
QA to AQ Part Five

Being Agile at Quality
“Growing Quality Awareness and Expertise”

Joseph W. Yoder 1, Rebecca Wirfs-Brock2, Hironori Washizaki3

1 The Refactory, Inc.,
2Wirfs-Brock Associates, Inc.

3Waseda University

joe@refactory.com, rebecca@wirfs-brock.com, washizaki@waseda.jp

Abstract. As organizations transition to agile processes, Quality Assurance (QA)
activities and roles evolve. The whole team focuses on quality as they incrementally
deliver working software. Incremental delivery provides an opportunity to engage
in QA activities much earlier, ensuring that both functionality and system qualities
are focused on just in time, rather than too late. Knowing what specific qualities
need to be paid attention to and checking that they have been appropriately
addressed is important. The patterns in this paper extend our previous work with
three patterns aimed at increasing quality awareness and expertise: “Quality
Checklists”, the “Product Quality Champion”, and “Shadow the Quality Expert”.

Categories and Subject Descriptors
• Software and its engineering~Agile software development • Social and professional topics~Quality assurance •
Software and its engineering~Acceptance testing • Software and its engineering~Software testing and debugging

General Terms
Agile, Quality Assurance, Patterns, Testing

Keywords
Agile Quality, Quality Assurance, Software Quality, System Qualities, Testing, Patterns, Agile Software Development,
Scrum, Quality Related Acceptance Criteria, Quality Checklists, Quality Champion, Whole Team

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.
Preliminary versions of these papers were presented in a writers' workshop at the 3rd Asian Conference on Pattern Languages of
Programs (AsianPLoP). AsianPLoP'2016, February 24-26, Taipei, Taiwan. Copyright 2016 is held by the author(s). SEAT ISBN
978-1-XXXX-XXXX-X. .

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 2

Introduction

As organizations evolve to being more agile, it is important that the “Whole Team” focuses
on quality. Having QA be an integral part of the team from the start enhances efforts to build
quality into the system. The whole team focuses on quality while delivering functionality.

One benefit of including QA throughout the development process is that they can help the
team understand and validate both functional and nonfunctional (or system quality)
requirements. QA can help the product owner understand what system quality requirements
should be considered and when. QA can assist with the definition of done which often needs
to incorporate many important system qualities in addition to system functionality.
Quality is still easy to overlook. People are not always good at remembering to do things they
should do to ensure quality. Having reminders can help make sure that critical qualities are
not ignored. Sometimes the impact a decision can have on quality may not be obvious.
Getting into the mindset of a quality expert takes time, especially with understanding what
qualities need to be addressed before a system can be released.

Previously in [YWA, YW, YWW14, YWW15] we presented an overview of patterns to
become more agile at quality (see appendix). In this paper we expand on ways for growing
quality awareness and expertise by writing three additional patterns: Quality Checklists, the
Product Quality Champion, and Shadow the Quality Expert.
Using Quality Checklists not only makes important qualities visible, they are helpful
reminders of quality items that might otherwise be ignored or overlooked. A Product Quality
Champion promotes awareness of qualities, ensuring they are understood and appreciated by
the Product Owner and team. Shadow the Quality Expert is an opportunity for an expert to
actively mentor others as they perform quality-related tasks.

These patterns are intended for any agile team that wants to focus on important qualities for
their systems and better integrating QA into their agile process. Although there is an agile
focus, these patterns are for anyone who wants to instill a quality focus and introduce quality
practices earlier into their process. These patterns need not just be for agile teams.

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 3

Quality Checklists
“Checklists seem able to defend anyone, even the experienced, against failure in many more
tasks than we realized.”―Atul Gawande, The Checklist Manifesto: How to Get Things Right

© Can Stock Photo Inc. /bolsunova.

A common challenge is how best to handle non-functional requirements or system qualities.
Some system qualities, such as security and usability, can be observed by executing system
functionality. Other qualities, such as maintainability and extensibility are embodied in how
the software is constructed.
Agile teams need to consider many different system qualities as they implement the system.
Quality-related acceptance criteria can be added to a specific user story (Fold-out System
Qualities) to define quality-related acceptance criteria that apply to that user story. In
addition, some system qualities need to be consistent across many user stories, such as how to
consistently handle security. Some quality requirements, such as transaction throughput, or
the number of concurrent users, represent aggregate behaviors that cut across many different
user stories and broadly affect how the software should be designed and structured.
Even though you might be paying attention to quality, as your system evolves, problems will
arise and there will be issues sustaining qualities. Quality requirements will inevitably change
as you learn and parts of the system that were good enough at one time, might no longer meet
today’s requirements.
How can you ensure system-wide quality requirements are being considered and not
overlooked as your system evolves?

v v v

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 4

User stories aren’t complete until their acceptance criteria are satisfied. Stakeholders often
forget to include quality-related requirements in their acceptance criteria. Stakeholders may
assume the developers know what to do and they will include work on qualities as they
implement the user stories. Even if stakeholders are familiar with specific quality
requirements and specify those for a user story, they may naively assume that other system
qualities will be elsewhere, because they were present in already implemented functionality.

Understanding what qualities are important can be difficult if the team only relies upon tacit
knowledge and assumptions about system qualities. Specific qualities may be different for
new functionality but the team needs to know what is expected of “standard” functionality in
order to keep quality in mind.

If the team is skilled at agile development and has a good sense of what needs to be done
about system quality, they can consistently implement system qualities as they implement
new functionality. Knowing what system quality concerns should consistently be addressed
can be a big problem, especially as the size of the team grows.

During the evolution of a system, even if you know what is expected, you can still be
surprised. System performance may degrade for something that was previously tested and
released. Because there initially weren’t any performance problems, you are lulled into a
false sense that your architecture will continue to be adequate. Then, as new features are
added and released something that you thought no longer needed attention causes problems.
Developers who come from more traditional development backgrounds, often assume that
they only need to implement what is specified by the requirements. Often user stories leave
out technical and non-functional qualities. There can be a big gap between what is specified
in a user story and what needs to be consistently implemented for a system to be usable,
scalable, or maintainable.

Expectations for quality goals can change as new technologies are adopted. So today’s
quality expectations might be greater than what was acceptable earlier in the life of the
software. Being explicit about what qualities are consistently expected across an entire
system allows you to adjust quality expectations as your system evolves.

v v v

Therefore, create checklists that include expectations for desired system qualities which
are common across the system and should be consistently met. Checklists can be
reviewed by the team to ensure that qualities are met before features are released and
verified by the team as part of quality assurance.

A checklist is a good way to keep quality-related expectations and actions in mind. Explicitly
stating what qualities need to be delivered consistently across many different user stories, and
what important qualities should be considered as new functionality is added can help the team
keep quality requirements in mind.

There are two kinds of checklists: read/review and do/confirm [Gaw]. A read/review
checklist is one where team members may perform tasks separately beforehand, then come
together to affirm that these items have been successfully completed. A do/confirm checklist
is one where each checklist item is performed on the spot and then verified by the team
before proceeding to the next step.

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 5

A good place to use a checklist is where you have time to pause and reflect before
proceeding. Finding these pause points isn’t difficult for agile teams. There are natural places
to run through a checklist, such as part of a sprint retrospective or release planning meeting,
after integration testing, pre-deployment, post-build, or whenever an Architecture Trigger
condition occurs. In fact, checklists can be run through daily as the teams perform their work.
We know of one agile team that has a daily standup checklist which includes a checklist item
for whether the team has worked on improving the system, reducing technical debt. They also
have checklists for moving between states on their kanban board.

Daily Standup Checklist and a Checklist on the Kanban Board at Mozaic Works

Checklists can be proactively created based on past experience or perceived risks. For
example, data migration has lots of potential risks such as loss of critical information. Based
upon previous experience a checklist and migration process with rollback process can be
created and verified before migration starts. The checklist will include places to pause and
confirm during the migration process that things went well and, if there are any issues,
actions that can be taken for recovery before proceeding with the next migration step.

A good time to update a checklist is when have a problem meeting your system qualities in
spite of good intentions. You knew what to do, but even so, you didn’t take the necessary
actions to avoid slipping up. A reminder to check before you take action might make you
pause, stop, and take appropriate action. For example, after costly downtime, one team added
to their deployment checklist an item to check that a schema reversal script was written and
verified before any production database schema changes were deployed.

You also might discover a problem through retrospectives or issues that arise while
attempting to meet a specific quality objective. A checklist should be updated whenever it no
longer fulfills its goal of ensuring system quality. If you find items that are being ignored or
overlooked, consider revising your checklist. Team members need to develop, own and
update their checklists as they evolve how they work. It is important to not create a
speculative checklist trying to guess what might be important.

Checklists may initially be perceived as being burdensome or overly specific. Developers,
feeling constrained by an unwieldy checklist may resist using them. A well-designed

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 6

checklist can relieve developers and QA of having to keep in mind every quality-related
requirement as they dive deep into implementation details. To be accepted by the team, a
quality checklist should be mutually agreed upon, and considered as a reasonable guide
during development and a final check by the team before features are deployed.

Atul Gawande in The Checklist Manifesto, explores how checklists have been adopted in the
medical profession [Gaw]. He states that one big problem of accepting checklists is
overcoming the stigma associated with following a procedure or a checklist: “It somehow
feels beneath us to use a checklist, an embarrassment. It runs counter to deeply held beliefs
about how the truly great among us—those we aspire to be—handle situations of high stakes
and complexity. The truly great are daring. They improvise. They do not have protocols and
checklists. Maybe our idea of heroism needs updating.”

If medical doctors can learn to use checklists and improve the quality of their work, agile
teams can too. Rather than stifling creativity, checklists for system qualities can act as a
safety net, making sure developers keep what’s important about specific system quality
requirements in mind, and that QA knows what is expected of the system in general, in
addition to detailed or specific user-related system qualities.

Here is an example of a checklist from our PLoP 2015 workshop colleague, James Thorpe:

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 7

Development Release Checklist from James Thorpe

It is important that this checklist fits on a single page or less. The above example includes
what is important to James’ company for their projects. In this checklist, items for code
quality and specific performance measures are specified. There is the ability to waive a
quality requirement if it isn’t met, but the exception to the general requirement needs to be
briefly explained.

What makes a good checklist?
● Not too many items to check
● Organized into system quality categories or, alternatively, by component
● Specifies measurable values for quality attributes which cut across

the architecture and/or affect many different stories
● It specifies baseline values for important qualities
● It is tailored to your specific project or product

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 8

Some checklists, such as those for code quality, should be evaluated before declaring that you
are “done” for each sprint. However, other checklists such as performance and security can
only be verified when the whole system is integrated. You might also write or use tools to
assist with some automatic checks for the checklists but they are not a replacement for
explicitly inspecting that checklist items are verified. For example, another agile team added
a checklist item for the team to review any changes to threading code on their web
application before deployment, after a hasty last minute “fix” that seemed obvious to a
developer, broke their production system.

It is fine to have multiple checklists. Any checklist should be specific to the task at hand. You
use it to tick off items that need to be met before proceeding to the next step in your process.
For example, you might have specific checklists for code quality, performance, and security.
Checklists can be at different levels of granularity and quality-related items can be part any
checklist. For example you might have a quality checklist for releasing your software into
production which has detailed steps that must be taken for setting up the environment or
validating rollback, etc. Or you might have a performance related checklist that verifies you
haven’t fallen below critical Agile Landing Zone minimum values before planning work for
your next sprint.

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 9

Product Quality Champion

“Quality is never an accident. It is the result of intelligent effort.”— John Ruskin

AP Photo/Paul Sakuma, (CC BY-NC 2.0) — https://goo.gl/wIztw7

When organizations transition to agile, they often do a good job at getting developers and
other team members to focus on agile development practices and prioritizing items that are
important to the delivery of the project. However, as they focus on delivery, quality can seem
to get left aside and in fact, quality seems worse than it was before.

Many agile teams and product owners are focused on the delivery of important features for
the system. However, it requires more than implementing the features before any system can
be considered done. While delivering features is critical to the success of the the project, the
system is not “ready for release” until critical system qualities have also been addressed.

As the system’s features are delivered, how can the team pay attention to systems
qualities as well?

v v v

Product owners prioritize the backlog. Given all their conflicting advice and things that are
competing for their attention, how can quality-related items be included on the backlog and
made part of the roadmap?
Product Owners primarily focus on the highest priority features first, in order to get feedback
as to their usefulness. However, a system is not ready for production until important system
qualities have also been addressed.

A Product Owner can be pulled in different directions from stakeholders. Some stakeholders
do not understand how functionality can be impacted by quality. Product Owners may think
they are technical, but they may be out of touch, so they don’t necessarily appreciate the
effort required to meet specific quality targets.

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 10

Product Owners can worry about losing sight of the important goals of the project, especially
when quality concerns are raised that compete for the team’s attention. They may think that
focusing on these system qualities is over-engineering a solution. Sometimes they are right,
but at other times there are important architecture concerns that will affect quality and need to
be addressed.
Often you need to make tradeoffs between various qualities that have significant architecture
impacts. If these are not examined and prioritized at the responsible moments, they can lead
to a lot of technical debt which might led to a lot of refactoring or a Big Ball of Mud [FY].

v v v

Therefore, include as part of your agile team a Product Quality Champion. This is
someone who helps the team keep focused on important system qualities.

To deliver a system that is, someone needs to be an advocate for the overall qualities of the
system too. This is achieved by having a Product Quality Champion be included as part of
the Whole Team working as a quality advocate. This person is involved from the start of the
project understanding the customer requirements and continues working throughout assisting
the team with a quality focus. A product quality champion can come from QA. Business
analysts, architects, or product managers may also be product quality champions. Sometimes
you know of a person that has excitement and enthusiasm around product quality. As a
manager or agile coach, you support and encourage them in this role. At other times, you may
need to find a willing team member and help them grow into this role.

The quality champion or advocate collaborates closely with the Product Owner and other
team members pointing out important qualities that can be included in the product backlog.
They also work to make these qualities visible and explicit to all team members by leading
Quality Workshops, setting up Quality Radiators or Quality Dashboards and generally
promoting enthusiasm about product quality. It is especially important that the quality
champion and the Product Owner have a good working relationship. When the Product
Quality Champion raises a quality concern, the Product Owner needs to pay attention. On the
other hand, raising too many concerns can deflate their importance. Ultimately the Product
Owner makes the final decision on the prioritization of the backlog based upon careful
consideration from the Product Quality Champion along with input from stakeholders and the
team.

Typically a Product Quality Champion doesn’t have “quality champion” in their job title.
This is a role or task that they take on in addition to their other responsibilities. This person
can be part of the agile team or they might even come from outside of the team. If quality is a
high priority, then it is important to make clear who is responsible for this role. A product
quality champion doesn’t let quality issues slide, and works to build consensus around system
quality requirements and how they might be delivered. One product quality champion we
know was a master at getting the team to come to agreement on Measurable System Qualities
for Agile Quality Scenarios. Another quality champion persisted at bringing to the attention
of the Product Owner whenever performance degraded, even when that news was
unwelcome. Sometimes it may seem like a Product Quality Champion is only the bearer of
bad news. However, if you are a product quality champion, it is equally important for you to
make visible the successes the team has at improving system quality and make visible the
small successes of the team.

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 11

The Product Quality Champion can Break down Barriers through regular interactions with
all stakeholders. During envisioning, they will help to Quality the Roadmap and during
sprints they can work with the Product Owner to Qualify the Backlog or lead workshops to
Find Essential Qualities. They might speak up at retrospectives and planning meetings to
make sure quality concerns are heard and get involved whenever quality checklists are
updated.

When things are not going so well, and people are not listening to quality concerns, it is
important for a Product Quality Champion to be more of a quality promoter rather than a
complainer. A Product Quality Champion might need to employ some fearless change
patterns [MR, MR2015] such as Accentuate the Positive, Small Successes, Whisper in the
General’s Ear, Guru on your Side, or Elevator Pitch; specifically when communicating
important qualities to the team, trying to get buy-in about the importance of qualities and
ensuring they receive the appropriate attention.

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 12

Shadow the Quality Expert
“Tell me and I forget. Teach me and I remember. Involve me and I learn.”
 — Benjamin Franklin

Photo/acute_tomato, (CC BY-NC 2.0) — https://goo.gl/7GkEl6

As an organization grows, it is important to also grow and evolve quality expertise along with
the agile team. Often organization do not have the resources or people to completely fulfill
their QA needs. Quality experts can have deep technical and product knowledge. It is
desirable to spread around this expertise to minimize the “bus factor1.” A whole team
philosophy leads you to want to not lock up or isolate expertise, but instead spread
knowledge across the team and grow “T-shaped” skills within your organization. T-shaped
people have skills and knowledge that are both deep and broad [Brown].
How can organizations grow quality expertise and spread knowledge and ideas about
qualities across the teams?

v v v

Companies can reorganize or downsize QA teams. Companies can grow rapidly thus leading
to a need for more QA. This can lead to QA being spread too thin and having too much work
to do. This can sometimes lead to important qualities being overlooked until right before or
right after the software is released. The challenge is how to use what existing experience you
have to help grow an understanding of important quality practices within the organization.

QA may be asked to do more than they’ve done in the past (not just only manual tests, but
exploratory testing and performance testing, too). QA expertise can become highly
specialized--I do UX testing, you do automated tests, I do manual testing, but then the

1 A project’s bus factor (or alternatively truck factor) is the number of persons it would need to lose in order for
the project to lose its institutional memory and halt its progress. The bus factor is a measurement of the
concentration of information in individual team members [CH]. https://en.wikipedia.org/wiki/Bus_factor

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 13

workload shifts. Sometimes work needs to be evened out (not every developer is busy all the
time with writing production code).

Sometimes teams cannot afford full time QA resource. What if you don’t have enough
quality people, how can you share that information to the team so that the team knows how to
at least address the important system qualities? QA work is sometimes offshored. This can
make it difficult for communication and shared understanding.

It is important for the Whole Team to understand quality, not necessarily be experts but at
least get a better understanding. How can you grow the agile team to spread quality expertise
around? Ultimately everyone needs to understand quality.

v v v

Therefore, have various people follow or shadow a QA expert while they are doing their
tasks. The QA expert works as a mentor teaching by actively involving the shadow as an
apprentice in understanding what happens and what needs to be considered during
important quality tasks.

Shadowing QA and getting a better understanding of their tasks can help prevent a “weakest
link” in the QA team. Developers and other team members can shadow and learn some of the
QA tasks and QA’s ways of thinking. A shadow is analogous to an apprentice or job shadow
(https://en.wikipedia.org/wiki/Job_shadow). There are side benefits from shared experiences:
QA can learn more from the developers and team members’ perspective and vice-versa.

By spreading expertise, the Whole Team improves its ability to think about system qualities
or implement quality-related tests. This can help with quality-consciousness by having
another person spend time working with someone who is highly skilled and knowledgeable
about quality assurance on key tasks. Ultimately the “quality” mindset can spread throughout
the team.

Early on, a shadow can follow a QA expert around, observing and taking notes. It is
important that the shadow asks relevant questions and have close interactions with the QA
expert. The expert can explain what she is thinking as she is doing her work. As the shadow
becomes more confident and learns new skills, they become more involved in performing
quality tasks. The best scenario for effective shadowing is when the QA expert has enough
time and patience to actively involve the shadow with their daily tasks.

People with specialized expertise think more effectively and problems solve better than non-
experts. Bransford, Brown and Cocking [BBC] point out:

“Research shows that it is not simply general abilities, such as memory or
intelligence, nor the use of general strategies that differentiate experts from novices.
Instead, experts have acquired extensive knowledge that affects what they notice
and how they organize, represent, and interpret information in their environment.
This, in turn, affects their abilities to remember, reason, and solve problems.”

Experts tend to think in terms of higher level goals and strategies when solving a problem
within their area of expertise. Rather than following procedures, experts are quickly able to
determine what to do given the current context, and adjust their tactics based on changing
situations. Because experts notice features and patterns of information that novices do not,
effective shadowing takes someone who is good enough to learn from an expert (not a rank

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 14

novice) paired with an expert who is able to verbalize all the things they may be thinking
about out loud, relating the knowledge and higher order abstractions/bigger concepts/bigger
picture that the expert has in her head as she is solving the problem. Not all experts are adept
at articulating what they are thinking as they are problem solving.

When identifying experts and shadowing opportunities, consider whether the QA expert is
able and willing to explain what she is thinking while performing some task. It is also
important that the “shadow” have enough skills and knowledge to be able to ask questions
and get into the mindset of the expert.

There are different approaches for shadowing the QA expertise. For example, you might start
with a training workshop to build skills followed by practicing the quality-related tasks with
the Quality Expert. Other shadowing approaches and situations will be determined by the
Quality Expert based on the context and need.

Shadowing a Quality Expert can be part time or task specific, depending on your needs. A
good time for shadowing is when a new member joins the QA team and has the opportunity
to learn some important practices and values and how to think about quality concerns from
the Quality Expert. Another opportune time for shadowing is when you want to grow skills
and have someone other than the Quality Expert develop competency at performing a critical
quality-related task.

It can be hard to effectively shadow if QA is spread too thin or is under strict time
constraints. Although you can still shadow, it might slow down QA. Shadowing takes time
and commitment. Shadowing might fail if there is too much pressure on producing immediate
results or there is only half-hearted buy in from the shadow or the expert or management.

Shadowing can also be used to train a Quality Product Champion. Shadowing with a Quality
Expert is similar to Pairing with a Quality Advocate but with a longer term goal of building
deep expertise rather than assisting the developers with quality related tasks. If QA is too
busy, you can bring in a Mentor [MR] to assist with skill building.

Summary

This paper is a continuation of patterns for shifting from Quality Assurance (QA) to Agile
Quality (AQ). The complete set includes ways of incorporating QA into the agile process as
well as agile techniques for describing, measuring, adjusting, and validating important system
qualities. This paper focused on three patterns for growing quality and expertise. The authors
plan to write more QA to AQ patterns and weave them into a pattern language for evolving
from Quality Assurance to an Agile Quality mindset.

Acknowledgements
We thank James Thorpe for sharing his development release checklist and Alex Balboaca for
sharing his checklists used at MozaicWorks. We thank our shepherds Chien-Hung Liu and
Yu-Chin Cheng for their comments and feedback during the AsianPLoP 2016 shepherding
process. We also thank our 2016 AsianPLoP Writers Workshop Group participants G
Priyalakshmi, Paulina Andrea Silva Ghio, Emiliano Tramontana, Jesper Lundgren, Chunwei
Lin, and Yu-Cheng Shao for their valuable comments.

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 15

References

[BBC] Bransford T., Brown A., and Cocking, R., How People Learn: Brain,

Mind, Experience and School. National Academy Press, 2000.
[Brown]

Brown T., The hunt is on for the Renaissance Man of computing, in The
Independent, September 17, 1991.

[CH]

Coplien J. and Harrison, N., Organizational patterns of agile software
development. Wiley, 2004.

[FY] Foote B., Yoder J., “Big Ball of Mud,” Pattern Languages of Programs
Design 4 Harrison N., Foote B., and Rohnert H., editors. Addison Wesley,
2000.

[Gaw] Gawande A., The Checklist Manifesto. Picador, 2009.
[MR] Manns, M. L., and Rising, L. Fearless Change: Patterns for Introducing

New Ideas. Addison-Wesley Professional, 2004.
[MR2015] Manns, M. L., and Rising, L. More Fearless Change: Strategies for

Making your Ideas Happen. Addison-Wesley Professional, 2015.
[YWA]

Yoder J., Wirfs-Brock R., and Aguilar A., “QA to AQ: Patterns about
transitioning from Quality Assurance to Agile Quality,” 3rd Asian
Conference on Patterns of Programming Languages (AsianPLoP 2014),
Tokyo, Japan, 2014.

[YW] Yoder J. and Wirfs-Brock R., “QA to AQ Part Two: Shifting from Quality
Assurance to Agile Quality,” 21st Conference on Patterns of Programming
Language (PLoP 2014), Monticello, Illinois, USA, 2014.

[YWW14] Yoder J., Wirfs-Brock R. and Washizaki H., “QA to AQ Part Three:
Shifting from Quality Assurance to Agile Quality: Tearing Down the
Walls,” 10th Latin American Conference on Patterns of Programming
Language (SugarLoafPLoP 2014), Ilha Bela, São Paulo, Brazil, 2014.

[YWW15] Yoder J., Wirfs-Brock R. and Washizaki H., “QA to AQ Part Four:
Shifting from Quality Assurance to Agile Quality: Prioritizing Qualities
and Making them Visible,” 22nd Latin American Conference on Patterns of
Programming Language (PLoP 2014), Pittsburgh PA, USA, 2015.

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 16

Appendix

Previous papers on this topic have been published which outlines some core patterns we
found when evolving from typical quality assurance to being agile at quality [YWA, YW,
YWW]. We outlined the patterns using patlets in the tables below. A patlet is a brief
description of a pattern, usually one or two sentences. The patlets in bold have been written
up as patterns. We break our software-related Agile Quality patterns into these areas:
identifying system qualities, making qualities visible, fitting quality into your process, and
being agile at quality assurance. Our ultimate goal is to turn all patlets into full-fledged
patterns and make a pattern language for action and change useful to software teams who
want to become more agile about system quality.

Core Patterns

Central to using these QA patterns is breaking down barriers and knowing where quality
concerns fit into your agile process. The following patlets describes these considerations.

Patlet Name Description
Break Down Barriers Tear down the barriers between QA and the rest of the

development team. Work towards engaging everyone in the
quality process.

Integrate Quality Incorporate QA into your process including a lightweight
means for describing and understanding system qualities.

From here we classified our patterns into these categories: Identifying Qualities, Making
Qualities Visible, and Being Agile at Quality which we outline below.

Identifying Qualities

An important but difficult task for software development teams is to identify the important
qualities (non-functional requirements) for a system. Quite often system qualities are
overlooked or simplified until late in the development process, thus causing time delays due
to extensive refactoring and rework of the software design required to correct quality flaws. It
is important in agile teams to identify essential qualities and make those qualities visible to
the team. The following patlets support identifying the qualities:

Patlet Name Description
Find Essential Qualities Brainstorm the important qualities that need to be

considered.
Agile Quality
Scenarios

Create high-level quality scenarios to examine and
understand the important qualities of the system.

Quality Stories Create stories that specifically focus on some measurable
quality of the system that must be achieved.

Measurable
System Qualities

Specify scale, meter, and values for specific system
qualities.

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 17

Fold-out Qualities Define specific quality criteria and attach it to a user story
when specific, measurable qualities are required for that
specific functionality.

Agile Landing Zone Define a “landing zone” that defines acceptance criteria
values for important system qualities. Unlike traditional
“landing zones”, an agile landing zone is expected to
evolve during product development.

Recalibrate the
Landing Zone

Readjust landing zone values based on ongoing
measurements and benchmarks.

Agree on Quality
Targets

Define landing zone criteria for quality attributes that
specify a range of acceptable values: minimally acceptable,
target and outstanding.

Making Qualities Visible

It is important for team members to know important qualities and have them presented so that
the team is aware of them. The following patlets outline ways to make qualities visible:

Patlet Name Description
System Quality
Dashboard

Define a dashboard that visually integrates and organizes
information about the current state of the system’s qualities
that are being monitored.

System Quality Radiator Post a display that people can see as they work or walk by
that shows information about system qualities and their
current status without having to ask anyone a question.

Quality Checklists Create a quality checklist to use to help ensure important
system qualities are being met.

Qualify the Roadmap Examine a product feature roadmap to plan for when
system qualities should be delivered.

Qualify the Backlog Create quality scenarios that can be prioritized on a backlog
for possible inclusion during sprints.

Being Agile at Quality

In any complex system, there are many different types of testing and monitoring, specifically
when testing for system quality attributes. QA can play an important role in this effort. The
role of QA in an Agile Quality team includes: 1) championing the product and the
customer/user, 2) specializing in performance, load and other non-functional requirements, 3)
focusing quality efforts (make them visible), and 4) assisting with testing and validation of
quality attributes. The following patlets support “Becoming Agile at Quality”:

Patlet Name Description
Whole Team Involve QA early on and make QA part of the whole team.
Quality Focused Sprints Focus on your software’s non-functional qualities by

devoting a sprint to measuring and improving one or more
of your system’s qualities.

QA to AQ Part Five: Being Agile at Quality ﹘ “Growing Quality Awareness and Expertise” - 18

Product Quality
Champion

A person with Quality experience (maybe from QA) works
closely with the agile team from the start of the project
keeping a quality focus during development.

Agile Quality Specialist QA provides experience to agile teams by outlining and
creating specific test strategies for validating and
monitoring important system qualities.

Monitor Qualities QA specifies ways to monitor and validate system qualities
on an ongoing basis.

Agile QA Tester QA works closely with developers to define acceptance
criteria and tests that validate these, including defining
quality scenarios and tests for validating these scenarios.

Spread the
Quality Workload

Rebalance quality efforts by involving more than just those
who are in QA work on quality-related tasks. Spread the
work on quality by including quality-related tasks
throughout the project.

Shadow the
Quality Expert

Spread expertise about how to think about system qualities
or implement quality-related tests and quality-conscious
code by having an apprentice work with someone highly
skilled and knowledgeable about quality assurance.

Pair with a Quality
Advocate

Have developers work directly with quality assurance to
complete a quality related task that involves programming.

Other QA to AQ Patterns:
There are other activities that contribute to quality. It is important for agile and iterative
processes to include QA and evaluation activities throughout the whole development cycle.
Exploring these tasks will lead to other patterns which we have started to outline ideas for
below.
● Exploit Your Strengths
● Reward all, make all equal
● Quality For All
● Grow the Team
● Architecture Runway
● Quality Debt related to Technical Debt (related to risk and project management)
● System Quality Acceptance Criteria
● Agile Quality Requirements
● Making Quality Debt Visible and How to Manage
● Getting the Agile Mindset
● Perform an Experiment to Learn
● Responsible Moments
● Continuous Inspection
● Quality Risk Assessment
● Quality Workshop
● Quality Tests
● What not to test
● Automate First (Automate, Automate, Automate)
● Share the Quality Load
● No QA for small groups (Everyone is QA)

