
© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or 

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be 

obtained from the IEEE. 

 
For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html. 

 
www.computer.org/software 

 
 
 
 
 

 
 
 
 

Refreshing Patterns 

Rebecca J. Wirfs-Brock 

 
 

Vol. 23, No. 3 
May/June 2006 

 
 

 
 
 
 
 

This material is presented to ensure timely dissemination of scholarly and technical 
work. Copyright and all rights therein are retained by authors or by other copyright 
holders. All persons copying this information are expected to adhere to the terms 
and constraints invoked by each author's copyright. In most cases, these works 

may not be reposted without the explicit permission of the copyright holder. 
 
 

 



0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0  ©  2 0 0 6  I E E E M a y / J u n e  2 0 0 6 I E E E  S O F T W A R E 4 5

W
hen the published form of a pattern
seems dated due to new language
features or new experiences, it needs
refreshing. Unfortunately, just as in
spoken languages, once standard
definitions are widely circulated in

print, it becomes much harder to update them.
When I wrote a prepublication review of De-

sign Patterns (Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlis-
sides, Addison-Wesley, 1994), I
recommended publishing the
book in a loose-leaf notebook to
allow for frequent updates and
additions. Now, as I write this
column in April 2006, Design
Patterns, despite its age, is still a
best-seller, ranking 616 on
Amazon.com’s book list. How-
ever, some find it difficult to

read owing to its dated graphical examples and
scholarly tone. This is likely why it was recently
edged out of its spot as Amazon’s top pattern
book by Head First Design Patterns (Elisabeth
Freeman, Eric Freeman, Bert Bates, and Kathy
Sierra, O’Reilly, 2004), whose popularity is
based on its goofy examples, humor, and anno-
tated doodles on code. This book makes learn-
ing design patterns fun, yet it skimps on pre-
senting all the original patterns in depth. Design
Patterns is still the most comprehensive source
for the original 23 design patterns.

Instead of updating a single source (Design
Patterns), as I had naively hoped for, pattern
authors expanded and grew the literature. To-

day, over 70 pattern books are in print, cover-
ing the gamut from messaging and architecture
to domain modeling and code refactorings.
Furthermore, if you’re looking for new pat-
terns, want to explore patterns in the making,
or want to discuss pattern nuances, print pub-
lications aren’t your best source. You need to
look online. The Portland Pattern Repository
(http://c2.com/ppr) is the largest pattern Web
site with over a thousand patterns—most of
which haven’t been published elsewhere, be-
cause they’re not fully cooked. But they aren’t
half-baked either. This repository is a lively place
to explore patterns as they are stewed, skewered,
debated, and nuanced. Although some prefer
sources of tried-and-true patterns, ready for im-
mediate consumption, if you only look in pub-
lished pattern books, you miss out on a lot of de-
sign ideas and good discussions. 

Pattern adaptations
If you’re looking for the definitive source

for a specific pattern, you’re probably not go-
ing to find it. One rarely exists. Different au-
thors make different design choices, and their
descriptions of the same pattern will vary.
John Vlissides, one of the Design Patterns au-
thors, advises:

You can’t overemphasize that a pattern’s
structure diagram [class diagram] is just an
example, not a specification. It portrays the
implementation we see most often. As
such, the Structure diagram will probably
have a lot in common with your own im-

Refreshing Patterns
Rebecca J. Wirfs-Brock

Language is as changeable an entity as cloud formations even in its mundanest, most “vanilla”
aspects such as the words dog or since.

—John McWhorter, The Power of Babel (W.H. Freeman, 2002)

design
E d i t o r :  R e b e c c a  J .  W i r f s - B r o c k  ■ W i r f s - B r o c k  A s s o c i a t e s  ■ r e b e c c a @ w i r f s - b r o c k . c o m  



4 6 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

plementation, but differences are in-
evitable and actually desirable. At
the very least you will rename the
participants as appropriate for your
domain. Vary the implementation
trade-offs, and your implementation
might start looking a lot different.

Although I assign my students the
original versions of patterns as pre-
sented in Design Patterns, I also expose
them to other published variations and
examples that illustrate adjustments I’ve
made to patterns I’ve incorporated into
my own designs. Reading and studying
multiple pattern definitions and exam-
ples helps convey the important point
that it’s quite natural for patterns to
wiggle around a bit as they’re applied.

Consider the Composite pattern. It
supports composing objects into tree
structures. In such a structure, an ob-
ject can either be a container for other
objects (playing the role of composite)
or not (playing the role of leaf). Figure
1 illustrates the original class diagram
for the Composite pattern.

The abstract class named Component
provides default implementations for
adding, removing, and retrieving children.
Leaf and Composite classes are two dif-
ferent kinds of components. If, when im-
plementing the pattern, you strictly fol-
low the composite form outlined in
Design Patterns, it’s tricky to decide
what attributes and operations the Com-
ponent class should define. Default
methods are expected to be inherited by
different classes of leaf objects. Any Com-
posite class is expected to override the 
defaults to implement composite-
specific behavior.

When Design Patterns was
published, interfaces weren’t a
part of any popular program-
ming language. So, the authors
relied on abstract class defini-
tions—which opened the door
for declaring default method
implementations and common
attributes. Today, I spend most
of my time with C# and Java,
both of which support the dec-
laration of interfaces that only
define method signatures. In
these languages, I prefer to cast

many patterns using interfaces in lieu
of abstract classes. This is especially
true when there isn’t reasonable default
behavior to shove into an abstract
class. Design Patterns devotes a couple
of pages to discussing meaningful de-
faults for the Component class, con-
cluding that, “usually it is better to
make add and remove fail by default
(perhaps by raising an exception)… or
if the argument of remove isn’t a child
of the component.” 

Well, maybe. Wouldn’t it be simpler
if you didn’t have to spend time con-
cocting meaningful default behavior?
Clearly, a composite has two separate
responsibilities—perform specific oper-
ations on the basis of its type and man-
age children. Bob Martin, in Agile Soft-
ware Development Principles, Patterns

and Practices (Prentice Hall, 2002), il-
lustrates a variation of the Composite
pattern that only defines common op-
erations in an interface (see figure 2).

Unwilling to force-fit child man-
agement behavior into a common ab-
straction, Martin implemented com-
posite-specific behavior only in the
CompositeShape class. After struggling
to define meaningful operations com-
mon to both leaf and composite ob-
jects, some of my design students
throw up their hands and grumble that
the Design Patterns authors made the
wrong trade-offs.

Recently, I asked Ralph Johnson, a
Design Patterns coauthor, about this
dilemma. He replied, “The book just
got that wrong, as I have been saying for
10 years. I argued as much while we
were writing the book and lost to the
other three. They agree with me now. At
the time, most of the C++ frameworks
did it like the book said, but Smalltalk-
ers never did it that way, which is why
we disagreed. Later, C++ frameworks
shifted to putting add() in the Com-
posite interface, and of course Java does
it that way, too. I’m not sure why peo-
ple made the change, but I think it has
to do with runtime type checking. As
long as C++ didn’t have a safe way to
downcast, it seemed better to make all
Components support add().”

Clearly, the Design Patterns authors
had healthy debates while writing their
book. For a look into how patterns are
conceived, polished, perfected, or per-
haps put aside, see John Vlissides’ Pat-
tern Hatching (Addison-Wesley, 1998). 

Pattern morphing
But what makes a form of a

particular pattern a “standard”
or “preferred” form, and when
does an adaptation change a pat-
tern into something else? Patterns
aren’t just a single structural
form. Ideally, a pattern describes
a set of roles and responsibilities
assigned to one or more classes
and offers advice on common
adaptations and trade-offs. A
pattern’s structural form is less
important than its intended de-
sign purpose. Any time you ap-

operation()
add(Component)
remove(Component)
getChild(int)

<<abstract>>
Component

operation()

Leaf

operation()
add(Component)
remove(Component)
getChild(int)

Composite

children

Figure 1. The original Design 
Patterns Composite pattern form.

children

+draw()

<<interface>>
Shape 0..*

+draw()

Square

+draw()
+add(Shape)

CompositeShape

+draw()

Circle

Figure 2. Using an interface to define only type-
specific operations.



M a y / J u n e  2 0 0 6 I E E E  S O F T W A R E 4 7

DESIGN

ply a pattern, you sort through imple-
mentation trade-offs and are likely to
end up with a solution that differs from
any canonical example. In Refactoring
to Patterns (Addison-Wesley, 2004),
Joshua Kerievsky implements the Com-
posite pattern using a single multipur-
pose class (see figure 3).  

This bears little resemblance to the
composite structure defined in Design
Patterns. Kerievsky coded just what was
necessary for his application and noth-
ing more. Evolutionary design, which
Kerievsky advocates, pushes minimalism
to the limits. An evolutionary designer
makes successive refinements to working
code until it’s good enough. Successive
refactorings might move code closer to
or away from a particular pattern, de-
pending on the current design goal.

In The Power of Babel, McWhorter
identifies processes that cause spoken
languages to change. One process, called
sound change, occurs when, over time,
sounds tend to drop off of words. This is
especially common when the accent
doesn’t fall on a syllable. That’s one rea-
son why the Latin word for woman, fem-
ina, has morphed into the single syllable
femme in modern French. Kerievsky’s
implementation of single-class-as-com-
posite-or-leaf has eroded any distinction
between the implementation of a leaf and
composite role.

But is a single class that supports
both leaf and composite behavior still a
Composite or something else? I’m guess-
ing that a TagNode object can be trans-
formed into an interior node by simply
having a child added, or can change
back into a leaf node by having children
removed. This isn’t the case for Mar-
tin’s shape example. A circle or square
has behavior distinct from a composite
shape. There are both structural and
behavioral reasons to define different
shape classes. If there aren’t behavioral
differences between terminal and non-
terminal nodes, it makes sense to com-
bine these concepts into a single class.
But perhaps this implementation is far
enough away from the intention of the
Composite pattern to be called some-
thing else.

Another type of language change is
word evolution. Over time, words’

meaning can narrow or broaden. In
English, hund originally referred to any
old dog, while dog meant a particular
breed of large canine. Over time, hund
narrowed to mean hound (and its
spelling changed), while dog gradually
broadened its meaning to refer to all
dogs. The name Composite pattern has
always slightly confused my students.
A composite is an entity made up of
distinct parts. Any object playing a
composite role will be made up of dis-
tinct parts, but leaf objects aren’t com-
posites. So naming the pattern for that
one role seems a misnomer, especially
when today’s preferred form for the
Composite pattern doesn’t define any
composite behavior in a shared ab-
straction. Perhaps it’s time to retire the
somewhat dated meaning of Compos-
ite pattern and rename it Tree instead.

T here’s always a gap between the spo-
ken word and official standard defin-
itions. Dictionaries, despite being

constantly updated, are always out of
date. What’s disconcerting to an unwary
pattern consumer is that shifts in pattern
meaning and interpretation aren’t col-
lected in one place—we don’t yet have
an online pattern dictionary. Until there
is one, designers exploring a pattern

should gather information from various
sources and expect “preferred forms” to
change and evolve. That’s why pattern
authors and online pattern communities
will continue to grow, adapt, and trans-
form patterns. It’s as predictable as a
change in the weather.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates and an adjunct professor at Oregon Health & Science
University. She’s also a board member of the Agile Alliance. Con-
tact her at rebecca@wirfs-brock.com.

+TagNode(name: String)

+add(childNode: TagNode)

+addAttribute(...)

+addValue(...)

+toString(): String

-attributes: String

-tagName: String

-children: List

TagNode

Figure 3. A single class that 
implements both a leaf and a 
composite.

IEEE Distributed Systems Online brings you
peer-reviewed articles, detailed tutorials, expert-managed
topic areas, and diverse departments covering the latest
news and developments in this fast-growing field.

Log on for free access to such topic areas as

Grid Computing • Mobile & Pervasive

Cluster Computing • Security • Peer-to-Peer

and More!

http://dsonline.computer.org


