

QA to AQ Part Three

Shifting from Quality Assurance to Agile Quality
“Tearing Down the Walls”

Joseph W. Yoder 1, Rebecca Wirfs-Brock2, Hironori Washizaki3

1 The Refactory, Inc.,
2Wirfs-Brock Associates, Inc.

3Waseda University

joe@refactory.com, rebecca@wirfs-brock.com, washizaki@waseda.jp

Abstract. As organizations transition to agile processes, Quality Assurance (QA)
activities and roles need to evolve. Traditionally, QA activities occur late in the
process, after the software is fully functioning. As a consequence, QA departments
have been “quality gatekeepers” rather than actively engaged in the ongoing
development and delivery of quality software. Agile teams incrementally deliver
working software. Incremental delivery provides an opportunity to engage in QA
activities much earlier, ensuring that both functionality and important system
qualities are addressed just in time, rather than too late. Agile teams embrace a
“whole team” approach. Even though special skills may be required to perform
certain development and Quality Assurance tasks, everyone on the team is focused
on the delivery of quality software. The patterns in this paper are focused on
“breaking down the walls” or removing barriers between people and traditional
roles, as this is key for any change within an organization that is transitioning to
being more Agile at Quality.

Categories and Subject Descriptors
• Software and its engineering~Agile software development • Social and professional topics~Quality assurance
• Software and its engineering~Acceptance testing • Software and its engineering~Software testing and debugging

General Terms
Agile, Quality Assurance, Patterns, Testing

Keywords
Agile Quality, Quality Assurance, Software Quality, System Qualities, Testing, Patterns, Agile Software Development,
Scrum, Quality Related Acceptance Criteria, Agile Quality Scenario, Whole Team

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A
preliminary version of this paper was presented in a writers' workshop at the 10th Latin American Conference on Pattern
Languages of Programs (SugarLoafPLoP). SugarLoafPLoP'14, November 9th - 12th, 2014, Ihla Bela, São Paulo, Brazil. Copyright
2014 is held by the author(s). HILLSIDE 978-1-941652-02-2.

SugarLoaf PLoP 2014: QA to AQ Part Three - 2

Introduction

As organizations move to being more agile, it is important that this transition also includes
Quality Assurance (QA). Nothing prevents QA from being involved throughout the
development process, but generally this has not been the case. Unfortunately for many
software projects, QA only becomes involved late in the development process, just before it
is necessary to test and release the final product. This is partly because of a different mindset
between in traditional software quality assurance processes. One important responsibility of
QA is to certify the functionality of the application based upon the contract and requirements;
usually with black-box tests. Typically, QA groups have worked independently from the
software team. However, in agile teams, QA can and should work more closely with the
whole team on an ongoing and daily basis.

As organizations evolve to being more agile, it is important to not lose focus on Quality
Assurance and the “ilities” of a system and how QA can contribute to quality while engaging
more deeply with the agile team throughout the development process. Most agile transitions
provide training for management, developers and product owners while QA is often left on
their own. Central to successfully using these QA patterns is identifying how quality concerns
and activities can better fit into your agile process. This includes ways for Breaking Down
Barriers and Integrating Quality into your Agile Process.

Our patterns are written in the spirit of Edward Deming’s fourteen principles for business
transformation and improvement [De]. Consequently, our patterns focus on actions for
improving software quality and integrating QA concerns and roles into the whole team. We
recognize that programming and development practices significantly contribute to or detract
from software quality. Since others have written much about programming, design and
architectural practices [Ast, Bec02, Bec04, CB, Mar, Sho, WY] we turn our attention to those
often overlooked organizational and QA related actions that also improve software quality.

Previously in [YWA & YW] we presented an initial set of patterns on how to be agile at
quality, classifying them into these categories: Fitting Quality into your Agile Process,
Identifying Qualities, Making Qualities Visible, and Being Agile at Quality. There are often
many barriers between Quality Assurance and other parts of the organization. This paper
extends our previous work by writing the patterns “Break Down Barriers” and “Pair with a
Quality Advocate.”

We have written a group of patlets outlining all of our patterns in the appendix. A patlet is a
brief description of a pattern. We are working on writing all of these as full-fledged patterns
that can ultimately guide organizations as they become more agile at quality. These patterns
are intended for any agile team that wants to focus on important qualities of their systems and
better integration of QA into their agile process. These patterns are for anyone who wants to
instill a quality focus and introduce quality practices earlier into their process, too.

SugarLoaf PLoP 2014: QA to AQ Part Three - 3

Break Down Barriers

“You can focus on things that are barriers or you can focus on scaling the wall or redefining
the problem.” —Tim Cook

Most agile processes do a good job of focusing on functional requirements, how to prioritize
them, and on a collaborative environment that fully engages product owners, scrum masters
and the development team. However, there are other roles and tasks that are important to the
success of any software project. QA needs to verify correct functioning of the system as well
as ensure that it meets its quality requirements. Architects may design infrastructure and
implement architectural features. Groups or individuals that contribute to an agile project
need be engaged and feel like valued contributors to the software’s success. This is especially
important for contributors who may not be engaged full time on the project.

Barriers can exist between people who are not “inside” the development team or feel
tangential to it. This can lead to people focusing only on their job and not the overall progress
of the team and the quality of the software. This can lead developers to view quality concerns
as being “someone else’s” problem and viewing QA as the obstacle to getting the product
out. And it can lead to QA feeling frustrated that they aren’t being listened to or understood.
How can agile teams remove the barriers and become more agile at quality?

v v v

Many times QA is only seen by others on the team as the final gatekeeper. If QA is only
verifying the software at the end of the release cycle they can be slammed by the forces
upstream from them and constantly be in a response mode. Although they’d like to help more
there just isn’t enough time or people. When quality issues arise late, QA is then perceived as
the problem makers blocking the release. Sometimes, as testers they are perceived as not
actually contributing to the development process nor really understanding how the
application is supposed to work.

SugarLoaf PLoP 2014: QA to AQ Part Three - 4

Product owners and development teams like to focus on visible items that show progress, for
example the core functional requirements. This may cause them to slight or miss important
system qualities. Developers who are writing production code and unit tests may sometimes
select an approach that makes their work go fast. Consequently, they may only care about
their velocity and may not be aware of how their design choices can adversely impact others
including those responsible for assuring quality.

QA and/or product owners may inadvertently keep the real requirements from view of the
software engineers, admins, and even the Business Analyst (BA). It may be the case that a
specific contract or piece of legislation or government regulations contains the actual
requirements, but the product owner or lead QA person creates their own interpretation of
how to achieve those requirements. They can inadvertently get something critically wrong,
leading to late disclosure of the critical requirements. Development scrambles, and quality
control cannot make the deadlines.
There are different barriers across an organization. These barriers can be physical,
experiential, or cultural. Not all these barriers are bad. Sometimes barriers can protect teams
from outside forces which distract them from completing their tasks. However, some barriers
can cause problems. When there are physical barriers such as the QA team being located in
separate rooms or buildings, the distance between groups can magnify their differences.
Those that are outside the core development team can feel isolated, which can result in an
“us” versus “them” mentality. Even if QA is located in the same building, possibly in the
same physical space, there can be cultural and language differences, as well as differences in
backgrounds and expertise.

v v v

Therefore, tear down those barriers or walls that impede communication through
various actions such as including QA early on; make them part of the sprints, embed
them in the teams, and reward the whole team for quality.

An important principle in most agile practices is the “Whole Team” concept, where people
work together to produce a high quality product. It isn’t just testers who need to care about
quality. Everyone on the team needs to care about quality, even though they bring different
strengths and experiences to their work. Having QA as part of team from the start helps instill
a quality mindset into the team and makes quality concerns an integral part of a more
streamlined process. QA can help everyone on the team to know what system qualities are
important and how they fit into the process (when to do what for different qualities). QA still
focuses on system quality and their role in assuring quality, but at the same time it is
important for others in the team to feel responsible for the overall quality goals.

There are many ways to break down barriers between QA and the rest of the team. Have QA
fully participate in the team’s estimation sessions. If they are located in another area, have
QA specialists move to the same space and participate as part of the team bringing their
expertise to the group. Have the Product Owner (PO), development team, and QA sit in the
same room and be part of planning prior to the upcoming sprint. As items are assessed, QA
can use this opportunity and their experience to point out “ilities” (that may be overlooked
and need to be addressed. They become a QA Product Champion who points out risks and
helps create high level tests and integration points across teams.

SugarLoaf PLoP 2014: QA to AQ Part Three - 5

A benefit of including QA early and often is that they can help others understand and validate
requirements. Early involvement also helps QA to understand the overall project vision and
to find better ways to see that quality goals are met. QA in agile groups can be more
proactive, working to ensure quality across all aspects of the development process. They can
work closely and coordinate between business, management and developers. Additionally,
during sprints developers can Pair with a Quality Advocate.

One of the best ways to break down barriers is to try and locate people physically closer to
each other and make sure they have regular contact. For example, it might make sense to fly
people in if they are located in different parts of the country or the world. This is especially
useful early in the project to build closeness within the team and mutual understanding. Also,
if the teams are not co-located, then having regular virtual online meetings can help keep
different concerns in perspective and help the Whole Team feel connected. If QA is located in
the same area as the development teams, then the QA team can collocate with the
development teams several times during the week. If there are not enough QA people, they
can rotate around sharing experience and getting insights into the project. Developers can
also contribute to QA by Spreading the Quality Workload.

If you do not have enough QA people for all of your development teams, start out by having
them rotate between teams, pairing on some daily tasks. Focus on what adds value. Forcing
QA to write or review production code or participate in every standup may not be productive.
Some QA testing is so highly specialized that you can Shadow the Quality Expert to help
functional testers to become more skilled at load testing and other types of testing by pairing
them with Agile Quality Specialists who are skilled at system performance, scalability, or
other system qualities.

Trying to use summer interns or hiring someone remotely has shown to not work so well in
the long term. A much better approach is to grow the QA expertise and make it part of your
agile team from the start. This can be done through training and mentoring. It is a long-term
commitment to quality throughout the whole process.

Many of the Fearless Change Patterns [MR] can help you overcome the barriers and get buy
in from team members and high-level management. You may need to Ask for Help, locate a
Corporate Angel, address Corridor Politics, Build Bridges and Keep Things Visible. It is
important to retrospect and take Time for Reflection [MR], as you evolve teams to ensure
quality and safety as you grow and adapt your ways of working. People with specialized
skills, such as architecture, documentation, QA, or UX designers, who are not dedicated
fulltime to an agile project, can be made to feel part of the team is by assigning them to
support the team on an ongoing basis [RN]. They can continue meet and work with the team
as needed with the agile team.

SugarLoaf PLoP 2014: QA to AQ Part Three - 6

Pair with a Quality Advocate
“Unity is strength... when there is teamwork and collaboration, wonderful things can be
achieved.”—Mattie Stepanek

"Look! It's paired programming!" by Ted & Ian is licensed under CC BY 2.0

There is a lot more to quality than just building and testing a system. There are many systems
qualities and other considerations that must be undertook before the system is ready for
production. Not focusing on important system qualities early enough can cause significant
problems, delays and rework. Remedying performance or scalability deficiencies can require
significant changes and modifications to the system’s architecture.

While a Product Owner is responsible for prioritizing the work of the team, she may not be
aware of how the system is tested and how testing for system qualities differs from the unit
tests developers are writing. This can lead to ignoring quality-related tasks or
misunderstanding their contribution to achieving overall product quality.

Agile developers are familiar with writing unit tests to exercise and validate system
functionality. While unit tests are important, there is more to system quality than unit testing.
Good functional testing can be difficult at times let along trying to understand and test the
important system qualities.

How can the agile team build quality into the system, especially when it comes to
understanding and testing for system qualities?

v v v

While agile developers are good at developing based upon the requirements from user stories,
they are usually not as experienced on testing system qualities. QA has a lot of expertise
understanding system qualities and how to validate them.
Focusing on non-functional requirements can sometimes distract from important functional
requirements outlined by the product owner. Product owners, developers, and end-users like
to see implemented functionality as it gives a feeling of progress. However, the system is not
ready for release into production until non-functional requirements have also been addressed.

SugarLoaf PLoP 2014: QA to AQ Part Three - 7

Developers working on the system implement and verify the functional requirements with
tests they write. Often functionality impacts system qualities. Developers might not become
aware of system quality limitations or requirements until testing and validation is done by
QA. If there is not good communication between QA and the development team, it can be
difficult to address quality concerns early.
QA can be seen as trying to tell developers how to build and design the product without
having sufficient background to articulate all the details. Some developers may discount
comments from QA, because they do not and can not write production code and could not
possibly understand all the issues. Developers grow impatient and want more details. For lack
of specificity, developers start filling in details and implement what the product probably
should do, possibly compromising testability.

v v v

Therefore, pair developers and other agile team members with quality assurance to
complete quality-related tasks and to spread QA knowledge and quality perspectives.
QA is much more than just testing and validating the software. There are important quality
considerations that if the team is made aware of can help with the success of the system.
Involving QA throughout the process and pairing can help the team understand key qualities
and how to validate and think about them. It is important to Plan for Responsible Moments
[GWY] so that important system qualities are addressed at the most appropriate times.
QA can become a QA Product Champion by pairing with the Product Owner or Project
Manager to inform them about how the software is expected to work and what kinds of
testing is going on: “On more than one occasion, I’ve paired briefly with a project manager
(PM) who wants to know more about testing, more about the product, or at least more about
what remains to be done from the testing team. When I’ve tested with PMs, the time needed
to test seems to become clearer to them, which in turn improves our communications and
helps us better forecast time expectations [Joh].”

During programming tasks, QA members can pair with developers. When QA sits with the
developers they can help them design better unit tests as well as those that focus on testing
system qualities. Developers pairing with QA can also jointly create integration tests.
Pairing developers with testers is not new to the agile community [Joh, Koh, Mon]. Pairing
can be achieved in many ways, starting with initial sprint planning and continuing through
development, and even in production. Insightful experience reports and books highlight
different ways QA can be strong advocates and collaborate with other team members
throughout the development cycle [Bro, GC, Hil]. Pairing with a Quality Advocate supports
the Whole Team mindset by Spreading the Quality Workload throughout the agile team.
The synergy achieved by pairing with a quality advocate has mutual benefits. Testers
typically focus on testing from the users’ perspective. As they pair with developers, testers
gain a deeper understanding of how the software works behind the scenes. This helps QA to
identify potential areas that might require more testing as well as help them better isolate
defects. Developers learn much about testing boundary conditions, good interfaces, and input
validation from QA, as well as what conditions might lead to potential failure. Pairing need
not be constant. As [Joh] observes, “Once developers applied what they learned about testing
to their development projects, they came up with great testing scenarios on their own. Best of
all, it became difficult to find defects in the developer’s code after pair testing.”

SugarLoaf PLoP 2014: QA to AQ Part Three - 8

One organization noted that they were able to greatly reduce duplication on test efforts [Sav]:
“We found that we had a 50% duplication rate. Fifty percent of the automated tests that our
SDET’s had written were also in the developer’s unit test suite. These tests, consisting of
unit, happy path and some negative tests had already passed and did not need to be written
and run again by a different team. This was waste. Waste of time and resources that could be
reclaimed in our new methodology.”

Pairing QA with a DBA is useful, especially when isolating data schema or data access
issues. QA often has a deeper understand of how the software is expected to function than the
DBA. Both come to better appreciate each other's concerns and get ideas for improved testing
and validation of the system.

An architect can pair with QA to define the test architecture strategies [GWY] or to assess the
impact of particular testing results on a specific system quality. When tests show a particular
system quality attribute slipping below the minimum in an Agile Landing Zone [YW], QA
works with the architect to address the issue. QA often pairs with the architect and
development team to work on benchmarking the current software or extrapolating projected
values for specific performance or scalability attributes when production system
measurements aren’t feasible.
Pairing isn’t always successful, and there are some risks to be aware of. According to Janet
Gregory [Koh], “If one or the other goes in with the idea that it is a one-way learning
experience, the experience will fail.” Pairing is only effective when there is mutual respect
and trust. If there are gaps in understanding, whoever is “driving” during pairing needs to
ensure that the other party is actively participating and understands what is going on. The goal is
to build on mutual respect and trust, working collaboratively. For example, the developer
should not try to turn the QA person into a developer and vice-versa, rather they build upon
each other's strengths. For example, the QA expert can pair with a developer to add specific
details to Agile Quality Scenarios or determine the best testing strategy for them. Or QA can
work with the developer to understand the implications of a User’s Story’s Fold-out Qualities
and how best to test that they are met.

SugarLoaf PLoP 2014: QA to AQ Part Three - 9

Summary

This paper is a continuation of patterns for shifting from Quality Assurance (QA) to Agile
Quality (AQ). The complete set includes ways of incorporating QA into the agile process as
well as agile techniques for describing, measuring, adjusting, and validating important system
qualities. This paper focuses on two core patterns for overcoming barriers to becoming more
agile at quality; Break down Barriers and Pair with a Quality Advocate. Ultimately it is the
authors’ plan to write all of the patlets as patterns and weave them into a 3.0 pattern language
for evolving from Quality Assurance to an Agile Quality mindset.

Acknowledgements

We thank our shepherd Juan Reza for his comments and feedback during the SugarLoaf
PLoP 2014 shepherding process. We also thank our 2014 SugarLoaf PLoP Writers Workshop
Group of Arisa Kamada, Fabio Kon, Jorge Melegati, Masafumi Nagai, and Takashi Iba for
their valuable comments.

References

[Ast] Astels, D., Test-Driven Development: A Practical Guide. Second edition,
Prentice Hall, 2003.

[Bec02] Beck, K., Test Driven Development: By Example. Addison-Wesley, 2002.

[Bec04] Beck, K., Extreme Programming Explained: Embrace Change (The XP
Series), Addison-Wesley, 2004

[Bro] Brodwell, J., “Remote Pair Programming,” www.slideshare.net/
jhannes/2013-0807-agile-2013-remote-pair-programming, August 2013.

[CB] Coplien, J. and Bjørnvig G. Lean Architecture: for Agile Software
Development, John Wiley & Sons Ltd, 2010.

[De] Deming, W. Edwards, Out of the Crisis, MIT Press, 1986.
[GC] Gregory, Janet and Crispin, Lisa, More Agile Testing Learning: Journeys

For the Whole Team, Addison-Wesley, 2015.
[GWY] Guerra, E., Wirfs-Brock, R., and Yoder J., “Patterns for Initial

Architectural Design on Agile Projects,” 4th Asian Conference on Patterns
of Programming Languages (AsianPLoP 2015), Tokyo, Japan, 2015.

[Hil] Hile E., “Head On Collision: Agile QA Driving In A Waterfall World,”
Agile 2014 Conference, Orlando, Florida, USA.

[Iba] Iba, T., “Pattern Language 3.0 Methodological Advances in Sharing
Design Knowledge,” International Conference on Collaborative
Innovation Networks 2011 (COINs2011).

[Joh] Johnson K., Improve Your Testing and Your Testers with Paired Testing.
Inform IT April 2010

SugarLoaf PLoP 2014: QA to AQ Part Three - 10

[Koh] Kohl J. 2004. Pair Testing: How I Brought Developers into the Test Lab.
of Better Software, Volume 6, Number 1, Pg. 14-16, JANUARY 2004.

[Mar] Martin, R., Agile Principles, Patterns, and Practices in C#. First edition,
Prentice Hall, 2006.

[Mon] Montvelisky J., Pair-programming for testers. In On-Going Improvement,
Test Process, October 2010

[MR] Manns, Mary Lynn and Rising, Linda, Fearless Change: Patterns for
Introducing New Ideas, Addison-Wesley, 2005.

[RN] Raines, Brandon and Neher, Judy, “No Way! Agility in the Federal
Government”, Agile 2014 Conference, Orlando, Florida, USA.

[Sav] Savoia S., “Tearing Down the Walls: Embedding QA in a TDD/Pairing
and Agile Environment,” Agile 2014 Conference, Orlando, Florida, USA.

[Sho] Shore, J. and Warden, S. The Art of Agile Development, O'Reilly Media,
Inc. 2008.

[WY] Wirfs-Brock R. and Yoder J., “Patterns for Sustaining Architecture,” 19th
Patterns of Programming Language Conference (PLoP 2012), Tucson,
Arizona, USA, 2012.

[YWA]

Yoder J., Wirfs-Brock R., and Aguilar A., “QA to AQ: Patterns about
transitioning from Quality Assurance to Agile Quality,” 3rd Asian
Conference on Patterns of Programming Languages (AsianPLoP 2014),
Tokyo, Japan, 2014.

[YW] Yoder J. and Wirfs-Brock R., “QA to AQ Part Two: Shifting from Quality
Assurance to Agile Quality,” 21st Patterns of Programming Language
Conference (PLoP 2014), Monticello, Illinois, USA, 2014.

SugarLoaf PLoP 2014: QA to AQ Part Three - 11

Appendix

Previous papers on this topic have been published which outlines some core patterns we
found when evolving from typical quality assurance to being agile at quality [YWA, YW].
We outlined the patterns using patlets in the tables below. A patlet is a brief description of a
pattern, usually one or two sentences. The patlets in bold have been written up as patterns in
these previous papers. We break our software-related Agile Quality patterns into these areas:
identifying system qualities, making qualities visible, fitting quality into your process, and
being agile at quality assurance. Our ultimate goal is to turn all patlets into full-fledged
patterns and make a pattern language for action and change useful to software teams who
want to become more agile about system quality.

Core Patterns

Central to using these QA patterns is breaking down barriers and knowing where quality
concerns fit into your agile process. The following patlets describes these considerations.

Patlet Name Description
Break Down Barriers Tear down the barriers between QA and the rest of the

development team. Work towards engaging everyone in the
quality process.

Integrate Quality Incorporate QA into your process including a lightweight
means for describing and understanding system qualities.

Identifying Qualities

An important but difficult task for software development teams is to identify the important
qualities (non-functional requirements) for a system. Quite often system qualities are
overlooked or simplified until late in the development process, thus causing time delays due
to extensive refactoring and rework of the software design required to correct quality flaws. It
is important in agile teams to identify essential qualities and make those qualities visible to
the team. The following patlets support identifying the qualities:

Patlet Name Description
Find Essential Qualities Brainstorm the important qualities that need to be

considered and list them for inclusion on the roadmap.
Agile Quality
Scenarios

Create high-level quality scenarios to examine and
understand the important qualities of the system.

Quality Stories Create stories that specifically focus on some measurable
quality of the system that must be achieved.

Specify Measurable
Values or
System Qualities

Specify scale, meter, and values for specific system
qualities.

Fold-out Qualities Define specific quality criteria and attach it to a user story

SugarLoaf PLoP 2014: QA to AQ Part Three - 12

when specific, measurable qualities are required for that
specific functionality.

Agile Landing Zone Define a “landing zone” that defines acceptance criteria
values for important system qualities. Unlike traditional
“landing zones”, an agile landing zone is expected to evolve
during product development.

Recalibrate the
Landing Zone

Readjust landing zone values based on ongoing
measurements and benchmarks.

Agree on Quality
Targets

Define landing zone criteria for quality attributes that
specify a range of acceptable values: minimally acceptable,
target and outstanding. This range allows developers to
make tradeoffs to meet overall system quality goals.

Making Qualities Visible

It is important for team members to know important qualities and have them presented so that
the team is aware of them. The following patlets outline ways to make qualities visible:

Patlet Name Description
System Quality
Dashboard

Define a dashboard that visually integrates and organizes
information about the current state of the system’s qualities
that are being monitored.

System Quality Radiator Post a display that people can see as they work or walk by
that shows information about system qualities and their
current status without having to ask anyone a question. This
display might show current landing zone values, quality
stories on the current sprint or quality measures that the team
is focused on.

Qualify the Roadmap Examine a product feature roadmap to plan for when system
qualities should be delivered.

Qualify the Backlog Create quality scenarios that can be prioritized on a backlog
for possible inclusion during sprints.

SugarLoaf PLoP 2014: QA to AQ Part Three - 13

Being Agile at Quality

In any complex system, there are many different types of testing and monitoring, specifically
when testing for system quality attributes. QA can play an important role in this effort. The
role of QA in an Agile Quality team includes: 1) championing the product and the
customer/user, 2) specializing in performance, load and other non-functional requirements, 3)
focusing quality efforts (make them visible), and 4) assisting with testing and validation of
quality attributes. The following patlets support “Becoming Agile at Quality”:

Patlet Name Description
Whole Team Involve QA early on and make QA part of the whole team.
Quality Focused
Sprints

Focus on your software’s non-functional qualities by devoting
a sprint to measuring and improving one or more of your
system’s qualities.

QA Product Champion QA works from the start understanding the customer
requirements. A QA person will collaborate closely with the
Product owner pointing out important Qualities that can be
included in the product backlog and also work to make these
qualities visible and explicit to team members.

Agile Quality Specialist QA provides experience to agile teams by outlining and
creating specific test strategies for validating and monitoring
important system qualities.

Monitor Qualities QA specifies ways to monitor and validate system qualities.
Agile QA Tester QA works closely with developers to define acceptance

criteria and tests that validate these, including defining quality
scenarios and tests for validating these scenarios.

Spread the Quality
Workload

Rebalance quality efforts by involving more than just those
who are in QA work on quality-related tasks. Another way to
spread the work on quality is to include quality-related tasks
throughout the project and not just at the end of the project.

Shadow the Quality
Expert

Spread expertise about how to think about system qualities or
implement quality-related tests and quality-conscious code by
having another person spend time working with someone who
is highly skilled and knowledgeable about quality assurance
on key tasks.

Pair with a Quality
Advocate

Have developers work directly with quality assurance to
complete a quality related task that involves programming.

