
QA to AQ Part Four

Shifting from Quality Assurance to Agile Quality
“Prioritizing Qualities and Making them Visible”

Joseph W. Yoder 1, Rebecca Wirfs-Brock2, Hironori Washizaki3

1 The Refactory, Inc.,
2Wirfs-Brock Associates, Inc.

3Waseda University

joe@refactory.com, rebecca@wirfs-brock.com, washizaki@waseda.jp

Abstract. As organizations transition to agile processes, Quality Assurance (QA)
activities and attention to system quality need to evolve along with the evolution of
development practices. Agile quality teams incrementally deliver working software
while ensuring that important system qualities are also addressed. In order to pay
appropriate attention to system qualities, they need to be visible and included as
part of the prioritized work. This paper presents patterns for identifying system
qualities and including them on the project roadmap, adding quality-related work
items to the project backlog, and creating a quality radiator that communicates the
status and goals for delivering system qualities.

Categories and Subject Descriptors
• Software and its engineering ~ Agile software development • Social and professional topics ~ Quality assurance
• Software and its engineering ~ Acceptance testing • Software and its engineering ~ Software testing and debugging

General Terms
Agile, Quality Assurance, Patterns, Testing

Keywords
Agile Quality, Quality Assurance, Software Quality, System Qualities, Patterns, Agile Software Development, Scrum,
Quality Radiator, Quality Roadmap, Quality Backlog

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A
preliminary version of this paper was presented in a writers' workshop at the 22nd Conference on Pattern Languages of Programs
(PLoP). PLoP'15, OCTOBER 24-26, Pittsburgh, Pennsylvania, USA. Copyright 2015 is held by the author(s). HILLSIDE 978-1-
941652-03-9.

Presented at PLoP 2015: QA to AQ Part Four - 2

Introduction

As organizations evolve to being more agile, it is important that they also pay appropriate
attention to quality while delivering functionality. System qualities need to be visible and
included as part of the prioritized work. Also, it is important to know where quality concerns
can fit into your agile process and how to break down barriers between quality assurance and
the rest of the organization to better integrate quality into your agile process. Previously in
[YWA, YW, YWW] we presented an overview of patterns to become more agile at quality as
well as wrote thirteen patterns (see appendix).

In this paper we expand on ways for Making Qualities Visible by writing three additional
patterns: identifying system qualities and including them on the project roadmap (Qualify the
Roadmap), adding quality-related work items to the project backlog (Qualify the Backlog),
and creating a quality radiator that communicates the status and goals for delivering system
qualities (System Quality Radiator).

Our patterns are written in the spirit of Edward Deming’s fourteen principles for business
transformation and improvement [De]. Consequently, our patterns focus on actions for
improving software quality and integrating QA concerns and roles into the whole team. Our
focus is not on technical software programming practices. We recognize that programming
and development practices significantly contribute to or detract from software quality. Since
many others have written about programming, design and architectural practices, we focus
our patterns on QA related actions and increased visibility of system quality requirements in
order to help improve overall software quality.

Our patterns are intended for any agile team wanting to focus on important qualities for their
systems and better integrating QA into their agile process. These Agile Quality patterns are
for anyone who wants to instill a quality mindset and introduce quality practices earlier into
their process, too. These patterns need not just be for agile teams.

Presented at PLoP 2015: QA to AQ Part Four - 3

Qualify the Roadmap
“All you need is the plan, the roadmap, and the courage to press on to your destination.”
 — Earl Nightingale

Many agile teams include a product roadmap as part of their planning. This roadmap
typically shows a rough plan for delivering features over time. This plan is useful for sharing
a common understanding to the teams involved in the project and to help communicate
stakeholders’ expectations and overall project plans and goals across the organization. The
roadmap includes a timeline with expected milestones and targets for when key features are
desired.
As systems qualities are a key factor in the success of any product, how can agile teams
include these qualities as part of the roadmap and overall timeline?

v v v

Features that are delivered to end users are tangible and of obvious value to end users, so they
are easy to focus on and include in a roadmap. While the delivery of features may also
depend on system qualities, it can be unclear how they are related and thus system qualities
and architectural capabilities needed to deliver them are often not included in the roadmap.

Agile teams tend to do a good job of prioritizing and implementing end-user related features
and including user stories for them on the backlog. Often, these user stories do not mention
any system qualities. Consequently, understanding system qualities and when they should be
considered can sometimes be difficult.

System design involves making tradeoffs between implementing functionality that is good
enough to meet the important business requirements while adequately addressing system
qualities. Sometimes when making design tradeoffs, there is a temptation to overdesign or get
into too many details about technical qualities. On the other hand, trying to address important
system qualities after basic functionality has been implemented can result in major rework.
There might be a more appropriate time to address these qualities that would cause less
disruption.

Presented at PLoP 2015: QA to AQ Part Four - 4

v v v

Therefore, while developing and evolving the product feature roadmap, also plan for
when system qualities and the architecture features to support them should be
addressed. Be sure to Plan for Responsible Moments to know when important system
qualities should be implemented.

The product roadmap is a high-level view showing epics about how the product is likely to
grow across several major releases. Typically a product roadmap contains high-level features,
which are implemented by many user stories. Order processing and fulfillment, for example,
may be a high-level feature that is expected to be delivered, and thus it is represented on the
roadmap. To implement order processing you may need to develop one or more services,
install web servers, implement security processes, and access a transactional database. These
might be support by additional technical items on your roadmap. However, if performance or
security is also important, you may also want to add specific items for these concerns to your
roadmap.

Quality-related roadmap items should either be placed just before or along with any
functionality that depends on them. Note, this may seem contrary to that well-known agile
mantra, “Make it work, make it right, make it fast.” However, if you have a risky architecture
feature, you might want to work on that feature a bit before implementing functionality that
depends on it. Isn’t this similar to using a spike solution and then refining that solution?

During planning, corresponding system quality-related items should be added to your product
backlog or ToDo List. Adding quality related work to your backlog helps to more clearly
identify when certain performance targets or security mechanisms are expected and kept help
you understand priorities of quality-related items when you Qualify the Backlog.

Product roadmaps include a timeline for when major features are desired. Sometimes they
can also include architectural features to achieve desired system qualities. Alternatively,
teams may create a separate technology roadmap that outlines the expected delivery of
architecture components and technology. Regardless of whether you have a separate
technology roadmap or identify architecture features on your product roadmap, it is important
to make visible when important system qualities should be considered and worked on. There
are additional ways to make these qualities more visible such as Qualify the Backlog, Quality
Charts, and System Quality Radiators.

If you don’t make the delivery of system qualities explicit, then they might not be recognized
as being needed. Waiting too long to implement certain system qualities can cause significant
rework of the architecture. If critical qualities are addressed at more responsible moments,
such as when core pieces of the system are implemented that rely on them, it can be much
easier to limit technical risks and increase your chances of timely completing your project.
These system qualities directly contribute to meeting your definition of done.

To uniformly consider and specify necessary system qualities in product roadmaps, standards
for software and system quality models such as ISO/IEC 25010:2011 [ISO] can be
considered. They classify typical quality characteristics and provide an extensive framework
for systematically considering quality concerns. Agile teams might focus on a few important
quality characteristics, such as reliability and security, as important at the beginning of the
project. When considering additional qualities, such as usability and maintainability, you

Presented at PLoP 2015: QA to AQ Part Four - 5

might be forced to make tradeoffs between reworking your design to support qualities
originally considered or re-adjusting your expectations. Although it is neither necessary nor
desirable to specify and define requirements for all qualities from the very beginning, it is
important to define essential qualities and identity where on the product roadmap they are
expected to be delivered.

To ensure that quality assurance concerns are adequately addressed, standards for quality
assurance processes and activities such as IEEE 730-2014 [IEEE730] and IEEE 1012-2012
[IEEE1012] define some activities that can be useful for agile teams to consider as they
adjust or review their product roadmap. For example, IEEE 730-2014 specifies 16 software
quality assurance activities in terms of purpose, outcomes and tasks. By referring to these
activities, QA and other team members may develop an effective and consistent QA process
tailored to the specific requirements and/or environmental constraints for their project.

It is important to continue addressing system qualities as the system evolves and more
functionality is delivered. Checking that some qualities have been adequately addressed at
any point in time does not guarantee that these qualities will remain stable after subsequent
changes. In general, it is impossible to foresee when to ultimately check for a quality
(however, it might be possible in a few specific cases). So a plan to check qualities should not
be simply “when” but also address “which components” or “which changes.” Instead of just
saying, “Check privacy of personal information at the end of third iteration,” a plan should
also include “and whenever this happens, check for…”.

Presented at PLoP 2015: QA to AQ Part Four - 6

Qualify the Backlog
“Things come to me pretty regularly. There is never a shortage or a backlog.”
 — Duncan Sheik

Agile backlogs include an ordered list of important features and technical tasks necessary to
complete a project or a release. This backlog prioritizes the order that work is done. The
definition of done for each backlog item may also need to include important system quality
requirements. However, certain system qualities cut across one or more user stories.

How can agile developers better understand the scope of the work that needs to be done,
especially when it comes to understanding, implementing and testing system qualities?

v v v

Not focusing on important qualities early enough can cause significant problems, delays and
rework. Remedying performance or scalability deficiencies can require significant changes
and modifications to the system’s architecture. On the other hand, focusing too early on
system qualities in the development cycle can lead to overdesign and premature optimization
[Knuth].

Product Owners are focused on system functionality and prioritize the backlog based upon
the most important features that deliver value. Many product owners do not want to see these
technical items cluttering the backlog. Or if the technical items are on the backlog, they may
be given low priority due to lack of understanding of their impact on the overall system
design.
When system quality requirements are buried in the acceptance criteria of specific user
stories, development may overlook their importance or underestimate their effort. Desired
system qualities do not just happen by magic or emerge appropriately along with the
implementation. They take a commitment to quality as part of the ongoing work.

Presented at PLoP 2015: QA to AQ Part Four - 7

Some system qualities require a certain amount of infrastructure to be implemented before
they are able to included and validated. A system isn’t acceptable until it delivers
functionality along with desired system qualities. It can be hard to know how much
infrastructure is needed to deliver certain qualities.

v v v

Therefore, create and add specific quality items to your backlog. These items can
include Quality Scenarios, Quality Stories, and Fold-Out Qualities for some user stories.

If you have identified Quality Scenarios in a Quality Workshop, these can be added to your
backlog as individual work items. If a specific quality spans multiple user stories, for
example, the aggregate performance of multiple business transactions, then this overall
quality is more visible if you create a separate Quality Story and add it to your backlog to
represent that quality requirement. Sometimes certain qualities are related to specific
functional user stories. When then happens you can use a Foldout Quality instead. This
ensures that the story isn’t declared done until it is delivered along with its desired qualities.
If these qualities become cumbersome to manage on the product backlog, they can be put into
a separate technical backlog. The product owner may not want these items on the main
product backlog as they want to primarily focus on the delivery of end-user features for the
product. While some believe there should be only one backlog, experience has shown that
there can also be benefits at times to having a separate technical backlog. It is important to do
whatever adds the most value to the team.
A separate team dedicated to working on system quality and architecture concerns can
possibly work on this technical backlog. One issue that must be resolved when having
separate backlogs is how to coordinate the work and manage dependencies between system
qualities and features based upon user stories. For example, reprioritizing a user story may
cause you to reprioritize system qualities that are needed to support it. The backlogs need to
be in alignment, or you won’t deliver qualities in support of features.
There are several well-established approaches for conducting Quality Workshops and
defining Quality Scenarios such as Quality and Architecture methods including Quality
Attribute Workshops (QAWs) [Bar], Scenario-Based Architecture Analysis (SAAM) and
Architecture Tradeoff Analysis Method (ATAM) proposed by CMU/SEI [Bass]. In the spirit
of agile quality, quality workshops and reviews are conducted incrementally, as the system is
developed. These meetings tend to be shorter and more focused on immediate architecture
concerns. Agile Quality Scenarios and Quality Stories [YWA] can be written in these
workshops to communicate important qualities.
One of the consequences of having quality-related items on the backlog is they are visible.
However, if they are not assigned a high enough priority, they will not get done. It is
important that the team and the product owner understand the impacts of ignoring quality.
Phillippe Kruchten suggests coloring backlog items which are invisible to users to make them
stand out: architecture features including quality-related items are colored yellow and
technical debt reduction items are colored black [Kru].

Presented at PLoP 2015: QA to AQ Part Four - 8

System Quality Radiator
“The lavish presentation appeals to me, and I've got to convince others.”— Freddie Mercury

Typically, agile software development focuses on features and functionality before paying
attention to other important system aspects such as architecture and critical qualities. On agile
projects you hear statements like, “Make it work, make it right, then optimize it.” Most agile
practices push to develop important functional requirements as outlined by the product
owner, which are prioritized on the work backlog.

As the system evolves the team begins to better understand what system qualities are
important and how to measure them. Keeping track of these qualities and what the current
quality of the system becomes increasingly important. There are essential qualities that are
key to the success of the product.

How can agile teams provide a means to make important qualities of the system and
their current status accessible and visible to the team?

v v v

Agile developers are good at developing code based upon the requirements from user stories.
Understanding what qualities are important in addition to system functionality is also
important. Making them visible can help the team know what is key for a project’s success.

Creating and maintaining meaningful visible indicators for some qualities is difficult. Unless
there is activity or the values of the qualities change with some frequency, people will tune
them out. Reminders are valuable, but even if relevant, they can be ignored.

Creating a lot of tools and displays can seem like a pointless luxury compared to making sure
the system is meeting the requirements well enough to ship. Creating displays takes time and
often there are limited resources and people dedicated to building QA tools. There often isn’t
time to carefully consider important quality implications of one’s design and what is
important to measure and monitor.
It can be difficult to know what qualities are important to monitor. As more of the system is
built and qualities are implemented, certain ones are important to monitor. Some qualities,
like performance, might degrade with the addition of new capabilities. Others, once validated
and made testable, are not likely to change over time.

Presented at PLoP 2015: QA to AQ Part Four - 9

Certain qualities such as performance and reliability, if not tracked regularly, can become
very difficult to improve late in the development process. Although originally the system
might meet quality constraints, as the system evolves, sometimes qualities become invisible
and as a consequence aren’t maintained over time.

v v v

Therefore, post displays that people can see as they work or walk by that shows
information about the system qualities you want to focus on and their current status
without having to ask anyone a question.
System Quality Radiators can have many forms ranging from posters or displays to colored
sticky notes on a Kanban board, to colorized backlog items. What is important is that the
quality radiator is visible and easily understood. It is also important to keep the quality
radiator up to date. As noted by Alistair Cockburn [Coc]:

“An Information radiator is a display posted in a place where people can see it as
they work or walk by. It shows readers information they care about without having to
ask anyone a question. This means more communication with fewer interruptions."

A display might show current landing zone values, quality stories on the current sprint,
reminders about quality-related activities, or quality measures that the team is actively
working on. Sometimes a display will just show the results of certain system quality-related
tests for the day. Sometimes, third-party tools can be used to present a live display of key
system qualities and values.
Other times, the team might need to create specific tools that help monitor measurable system
make them visible (sometimes as a plugin to their development environment). When teams
start monitoring the live system, their tools can evolve into a System Quality Dashboard.
Some qualities are not directly measurable but still need attention. These qualities can still be
put on radiators so the team is still reminded of them.

Quality radiators can include dashboards, with the main difference between a radiator and a
dashboard being that a radiator is purposefully intended to communicate quality conditions
and information at a glance. A dashboard, on the other hand might include very detailed
information that isn’t easily interpreted by a casual but interested observer. A dashboard isn’t
necessarily a quality radiator but can be included as part of a quality radiator.
You also may want to create a chart or listing of the important qualities of the system along
with their objectives and also make that visible to the team; possibly on the agile board. This
chart might contain reminders about specific quality items to focus on for a particular sprint
or set of sprints, instead of specific quality measure.
Following are examples of some potential quality-related reminders:

● Performance tune every service invocation….
● Make sure audit logs are generated….
● Focus on addressing security holes in….
● Keep working on caching…

A quality radiator can be a blend of actual measures, targets, short term objectives and
longer-term quality goals. There need not be just one quality-related display of information. It
is important to update any quality radiator with new information fairly frequently or it will
get ignored. If too much information is being radiated, then it can be difficult to interpret
what’s really critical and important qualities and changing values might be lost or ignored.

Presented at PLoP 2015: QA to AQ Part Four - 10

Summary

This paper is a continuation of patterns for shifting from Quality Assurance (QA) to Agile
Quality (AQ). The complete set of patterns includes ways of incorporating QA into the agile
process as well as agile techniques for describing, measuring, adjusting, and validating
important system qualities. This paper focused on three patterns for prioritizing and making
quality visible. Ultimately it is the authors’ plan to write all of the patlets listed in the
appendix as patterns and weave them into a 3.0 pattern language [Iba] for evolving from
Quality Assurance to an Agile Quality mindset.

Acknowledgements

We thank our shepherd Antonio Maña for his valuable comments and feedback during the
PLoP 2015 shepherding process. We also thank our 2015 PLoP Writers Workshop Group,
Michael John, Eduardo Guerra, Wiebe Wiersema, Cees de Groot, and James Thorpe, for their
valuable comments and suggestions for additional patterns to add to this collection.

Presented at PLoP 2015: QA to AQ Part Four - 11

References

[Bar] Barbacci M., Ellison R., Lattanze A., Stafford J., Weinstock C., Wood
W., “Quality Attribute Workshops (QAWs), Third Edition,” Technical
Report, CMU/SEI-2003-TR-016, 2003.

[Bass] Bass L., Clements P., Kazman R., Software Architecture in Practice (3rd
Edition), Addison-Wesley, 2012.

[Coc] Cockburn, A., Crystal Clear: A Human-Powered Methodology for Small
Teams: A Human-Powered Methodology for Small Teams, Addison-
Wesley, 2004.

[De] Deming, W. Edwards, Out of the Crisis, MIT Press, 1986.x
[Iba] Iba, T. 2011, “Pattern Language 3.0 Methodological Advances in Sharing

Design Knowledge,” International Conference on Collaborative Innovation
Networks 2011 (COINs2011).

[IEEE730] IEEE Standard 730-2014 - IEEE Standard for Software Quality
Assurance Processes, 2014.

[IEEE1012] IEEE Standard 1012-2012 - IEEE Standard for System and Software
Verification and Validation, 2012.

[ISO] ISO/IEC 25010: 2011 Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models, 2011.

[Knuth] Knuth, D., “Structured Programming With Go To Statements,” Computing
Surveys, Vol 6, No 4, December 1974, pp. 261-301.

[Kru] Kruchten, P., Blog post - “The Missing Value of Software Architecture,”
http://philippe.kruchten.com/2013/12/11/
/the-missing-value-of-software-architecture, 2013.

[YWA]

Yoder J., Wirfs-Brock R., and Aguilar A., “QA to AQ: Patterns about
transitioning from Quality Assurance to Agile Quality,” 3rd Asian
Conference on Patterns of Programming Languages (AsianPLoP 2014),
Tokyo, Japan, 2014.

[YW] Yoder J. and Wirfs-Brock R., “QA to AQ Part Two: Shifting from
Quality Assurance to Agile Quality,” 21st Conference on Patterns of
Programming Language (PLoP 2014), Monticello, Illinois, USA, 2014.

[YWW] Yoder J., Wirfs-Brock R. and Washizaki H., “QA to AQ Part Three:
Shifting from Quality Assurance to Agile Quality: Tearing Down the
Walls,” 10th Latin American Conference on Patterns of Programming
Language (SugarLoafPLoP 2014), Ilha Bela, São Paulo, Brazil, 2014.

Presented at PLoP 2015: QA to AQ Part Four - 12

Appendix

We have published several papers that outline core patterns for evolving from typical quality
assurance to being agile at quality [YWA, YW, YWW]. We outlined the entire collection
patterns using patlets in the tables below. A patlet is a brief description of a pattern, usually
one or two sentences. The patlets in bold have been written up as patterns. We break our
software-related Agile Quality patterns into these areas: identifying system qualities, making
qualities visible, fitting quality into your process, and being agile at quality assurance. Our
ultimate goal is to turn all patlets into full-fledged patterns and make a pattern language for
action and change useful to software teams who want to become more agile about system
quality.

Core Patterns

Central to using these QA patterns is breaking down barriers and knowing where quality
concerns fit into your agile process. The following patlets describes these considerations.

Patlet Name Description
Break Down Barriers Tear down the barriers between QA and the rest of the

development team. Work towards engaging everyone in the
quality process.

Integrate Quality Incorporate QA into your process including a lightweight
means for describing and understanding system qualities.

From here we classified our patterns into these categories: Identifying Qualities, Making
Qualities Visible, and Being Agile at Quality which we outline below.

Identifying Qualities

An important but difficult task for software development teams is to identify the important
qualities (non-functional requirements) for a system. Quite often system qualities are
overlooked or simplified until late in the development process, thus causing time delays due
to extensive refactoring and rework of the software design to correct quality flaws. It is
important that agile teams identify essential qualities and make those qualities visible to the
team. The following patlets support identifying the qualities:

Patlet Name Description
Find Essential Qualities Brainstorm the important qualities that need to be

considered.
Agile Quality
Scenarios

Create high-level quality scenarios to examine and
understand the important qualities of the system.

Quality Stories Create stories that specifically focus on some measurable
quality of the system that must be achieved.

Measurable
System Qualities

Specify scale, meter, and values for specific system
qualities.

Fold-out Qualities Define specific quality criteria and attach it to a user
story when specific, measurable qualities are required for
that specific functionality.

Presented at PLoP 2015: QA to AQ Part Four - 13

Agile Landing Zone Define a landing zone that defines acceptance criteria
values for important system qualities. Unlike traditional
landing zones, an agile landing zone is expected to
evolve during product development.

Recalibrate the
Landing Zone

Readjust landing zone values based on ongoing
measurements and benchmarks.

Agree on Quality
Targets

Define landing zone criteria for quality attributes that
specify a range of acceptable values: minimally
acceptable, target and outstanding. This range allows
developers to make tradeoffs to meet overall system
quality goals.

Making Qualities Visible

It is important for team members to know important qualities and have them presented so that
the team is aware of them. The following patlets outline ways to make qualities visible:

Patlet Name Description
System Quality
Dashboard

Define a dashboard that visually integrates and organizes
information about the current state of the system’s qualities
that are being monitored.

System Quality
Radiator

Post a display that people can see as they work or walk by
that shows information about system qualities and their
current status without having to ask anyone a question. This
display might show current landing zone values, quality
stories on the current sprint or quality measures that the team
is focused on.

Quality Checklists Create a quality checklist to use to help ensure important
system qualities are being met.

Qualify the Roadmap Examine a product feature roadmap to plan for when system
qualities should be delivered.

Qualify the Backlog Create quality scenarios and architecture items that can be
prioritized on a backlog for possible inclusion during sprints.

Being Agile at Quality

In any complex system, there are many different types of testing and monitoring, specifically
when testing for system quality attributes. QA can play an important role in this effort. The
role of QA in an Agile Quality team includes: 1) championing the product and the
customer/user, 2) specializing in performance, load and other non-functional requirements, 3)
focusing quality efforts (make them visible), and 4) assisting with testing and validation of
quality attributes. The following patlets support being agile at quality:

Patlet Name Description
Whole Team Involve QA early on and make QA part of the whole team.
Quality Focused
Sprints

Focus on your software’s non-functional qualities by
devoting a sprint to measuring and improving one or more of
your system’s qualities.

Presented at PLoP 2015: QA to AQ Part Four - 14

Product Quality
Champion

QA works from the start understanding the customer
requirements. A QA person will collaborate closely with the
Product owner pointing out important Qualities that can be
included in the product backlog and also work to make these
qualities visible and explicit to team members.

Agile Quality Specialist QA provides experience to agile teams by outlining and
creating specific test strategies for validating and monitoring
important system qualities.

Monitor Qualities QA specifies ways to monitor and validate system qualities
on an ongoing basis.

Agile QA Tester QA works closely with developers to define acceptance
criteria and tests that validate these, including defining
quality scenarios and tests for validating these scenarios.

Spread the
Quality Workload

Rebalance quality efforts by involving more than just those
who are in QA work on quality-related tasks. Another way to
spread the work on quality is to include quality-related tasks
throughout the project and not just at the end of the project.

Shadow the
Quality Expert

Spread expertise about how to think about system qualities
or implement quality-related tests and quality-conscious
code by having another person spend time working with
someone who is highly skilled and knowledgeable about
quality assurance on key tasks.

Pair with a Quality
Advocate

Have developers work directly with quality assurance to
complete a quality related task that involves programming.

Other QA to AQ Patterns:
There are many other QA activities such as code reviews, inspections, architecture
prototyping or experimentation, which occur throughout development. It is important for
iterative processes to include QA and evaluation activities throughout the whole development
cycle. This will lead to other patterns which we have started to outline ideas for below.
● Exploit Your Strengths
● Value Quality
● Everyone has QA responsibilities
● Grow the Team
● Architecture Runway
● Quality Debt related to Technical Debt
● Define Quality Acceptance Criteria
● Making Quality Debt Visible and How to Manage
● Getting the Agile Mindset
● Perform an Experiment to Learn
● Responsible Moments
● Continuous Inspection
● Quality Risk Assessment
● Quality Tests
● Automate First
● Share the Quality Load

