between them.

� New PropertyRenderers can be created, allowing for
dynamic change in how instances of property of a specific
type are rendered.

� PropertyRenderers can contain context-related (target
device, purpose, state, etc.) presentation code, eliminating
complex conditional code in the UI (e.g. a different
PropertyRenderer might exist for each kind of target
device).

� Since properties are fine-grained elements with specific
responsibilities they can be easily combined to create more
complex visual representations.

� The base PropertyRenderer class provides a generic
implementation that allows for rendering any entity,
facilitating prototyping and evolving adaptive systems.

� A PropertyRenderer is strongly coupled with its
respective PropertyType.

� A PropertyRenderer is coupled to its rendering context.
� The indirection found in this solution can lead to lower

performance than in a non-AOM system.

Figure 4 - Example Property Renderers for
Generating Data Entry HTML UI Widgets

3.2.8 Related Patterns
PROPERTY RENDERERS are a special type of STRATEGY concerned
with the generation of UI code for instances of properties of a
given property type.
PROPERTY RENDERERS instances can be created using a FACTORY.
PROPERTY RENDERERS instances can be created using a PRODUCT
TRADER. If so, the rules for selecting one renderer or another are
not hardcoded in the factory but determined at run-time using
Specification objects [3].
PROPERTY RENDERERS have code for rendering the PROPERTY
TYPES of the PROPERTIES instances when using TYPE SQUARE.
ENTITY VIEW organizes the way several PROPERTY RENDERERS are
combined to generate a UI code fragment.
PROPERTY RENDERER performance can be improved using
CACHING [11].
PROPERTY RENDERER can be combined with FLYWEIGHT [6] to
improve performance and resource utilization of pre-allocated
rendering instances.
ANYTHING [15] have a similar abstraction called Renderers, but
with a more broad scope. If you want to use this pattern to render
ANYTHING instances, the PROPERTY RENDERER can be seen as
specialized instance of such renderers.

3.3 Entity View
3.3.1 Context
To encapsulate and abstract the presentation you are using
PROPERTY RENDERER. You have several property renderers and
want to coordinate them and produce a more complex output. This
output may be a fragment of the UI or a complete screen.

An entity contains one or more properties that need to be rendered
and might have different views.

3.3.2 Example
Consider again the CMS example presented previously (see
Example section in PROPERTY RENDERER) and the Document
entity.
You may want several ways to render the properties for a
Document entity. For instance, you may want to render it as a
form for editing purposes or as a set of text fields for
visualization. You have property renderers for each kind of
property, but you will have to coordinate each screen to produce
desired behavior. This could result in duplicate code within the
same application or lack of consistency across applications.

3.3.3 Problem
How can you coordinate several property renderers to render a
complex UI fragment for different views of an entity?

3.3.4 Forces
� You want to combine several property renderers to

produce a complex UI fragment for an entity.
� UI fragments should be easy to change.

� The resulting structure should be easy to change.

� You donʼ t want redundant UI code.

� You may want to use different sets of fragments in
different contexts (for example, you may use different
renders for a mobile device than for a web browser).

3.3.5 Solution
Create view components which coordinate the presentation of
several property renderers of an entity to produce different
complex UI fragments. Each property renderer is specialized to
generate UI code for instances of a property type in a certain
context. A view component will coordinate several fine-grained
renderers and produce more complex UI code for an entity.
The sequence and composition of renderers could be specified
using source code or with metadata stored in a database or a file.

To simplify the coordination of compositions of renderers a
Domain Specific Language might be created.
The ENTITY VIEW is aware of its rendering context (target device,
state, etc.) and therefore must contain instances of the suitable
property renderers for that context. It may also contain additional
contextual information used when rendering.
The ENTITY VIEW may have several constraints (such as
validations, rules, etc) that are used while rendering an entity. You
can create new types of constraints, by creating a new
specialization of the abstract class EntityViewConstraint,
for use in an EntityView. When the constraints are applied, a
variant of the WARNING MESSAGE ACCUMULATOR pattern [1] can
be used and consequently a set of ConstraintResult
instances may be returned. It is important to stress that the
constraints included are focused on UI concerns such as client
side data validations. Any other business validation or rule
enforcement should be delegated to the domain specific
constraints associated with the core AOM instance being rendered
and not be located in presentation-layer code.
The ENTITY VIEW will primarily be used to generate fragments of
the UI for an entity, although it could also generate a full page.
Figure 5 presents the UML class diagram of the solution. The
abstract class EntityView defines the public interface and basic
behavior of all entity views. It also maintains a set of
PropertyRenderer instances (see the PROPERTY RENDERER
pattern in this paper) which are coordinated to generate UI code
for an entity instance. The concrete EntityViews can be leafs
(stand-alone views) or composite (composing several entity views
to generate the output). An EntityView receives context
information from its associated RenderingContext. Some
constraints can be applied to the orchestration process (classes
EntityViewConstraint, Validation and Rule). These
constraints can be composed to create dynamically complex
validation or composition rules.

3.3.6 Example Resolved
You can create two different kinds of EntityViews: ones for
editing and others for visualizing. These views may be used in all

Figure 5 - Entity View Structure

applications, giving consistency to their UIs (the same group of
elements is rendered in a consistent way in all applications) and
simplifying maintenance (the property renderer coordination code
is in a single, well-known location).
In Figure 6, two EntityViews are shown: the first, called
EditableEntityView, allows for editing an instance of an
entity (in this case to create a new Document entity representing
the paper “Dynamic Object Model” [13]). Notice how all the
editing UI widgets shown are the same as those shown previously
in Figure 4 for the PROPERTY RENDERER pattern. The second
EntityView, called ReadOnlyEntityView, in the lower
section of the figure renders a read-only representation of the
Document entity. In this view no Document entity properties
can be edited. Note that this EntityView shows additional
Document properties.

3.3.7 Resulting Context
� UI composition of rendering entities can be abstracted,

encapsulated and easily modified.
� The rules for showing an instance of an AOM entity can be

modified dynamically at runtime.
� The rules for showing an instance of an AOM entity can be

modified declaratively (when rules are stored as metadata).
� The rules for showing an entity are explicitly stated.
� It is easy to change the way entities are shown.
� Better adaptability to new visualization requirements.
� More flexibility in constructing different visualizations than

with hand-coded solutions.

� This introduces more complexity in the form of additional
classes and interpretation of metadata.

� The indirection interpretation of metadata found in this
solution can lead to lower performance than in a non-AOM
system.

3.3.8 Variants
Form Entity View: orchestrates several property renderers to
create a form for data input. It may also contain constraints which
establish input validations, and rules for showing or hiding groups
of renderers, etc.
Table Row Entity View: orchestrates several property renderers
to create a table showing an each entity in a row of a grid. To
show a full grid this Entity View must be applied to a set of
entities in an ENTITY-GROUP VIEW.
Selection of Fields Entity View: in this case the view selects a set
of the fields of an entity type (or a discrete set of property
instances) and generates the output. For example, you can have
several views for a type of entity where each view shows a
different subset of entity properties. For example, in case of an
entity type “Patient” you could have an entity renderer that only
shows its contact info and another one that shows only the ID, the
name and the birth date.
Full Display Entity View: this view displays all the fields in the
entity type or the provided set of property instances.
Rule Based Entity View: this more complex entity view selects
the property renderers to be used by applying rules. For example,
you may have an entity view that shows or hides fields according
to profile of the target user.

3.3.9 Related Patterns
An ENTITY VIEW coordinates several PROPERTY RENDERERS.
ENTITY VIEW can be seen as a typed COMPOSITE of PROPERTY
RENDERERS for displaying entities.

Figure 6 - Entity View Example

Figure 6 - Entity View Example

ENTITY VIEW generates output using PROPERTY RENDERERS;
ENTITY-GROUP VIEWS display a set of related entities.
RENDERING ORCHESTRATOR performance can be dramatically
enhanced using CACHING [11].
ANYTHING [15] has a similar abstraction called Renderer, but with
a broader scope. To use this pattern to render ANYTHING
instances, you can construe ENTITY VIEW to be a specialized
instance of such renderers.

3.4 Entity-Group View
3.4.1 Context
You want to generate UI code for several entities but you donʼ t
want to have any kind of coupling or to reference the UI in your
model. Additionally you may want to attach or detach views to
models, allowing for different views of the same entity to be
selected dynamically. You want several views applied to the same
model and you want to have the possibility of selecting any of
them according to arbitrary decisions.

3.4.2 Example
You are developing a Web-based Content Management
application (the one quoted in the Property Renderer pattern). You
built a Document Management module on top of the CMS engine.
This content management module has entities Document and
Link that are contained in Categories (a special kind of
entity which contains other entities). Categories simulate
Folders in the document management module.
Whenever a user selects one Folder, its contents (the contained
entities) should be displayed in one of several ways depending on
the specific context. You want to be able to attach and detach
views to the folders. For example, a thumbnails view might only
be applied to folders which contain images. Views should be
easily linked to and unlinked from categories, allowing users to
specify how they want to view folder contents according to their
preferences.
Having the UI generation code static on a web page is not a very
good idea because it would complicate your abstraction of a

rendering algorithm that could be applied to different contexts.
Additionally, if you want to reuse the UI generation code for
another application you wonʼ t be able to, since it would be
contained in a page and therefore could not be reusable artifact in
another application (in the best case, you might copy the page, but
if you want to change a single feature of that “common page”, you
would need to modify all instances of that page in all client
applications).

3.4.3 Problem
How can you abstract the visualization (including the complex
layout) of a set of dynamic entities from an AOM so as to
decouple this visualization from the model?

3.4.4 Forces
� You want to be able to attach and detach views

dynamically to sets of entities.
� You want to abstract layout details.
� You want to render several entities in the same

presentation.
� You want to reuse that rendering code in different

contexts.
� You donʼ t want redundant UI code.
� You want to have control of all the generated UI code.
� You may not be using PROPERTY RENDERERS or ENTITY

VIEWS.
� When using PROPERTY RENDERERS or ENTITY VIEWS

you may want to add additional UI code (layout code,
glue code to give consistency and context to the
renderer properties, or perhaps code unrelated to
entities).

3.4.5 Solution
Abstract the UI code generation into a view component that
processes a set of entities to produce UI code. The
EntityGroupView is a component specialized in generating
UI code for a set of one or more entities. It will produce the
appropriate UI code according to the purpose of the view. As in

Figure 7 - Entity-Group Views Structure

cd Attachable Views

EntityGroupView

+ Render(Entity[]) : object
+ SetParameters(Hashtable) : void

ConcreteEntityGroupViewA

- propertyRenderers: ProperyRenderer[]

ConcreteEntityGroupViewB

- orchestrator: EntityView

ConcreteEntityGroupViewC

PropertyRenderer

- id: string

+ Render(Property) : object
+ SetParameters(Hashtable) : void

EntityView

+ Render(Entity, RenderingContext) : object
+ SetParameters(Hashtable) : void
+ ApplyConstraints() : ConstraintResult[]

1..*

MVC, the view components present information to the user.
Different views can then present the information in the model in
different ways.
The EntityGroupView can contain complex layout logic. The
layout code may even allow dynamic set up and modification of
the layout (for example like the models in WinForms [9] or Swing
[7]) or may represent in a fixed way a specific set of entities (the
layout is hard-coded in the view).
The views can generate all UI code from scratch or can use
PROPERTY RENDERERS and ENTITY VIEWS.
Several views may render the same set of entities. The views can
be linked to the entities (and entity types) dynamically, allowing
easy run-time adaptation through the creation of multiple-view
based interfaces.
Figure 7 shows a UML class diagram of the solution. The abstract
class EntityGroupView defines the public interface and
default behavior of all EntityGroupViews. Concrete
EntityGroupView subclasses can generate their output using
several approaches: using Property Renderers
(ConcreteViewA), using Entity Views (ConcreteViewB) or
generating all UI code themselves (ConcreteViewC).

3.4.6 Example Resolved
If the UI rendering code for an EntityGroupView is
represented as metadata, it can be stored in a views repository.
This can then be linked to existing entities in order to generate UI
code for them.
In our example, several views are created (e.g. Details View,
Icons View and Thumbnails View) and then linked to the
categories that represent the folders. When the user selects a

Folder and views its contents, it is displayed on a container that
allows the user to select any of the views attached to the folder.
Whenever the user selects one of them it generates the appropriate
UI code (delegated to the concrete View) as shown in Figure 8.
In this example, a set of documents can be rendered in several
ways (detailed list, big icons, and thumbnails).
You could also define more views and attach them to any
category. For example, for a particular set of folders may need to
have some special rendering logic such as hiding documents older
than three weeks. To achieve this, you would create a new view
and attach it to the appropriate folders.

3.4.7 Resulting Context
� UI composition can be abstracted, encapsulated and easily

modified.
� The rules for showing sets of entities can be modified

dynamically at runtime.
� The rules for showing sets of entities can be modified

declaratively (when they are stored in metadata).
� The rules for showing sets of entities are explicitly stated.
� It is easy to change the way sets of entities are shown.
� Better adaptability to new visualization requirements.
� More flexibility.

� More complexity.
� Lower performance.

3.4.8 Related Patterns
ENTITY-GROUP VIEWS can use several PROPERTY RENDERERS.
ENTITY-GROUP VIEW can use several ENTITY VIEWS.

Figure 8 - Several views applied to the same entities.

ENTITY-GROUP VIEW instances should be created using a
FACTORY.
ENTITY-GROUP VIEW can be seen as a special type of STRATEGY
that is concerned with the generation of UI code for sets of
entities.
An ENTITY-GROUP VIEW can be applied in MODEL VIEW
CONTROLLER [10] scenarios.
ENTITY-GROUP VIEW performance can be dramatically enhanced
using CACHING [11].

4. Putting It All Together
This paper presented a set of patterns for dealing with dynamic
presentation of Adaptive Object-Models. Each pattern presented
in this paper address the rendering problem at a different level of
granularity as shown in Figure 9.
We used as an example building an application on top of a CMS
system that is based on an AOM. In our CMS we created a
Document entity type that contained several properties for
storing the title, description, binary element (e.g. word, pdf, excel,
etc.), creation date, and author of a document. These Document
entity types are stored in Categories, which are abstractions
that gather several instances of entities (in our case Document
entities). We wanted a consistent UI decoupled from the
application logic that could be easily changed and reused
throughout this application or other systems.

Figure 9 - Granularity level of the patterns in the language.

Since we wanted to render consistently all the properties of
similar types, we determined to use the PROPERTY RENDERER
pattern to generate the UI widgets for each property type. The first
step was to create a PropertyRenderer for each
PropertyType in Document: one for strings, another for
binaries and one for dates. Thinking more deeply, we quickly
realized that this is not enough: in some cases, we need two
renderers for each property type, one for editing it and another for
visualizing it. Therefore, we created these six property renderers:

� StringInputPropertyRenderer

� FileInputPropertyRenderer

� DateInputPropertyRenderer

� StringPropertyRenderer

� FilePropertyRenderer

� DatePropertyRenderer
After our renderers were created, we needed to establish how to
present Document entities to end users. We used the ENTITY
VIEW pattern to generate the UI for the entities. We applied the
ENTITY VIEW pattern three times to create the following views:
FormDocumentEntityView (for creating and editing

documents), ReadOnlyEditableEntityView (for viewing
instances of Document entities), and
TableRowDocumentEntityView (for rendering a row for a
table of entities). These kinds of Entity Views were addressed in
the Variants section of the Entity View pattern.
These patterns work together to provide a consistent and reusable
way for rendering AOM properties and entities. However,
rendering concrete properties or entities is not enough to create
the UI for our example document management application. To
address this final gap we need to use the ENTITY-GROUP VIEW
pattern to create several coherent fragments of UI for entering and
retrieving Document entity instances. We thus create several
EntityGroupViews that use the PropertyRenderers and
EntityViews outlined in previous steps. These views can be
dynamically linked to sets of Document entities to produce fully
functioning and consistent UI fragments. The
EntityGroupViews have content layout code such as in the
case of the DocumentGridDynamicView which uses several
TableRowDocumentEntityViews for generating an HTML
table of Document entities.
There is a very important issue in the solution we present:
performance and resource usage can be prohibitive, leading to a
poor user experience and degradation of service scenarios
(especially for web applications). To address these problems we
propose the careful use of CACHING [11, 15]. We propose several
levels of caching according to what we are trying to render: we
can have caches for a property type (applied to PROPERTY
RENDERER), for an entity (applied to ENTITY VIEW), or for set of
entities (applied to ENTITY-GROUP VIEW) [18]. The decision on
how to apply caching should be carefully considered, keeping in
mind that caching, too, adds considerable complexity to an
application. Additionally, we might enhance the performance and
resource usage of the application by applying other patterns (like
POOLING, LAZY ACQUISITION, etc. [11]).
There are also several other high level patterns for dynamic screen
layout of the entities and properties which have not been
addressed in this paper. The authors intend on addressing these at
a later date.

5. ACKNOWLEDGEMENTS
We would like to thank our shepherd Dirk Riehle for his great
help and advice for improving the contents of this paper. We
would also like to gratefully thank to the participants of the PLoP
2007 “Sun Singer” Writers Workshop (Richard Gabriel, Ricardo
Lopez, Jason Yip, Christian Kohls, Scott Henninger, Avraham
Zilverman, and Vibhu Mohindra) and to the OOPSLA 2007 Mini-
PLoP writers workshop participants (Peter Sommerlad, Ademar
Aguiar, and Andre Santos).

6. REFERENCES
[1] Ahluwalia, K. Warning Message Accumulator Pattern. 13th

Pattern Language of Programs Conference (PLoP 2005),
Monticello, Illinois, USA, 2005.

[2] Adaptive Object-Models.
http://www.adaptiveobjectmodel.com

[3] Bäumer, D ; D. Riehle. Product Trader. Pattern Languages
of Program Design 3. Edited by Robert Martin, Dirk Riehle,
and Frank Buschmann. Addison-Wesley, 1998.

Entity-Group View

Property Renderer

Entity View

Single Property

Single Entity

Sets of Entities

Fine
grained

Coarse
grained

[4] Fowler, M. Analysis Patterns: Reusable Object Models.
Addison-Wesley, 1997.

[5] Foote B, J. Yoder. Metadata and Active Object Models.
Proceedings of Plop98. Technical Report #wucs-98-25, Dept.
of Computer Science, Washington University Department of
Computer Science, October 1998.

[6] Gamma, E.; R. Helm, R. Johnson, J. Vlissides. Design
Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley. 1995.

[7] Trail: Creating a GUI with JFC/Swing.
http://java.sun.com/docs/books/tutorial/uiswing/

[8] Johnson, R., R. Wolf. Type Object. Pattern Languages of
Program Design 3. Addison-Wesley, 1998.

[9] Microsoft .NET Framework. http://www.microsoft.com/net/
[10] Buschman, F. et al. Pattern Oriented Software Architecture,

Volume 1: A System of Patterns. Wiley & Sons. 1996
[11] Kircher, M.; P. Jain. Pattern Oriented Software Architecture,

Volume 3: Patterns for Resource Management. Wiley &
Sons, 2004.

[12] Riehle, D., Fraleigh S., Bucka-Lassen D., Omorogbe N. The
Architecture of a UML Virtual Machine. Proceedings of the
2001 Conference on Object-Oriented Program Systems,
Languages and Applications (OOPSLA ʼ01), October 2001.

[13] Riehle D., M. Tilman, and R. Johnson. "Dynamic Object
Model." In Pattern Languages of Program Design 5. Edited
by Dragos Manolescu, Markus Völter, James Noble.
Reading, MA: Addison-Wesley, 2005.

[14] Revault, N, J. Yoder. Adaptive Object-Models and
Metamodeling Techniques Workshop Results. Proceedings
of the 15th European Conference on Object Oriented
Programming (ECOOP 2001). Budapest, Hungary. 2001.

[15] Sommerlad, P.; M. Rüedi. Do-it-yourself Reflection.
European Conference on Pattern Languages of Programs
(EuroPLoP 98), Irsee, Germany, July 1998.

[16] Welicki, L.. The Configuration Data Caching Pattern. 14th
Pattern Language of Programs Conference (PLoP 2006),
Portland, Oregon, USA, 2006.

[17] Welicki, L; J. Cueva Lovelle; L. Joyanes Aguilar. Meta-
Specification and Cataloging of Software Patterns with
Domain Specific Languages and Adaptive Object Models.
European Conference on Pattern Languages of Programs
(EuroPLoP 2006), Irsee, Germany, July 2006.

[18] Welicki L; O. Sanjuan Martinez. Improving Performance and
Server Resource Usage with Page Fragment Caching in
Distributed Web Servers. International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA 2007), Las Vegas, Nevada, June 2007.

[19] Welicki L; J. Yoder; R. Wirfs-Brock; R. Johnson. Towards a
Pattern Language for Adaptive Object Models. Companion
of the ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications
(OOPSLA 2007), Montreal, Quebec, Canada, 2007.

[20] Yoder, J.; F. Balaguer; R. Johnson. Architecture and Design
of Adaptive Object-Models. Proceedings of the ACM
SIGPLAN Conference on Object Oriented Programming,
Systems, Languages and Applications (OOPSLA 2001),
Tampa, Florida, USA, 2001.

[21] Yoder, J.; R. Johnson. The Adaptive Object-Model
Architectural Style. IFIP 17th World Computer Congress -
TC2 Stream / 3rd IEEE/IFIP Conference on Software
Architecture: System Design, Development and Maintenance
(WICSA 2002), Montréal, Québec, Canada, 2002

[22] Yoder, J.; R. Razavi. Metadata and Adaptive Object-Models.
ECOOP Workshops (ECOOP 2000), Cannes, France, 2000.

APPENDIX- A BRIEF SUMMARY OF THE
ARCHITECTURAL STYLE OF AOMS
Important Notice: This section is a summary extracted from [21]
and [20] and has been included to help readers unfamiliar with
the AOM architectural style. To get a more complete view we
recommend the reader read the original papers found at
www.adaptiveobjectmodel.com.
The design of Adaptive Object-Models differs from most object-
oriented designs. Normally, object-oriented designs have classes
which model the different types of business entities and associate
attributes and methods with them. The classes model the
business, so a change in the business causes a change to the code,
which leads to a new version of the application. An Adaptive
Object-Model does not model these business entities as classes.
Rather, they are modeled by descriptions (metadata) which are
interpreted at run-time. Thus, whenever a business change is
needed, these descriptions are changed, and can be immediately
reflected in a running application.
Adaptive Object-Model architectures are usually made up of
several smaller patterns. TYPE OBJECT [8] provides a way to
dynamically define new business entities for the system. TYPE
OBJECT is used to separate an Entity from an
EntityType. Entities have Attributes, which are
implemented using the PROPERTY pattern [5]. The TYPE OBJECT
pattern is used a second time in order to define the legal types of
Attributes, called AttributeTypes. As is common in
Entity-Relationship modeling, an Adaptive Object-Model usually
separates attributes from relationships.
The STRATEGY pattern [6] can be used to define the behavior of
EntityTypes. These strategies can evolve, if needed into a
rule-based language that gets interpreted at runtime. Finally, there
is usually an interface for non-programmers which allows them to
define the new types of objects, attributes and behaviors needed
for the specified domain.
Therefore, we can say that the core patterns that may help to
describe the AOM architectural style are:

� TYPE OBJECT
� PROPERTY
� ENTITY-RELATIONSHIP / ACCOUNTABILITY
� STRATEGY / RULE OBJECT
� INTERPRETER (of Metadata)

Adaptive Object-Models are usually built from applying one or
more of the above patterns in conjunction with other design
patterns such as COMPOSITE, INTERPRETER, and BUILDER [6].

COMPOSITE is used for building dynamic tree structure types or
rules. For example, if the entities need to be composed in a

dynamic tree like structure, the COMPOSITE pattern is applied.
BUILDERS and INTERPRETERS are commonly used for building the
structures from the meta-model or interpreting the results.
But, these are just patterns; they are not a framework for building
Adaptive Object-Models. Every Adaptive Object-Model is a
framework of a sort but there is currently no generic framework
for building them. A generic framework for building the
TypeObjects, Properties, and their respective relationships could
probably be built, but these are fairly easy to define and the hard
work is generally associated with rules described by the business
language. These are usually very domain-specific and varied
from application to application.

Type Square
In most Adaptive Object Models, TYPE OBJECT is used twice:
once before using the PROPERTY pattern, and once after it. TYPE
OBJECT divides the system into Entities and EntityTypes.
Entities have attributes that can be defined using
Properties. Each Property has a type, called
PropertyType, and each EntityType can then specify the
types of the properties for its entities. Figure 10 represents the
resulting architecture after applying these two patterns, which we
call TYPE SQUARE [20].

Figure 10. The Type Square.

TYPE SQUARE often keeps track of the name of the property and
whether the value of the property is a number, a date, a string, etc.
The result is an object model similar to the following: Sometimes
objects differ only in having different properties. For example, a
system that just reads and writes a database can use a Record with
a set of Properties to represent a single record, and can use
RecordType and PropertyType to represent a table.

cd AOM

Entity EntityType

Property PropertyType

+type0..*

0..*+properties 0..*+properties

+type0..*

