
1

© 2002, Wirfs-Brock Associates.

Skills for the Agile Designer

Rebecca Wirfs-Brock
Wirfs-Brock Associates

rebecca@wirfs-brock.com

Rebecca Wirfs-Brock
Wirfs-Brock Associates

rebecca@wirfs-brock.com

2
Copyright 2002, Wirfs-Brock Associates, Inc.

Agenda

What is agility?
Tools for agile designers

Seeing
Shaping
Describing

Agility and Design Rhythms

2

3
Copyright 2002, Wirfs-Brock Associates, Inc.

Agility Recognizes Design Values

Agility doesn’t demand that you throw away what
works. Instead, it goes hand-in-hand with
articulating your design values. Agile designers
acknowledge that:

Modeling should have a specific purpose
Documentation should add value
Reflection is crucial

You can’t get better if you don’t measure the
effects of changing your work products, design
process, or development practicesReplanning
is essential
Agility isn’t a single “event”; it’s a process

4
Copyright 2002, Wirfs-Brock Associates, Inc.

Disturbing Beliefs and Trends

Agility does not mean that:
Problem solving must occur in two week
increments
You only talk informally about code “smells”
instead of having in-depth design
discussions and review
You equate refactoring code with good
design (and don’t design before you code)
You do whatever works without regard to any
process. Formal = bad; Informal = good
Design descriptions and documentation add
no value

3

5
Copyright 2002, Wirfs-Brock Associates, Inc.

What Fueled these Trends

Analysis paralysis
Endless high-level discussions with little regard
for implementation concerns
Code restructuring does make things better.
Design doesn’t stop when coding starts and
cleaning up code is part of preserving design
integrity
The hope that if we omit extra stuff that adds no
value maybe, just maybe, we’ll succeed at
getting to market sooner and satisfying our
customers. Being formal or precise takes time.
Piles of models. No useful results. Many design
artifacts don’t add value, so why not cut them
out?

6
Copyright 2002, Wirfs-Brock Associates, Inc.

Agility Demands Design Integrity

Agile designers employ strategies for designing
responsibly in the face of uncertainty, complex
problems with no obvious answers, and lots of
tedious details
Agile designers (and their managers) need to react
and respond to changing situations, while steadily
working on all aspects of their design
Cutting corners isn’t the goal, cutting out
inefficiency is the goal
A process that works on one project can’t be
blindly applied to the next project. Agility is not a
recipe. It’s a journey.

4

© 2002, Wirfs-Brock Associates.

Tools for Seeing

8
Copyright 2002, Wirfs-Brock Associates, Inc.

A Thought Experiment

What if we believed that only those endowed with an
innate gift could learn to read? What if teachers
believed the best way to instruct was to expose a
child to lots of reading materials, then wait to see
what happens? Fear of stifling creativity would
dampen attempts to guide new readers. If a child
asked how to read something, a teacher might
say, ‘Try whatever you think works. Enjoy it,
explore, reading is fun!’ Perhaps one or two in any
class would possess that rare talent and
spontaneously learn to read.

5

9
Copyright 2002, Wirfs-Brock Associates, Inc.

How Do You Learn to Draw?

“It is simply a matter of learning basic
perceptual skills—the special ways of seeing
required for drawing. I claim that anyone
can learn enough seeing skills to draw a
good likeness of something seen ‘out there’
in the real world.”
--Betty Edwards

10
Copyright 2002, Wirfs-Brock Associates, Inc.

Overcoming our Biases

“Perhaps artistic [drawing] talent has
seemed rare and out of the ordinary
because we expect it to be rare and out of
the ordinary.”
--Betty Edwards, Drawing on the Artist Within

The same claim might be made for:
Thinking abstractly
Developing a well-factored object design
based on object roles
Creating application-specific frameworks

6

11
Copyright 2002, Wirfs-Brock Associates, Inc.

How Do You Learn to Design?

You become adept at object design with
enough practice and experience seeing the
nature of the design problem and learning
fundamental strategies for producing an
acceptable solution.
Although a highly creative activity, design
fundamentals can be easily learned

12
Copyright 2002, Wirfs-Brock Associates, Inc.

Fundamental Design Constructs

an application = a set of interacting objects
an object = an implementation of one or
more roles
a role = a set of related responsibilities
a responsibility = an obligation to perform a
task or know information
a collaboration = an interaction of objects
and/or roles
a contract = an agreement outlining the
terms of a collaboration

7

13
Copyright 2002, Wirfs-Brock Associates, Inc.

Object Role Stereotypes

“Purposeful oversimplifications” help us focus an
object’s responsibilities

Information holder - knows and provides
information
Structurer - maintains relationships between
objects and information about those relationships
Service provider - performs work and, in general,
offers services
Coordinator - reacts to events by delegating tasks
to others
Controller - makes decisions and closely directs
others’ actions
Interfacer - transforms information and requests
between distinct parts of a system

14
Copyright 2002, Wirfs-Brock Associates, Inc.

Seeing leads to questioning…
“I’m curious about something. Though I noticed it
somewhat before, it seems very prominent in our midterm
example. I think my question is general enough not to
worry about broadcasting it to the group.

Are domain objects often primarily information holders? It
seems most domain objects are things (Customers,
Participants, Events, etc) and things tend to know
information about themselves. Or also service providers
sometimes. I don’t see many Coordinators or Controllers
as domain objects. Those seem to usually be behind the
scenes (I.e. system level) objects.

Again, I’m just curious if this is common, or if it’s a
mistake I’m making when I think about what a ‘domain’
object should be.”

8

15
Copyright 2002, Wirfs-Brock Associates, Inc.

Or does it?

<<control>>

<<boundary>>

<<entity>>
An entity is passive. It does
not initiate any action.

Early analysis object stereotypes from Objectory……

A control object controls
interactions between a collection
of objects. It usually corresponds
to a use case.

A boundary object lies on the
periphery of the system. It
interacts with all 3 kinds of
objects.

16
Copyright 2002, Wirfs-Brock Associates, Inc.

The Power of Blends

Stereotypes from Objectory business modeling..

A worker represents an abstraction
of a human that acts within the system.

A case worker is a worker that interacts
directly with others outside the system.

9

17
Copyright 2002, Wirfs-Brock Associates, Inc.

How Peter Coad Sees…
Pink <<moment-interval>>
represents events or activities
that we need to keep track of for
business or legal reasons

Yellow <<role>> classes
represent a way of participating
in an event or activity by a green
entity

Green entity classes are
categorized into <<party>>,
<<place>>,and <<thing>>

Blue <<description>> represents
a description of some physical
thing

Just Typical: UML Stereotypes and Class
Archetypes, Stephen Palmer

InformIT Sept. 26, 2002

18
Copyright 2002, Wirfs-Brock Associates, Inc.

Seeing Should Generate Ideas

Classification is useful… but generating ideas
about behavior is productive

"Black-and-white conveys basic information. Color
reaches out and grabs you.” –Peter Coad
“…archetype[s] have more or less the same sort of
attributes and operations and tend to interact with
other archetypes in generally predictable ways.
These patterns of characteristics and behavior can
help us very … quickly identify attributes and
operations… and give us increased confidence in
the structure of our code.” –Stephen Palmer

10

19
Copyright 2002, Wirfs-Brock Associates, Inc.

The Power of Seeing in Color

“When working informally, I use four pads of
different colored, three-inch square Post-it notes to
represent classes on flipchart pads drawing
associations with a suitable marker pen.
In the same way that after you have watched color
television or seen color photographs, you do not
want to return to black and white except for
nostalgic reasons, most people never want to
return to the shallowness of the black-and-white
version once they have experienced object
modeling in color.”
--Stephen Palmer

20
Copyright 2002, Wirfs-Brock Associates, Inc.

The Generative Power of Role
Stereotypes to Identify

Responsibilities

Pushing on an object’s character leads to initial
responsibilities.

Ask of a service provider, “what requests should it
handle?” Turn around and state these as
responsibilities for “doing” or “performing” specific
services
What duties does an interfacer have for translating
information and requests from one part of the
system to another (and translating between
different levels of abstraction)
What important events does a controller handle and
what others does it direct… ?

11

21
Copyright 2002, Wirfs-Brock Associates, Inc.

Seeing at Different Abstraction
Levels

We can see “objects and behavior” at
different levels. Martin Fowler* identifies 3
levels:

At the conceptual level, an object is a set of
responsibilities
At the specification level, an object is a set
of methods that can be invoked by other
objects or itself
At the implementation level, an object is
code and data

*Design Patterns Explained,
Alan Shalloway & James R. Trott, pp. 15-16

22
Copyright 2002, Wirfs-Brock Associates, Inc.

Pulling Up a Level
Reverse engineer a class into
responsibilities…

public final void set(int year, int month, int date)

This method sets the values of the year, month, and day-of-the- month fields of this
Calendar.

public final void set(int year, int month, int date, int hour, int minute) This method sets the
values of the year, month, day-of-the- month, hour, and minute fields of this Calendar.

public final void set(int year, int month, int date, int hour, int minute, int
second)

This method sets the values of the year, month, day-of-the- month, hour, minute, and second
fields of this Calendar.

public void setFirstDayofWeek(int value)

This method sets the day that is considered the beginning of the week for this Calendar. This
value should be determined by the Locale of this Calendar. For example, the first day of the
week in the United States is Sunday; in France it's Monday.

public void setLenient(boolean lenient)

This method sets the leniency of this Calendar. A value of false specifies that the Calendar
throws exceptions when questionable data is passed to it, while a value of true indicates that the
Calendar makes its best guess to interpret questionable data. For example, if the Calendar is
being lenient, a date such as March 135, 1997 is interpreted as the 135th day after March 1,
1997.

public void setMinimalDaysInFirstWeek(int value)

This method sets the minimum number of days in the first week of the year. For example, a
value of 7 indicates the first week of the year must be a full week, while a value of 1 indicates
the first week of the year can contain a single day. This value should be determined by the
Locale of this Calendar.

public final void setTime(Date date)

This method sets the point in time that is represented by this

Calendar.

public void setTimeZone(TimeZone value)

This method is used to set the time zone of this Calendar.

The Java Calendar class

Internally, Calendar keeps track of a point in time in two ways. First, a “raw” value is
maintained, which is simply a count of milliseconds since midnight, January 1, 1970 GMT, or,
in other words, a Date object. Second, the calendar keeps track of a number of fields, which are
the values that are specific to the Calendar type. These are values such as day of the week, day
of the month, and month. The raw millisecond value can be calculated from the field values, or
vice versa.

Calendar also defines a number of symbolic constants. They represent either fields or values.
For example, MONTH is a field constant. It can be passed to get() and set() to retrieve and
adjust the month. AUGUST, on the other hand, represents a particular month value. Calling
get(Calendar.MONTH) could return Calendar.AUGUST.

Calendar Methods

public int getFirstDayOfWeek()

This method returns the day that is considered the beginning of the week for this Calendar.
This value is determined by the Locale of this Calendar. For exa mple, the first day of the week
in the United States is Sunday, while in France it is Monday.

public abstract int getGreatestMinimum(int field)

This method returns the highest minimum value for the given time field, if the field has a
range of minimum values. If the field does not have a range of minimum values, this method is
equivalent to getMinimum().

public abstract int getLeastMaximum(int field)

This method returns the lowest maximum value for the given time field, if the field has a
range of maximum values. If the field does not have a range of maximum values, this method is
equivalent to getMaximum(). For example, for a GregorianCalendar, the lowest maximum
value of DATE_OF_MONTH is 28.

public abstract int getMaximum(int field)

This method returns the maximum value for the given time field. For example, for a
GregorianCalendar, the maximum value of DATE_OF_MONTH is 31.

12

23
Copyright 2002, Wirfs-Brock Associates, Inc.

To Get The Big Picture:
Calendar Revealed

24
Copyright 2002, Wirfs-Brock Associates, Inc.

Pulling Up a Level
Examine and characterize a design… to see
and understand… and then change it

“The Object-Oriented Brewery: A Comparison of Two Object-Oriented Methods,”R. Sharble and S. Cohen,
Boeing Technical Report BCS-G4059, 1992.

“How Designs Differ”, R. Wirfs-Brock, Smalltalk Report, vol. 1, no. 4

13

25
Copyright 2002, Wirfs-Brock Associates, Inc.

To Characterize the Two Designs

Data-Driven Responsibility-Driven

centralized control delegated control

controllers coordinators

inherited attributes inherited behavior

many low-level
messages

fewer, higher-level
messages

lots of simplistic
information holders

a few smart objects that
blend role stereotypes

26
Copyright 2002, Wirfs-Brock Associates, Inc.

Bottling a Batch: Centralized
Control

14

27
Copyright 2002, Wirfs-Brock Associates, Inc.

Then Work to Improve Encapsulation
Approach #1

Delegate creation of Bottled Batch to In Process Batch

Approach #2
Collapse 2 information holders into 1

In Process Batch
Batch

Bottled Batch size
recipe ID
batch ID
date made: Date
date bottled: Date
bottled: Boolean
inProcess: Boolean

size
recipe ID
batch ID
date made: Date

size
recipe ID
batch ID
date bottled: Date

:Scheduled
Transfer

1.changeState(Bottled) :InProcess
Batch

Bottled
Batch

2.newBatch(size,
recipe,batch)

BottledBatch

:Scheduled
Transfer

1.changeState(Bottled) :Batch

© 2002, Wirfs-Brock Associates.

Tools for Shaping Solutions

15

29
Copyright 2002, Wirfs-Brock Associates, Inc.

Frame Your Design Problems

“When you turn on a light, you probably think
of your movement of the control button and
the illumination of the light as a single
event. In fact, of course, something more
complex is going on.”

— Michael Jackson
Software systems can be thought of a set of
related and interconnected subproblems—
and as a consequence may be comprised of
several different “problem frames”. Each
different class of problem has different
concerns and design issues.

30
Copyright 2002, Wirfs-Brock Associates, Inc.

5 Problem Frames
Control Problems - controlling state changes of
external devices or machinery.
Connection Problems - receiving or transmitting
information indirectly through a connection.
Information Display Problems - presenting
information in response to queries about things and
events known by your software.
Workpiece Problems - a tool that allows users to
create and manipulate computer-processable objects
or “workpieces”. Just like a lathe is a tool for
woodworking, software help users create documents,
compile programs, compose music, perform
calculations, manipulate visual images, generate
reports...
Transformation Problems - converting some input to
one or more output formats.

16

31
Copyright 2002, Wirfs-Brock Associates, Inc.

Problem Frames And Design Focus

Each different class of problem has different
concerns and design issues
Control frames—Do you need to determine
whether attempts at changing external conditions
had the desired effect? If so, you will design ways
to probe whether things are as you expect. And if
they aren’t, well… is the problem your software or
an external device, and how should you recover?
Connection problems--Connections break down,
information gets lost or gets garbled. You may
need to re-establish connections or try alternate
paths, or…

32
Copyright 2002, Wirfs-Brock Associates, Inc.

Problem Frames and Design Focus

Information Display Problems--Does your
design have to accommodate imprecise
questions or partial answers?
Workpiece Problems—What’s the real
nature of the workpiece and how usable is
your tool? Do we really need all the features
of Microsoft Word to edit documents?
Transformation Problems--What constitutes
an acceptable loss of information or the
reversibility of a transformation can be an
issue. What constraints are there on speed
or memory utilization?

17

33
Copyright 2002, Wirfs-Brock Associates, Inc.

Problem Frames and Design Focus

The ideal: Jackson advocates fully
understanding the nature of the problems
your software is trying to solve before you
start design .
The agile reality: In a world full of imperfect
knowledge and time constraints, be better
prepared by characterizing what problems
your design must solve… more problems
may crop up during design.

34
Copyright 2002, Wirfs-Brock Associates, Inc.

How a Connection Problem Affects
Your Design

“In many problems you’ll find that you can’t
connect the [software] machine to the relevant
parts of the real world in quite the way you would
like. You would prefer a direct connection...instead
you have to put up with an indirect connection that
introduces various kinds of delays and distortion.”
–Michael Jackson
Basic strategies for dealing with connection
issues:

Consider that your software is really interacting
with “something in the middle” that is connected
to “something out there” that doesn’t always work
Design your software to react in the face of
potential time-delays, conflicting states between
“connected” system as well as faulty connections.

18

35
Copyright 2002, Wirfs-Brock Associates, Inc.

Agility and Collaboration Design

Traits of an agile designer
Doesn’t fudge on design complexity
Doesn’t blindly apply design patterns as
“the best solution” to a problem
Explores alternatives
Looks for simplifying solutions
Looks to develop a consistent style
Has a sense of aesthetics (and
compromises them when time gets tight)
Uses patterns as archetypes

36
Copyright 2002, Wirfs-Brock Associates, Inc.

“Build A Message” Use Case
Actor Actions System Responsibilities
“Click” to start software
speaking

Start building a message

Repeat until . . .

Optionally, “click” to select
letter

Optionally, “click” to select
word

Optionally, “click” to select
sentence

Determine what to speak
(letter, word, sentence, or
space)
 Speak letter
 Add letter to word

 Speak space
 Add word to end of
sentence
 Start new word

 Speak sentence
 Add sentence to end of
message
 Start new sentence

… a command is issued
 Process command

 (separate use cases)

Speak for Me
enables a
severely

disabled user to
communicate

19

37
Copyright 2002, Wirfs-Brock Associates, Inc.

Presentation
Layer

Application
Layer

Domain Services
Layer

Technical Services
Layer

Controller

Centralized Use Case Control

38
Copyright 2002, Wirfs-Brock Associates, Inc.

Build a Message

MessageBuilder

A

Timer

Selector

Alphabet

Vocabulary

Message

SentenceDictionary
UserProfile

Word

Presenter

20

39
Copyright 2002, Wirfs-Brock Associates, Inc.

Centralizing Control

Many decisions make the controller difficult
to manage …
What does it do when a user selects
something? It could be a letter, a word, a
space, a sentence, a command, a
destination
When does it present each of the above to
the user? It depends on the state of the
message, what the user did last, and on the
state of the software

40
Copyright 2002, Wirfs-Brock Associates, Inc.

Controlling the Guessing

MessageBuilder

A

Timer

Selector

Alphabet

Vocabulary

Message

SentenceDictionary
UserProfile

Word

Presenter

21

41
Copyright 2002, Wirfs-Brock Associates, Inc.

Handling the Selections

MessageBuilder

A

Timer

Selector

Alphabet

Vocabulary

Message

SentenceDictionary
UserProfile

Word

Presenter

42
Copyright 2002, Wirfs-Brock Associates, Inc.

Delegating Control

Factors decision-making into helper objects
Replaces complex control with simpler
coordination and delegation
Distributes focused logic into classes that
implement singular, smaller roles
More classes and objects

22

43
Copyright 2002, Wirfs-Brock Associates, Inc.

aClient aCoordinator anInfoHolder

aService
Provider

aService
Provider

aService
Provider

aState

aState

Controller = Coordinator + State

aClient aController
anInfoHolder

aService
Provider

aService
Provider

aService
Provider

44
Copyright 2002, Wirfs-Brock Associates, Inc.

Applying the State Pattern to Simplify the
Controller

Each state
object takes
responsibility
for handling

events
delegated to it

by the
MessageBuilder

Each state
object takes
responsibility
for handling

events
delegated to it

by the
MessageBuilder

23

45
Copyright 2002, Wirfs-Brock Associates, Inc.

MessageBuilder

A

Timer

Selector

Alphabet

Vocabulary

Message

SentenceDictionary
UserProfile

Word

States timeout

selection

handleTimeout()
handleSelection()

returns next state

Applying the State Pattern Simplifies the
Controller

Complexity is
still located in a
“control center”.
Can we simplify

the control
center by giving

other objects
more

responsibility?

Complexity is
still located in a
“control center”.
Can we simplify

the control
center by giving

other objects
more

responsibility?

46
Copyright 2002, Wirfs-Brock Associates, Inc.

The Guess
now a more intelligent information holder

In our initial thinking, Letters, Words and
Sentences didn’t have many
responsibilities. They simply held the item
that the user could select and knew their
spoken representation.
But if Guesses directly add themselves to a
Message, then extra messaging can be
eliminated! We prefer this design choice
because it reduces complexity.
It doesn’t eliminate the need for Message
to know about different kinds of Guesses,
but it simplifies patterns of collaboration.

24

47
Copyright 2002, Wirfs-Brock Associates, Inc.

Delegating Message Construction
to Guess— our preferred design

handleSelection(Guess)

addTo(Message)

addLetter(Letter)

:Selector :Message
Builder

/Guess
:Letter :Message

Letters, Words,
Sentences,
and commands
can all be guesses

Message is
responsible for
handling specific
Guesses by name

48
Copyright 2002, Wirfs-Brock Associates, Inc.

From Controlling Everything …

Alphabet
VocabularyMessage

Dictionaries collaborate with
the MessageBuilder

SentenceDictionary

UserProfile

MessageBuilder decides
what to add to the message

MessageBuilder decides what dictionaries
to access and which items to present

25

49
Copyright 2002, Wirfs-Brock Associates, Inc.

To Delegating the Responsibilities

Letters, Words, and Sentences
know how to add themselves to

a Message

Alphabet

Guesser

Vocabulary

/Guess

Guesser is responsible for
accessing dictionaries and

making guesses

MessageBuilder coordinates activities

Dictionaries collaborate with
the Guesser

SentenceDictionary

UserProfile

Message

50
Copyright 2002, Wirfs-Brock Associates, Inc.

Delegation to The Guesser
a new invention

A Guesser object assumes all of the
responsibilities for guessing that were
previously performed by the controller
(MessageBuilder)
It hides all of the mechanisms of guessing,
providing a black box for developing the
guessing machinery
Since guessing is a complex task, maybe
the Guesser can delegate some of its
responsibilities, too?

26

51
Copyright 2002, Wirfs-Brock Associates, Inc.

The Blackboard Architecture
for “best guess” solutions

Blackboard

Knowledge
Source

Control

Knowledge
Source

Knowledge
Source

Knowledge
Source

Modification: We can’t write on the blackboard directly.
Only after the user chooses a “guess” can we add it
to the message.

Guesser

Dictionaries

Message

52
Copyright 2002, Wirfs-Brock Associates, Inc.

SentenceDictionary

Vocabulary
Guesser

Alphabet

bidOn(message)

Message

getContents()

evaluate()

bidValue

chooseHighestBid()

getGuess(message)

guess

Control

Knowledge
Sources

Blackboard

27

53
Copyright 2002, Wirfs-Brock Associates, Inc.

Trust Regions

Carve your software into regions where
“trusted communications” occur
Objects in the same trust region
communicate collegially, although they may
still encounter exceptions and errors

UserLoginController PasswordChecker

isValid(password)

I am sending you a request at the right
time with the right information

I assume that I don’t have to check to see
that you have set up things properly for
me to do my job

54
Copyright 2002, Wirfs-Brock Associates, Inc.

Collaboration Cases To Consider

Collaborations between objects…
that interface to the user and the rest of the
system
inside your software and objects that
interface to external systems
in different layers or subsystems
you design and objects designed by
someone else

28

55
Copyright 2002, Wirfs-Brock Associates, Inc.

Using An Untrusted Collaborator

Extra precautions may need to be taken.
Especially if the client is responsible for
making collaborations more reliable

Pass along a copy instead of sharing data
Check on conditions after the request
completes
Employ alternate strategies when a request
fails

56
Copyright 2002, Wirfs-Brock Associates, Inc.

Implications of Trust

In Speak for Me, all objects in the
application “core” are within the same trust
region
Objects in the application control and
domain layers assume trusted
communications between each other
Objects at the “edges”—within the user
interface and in the technical services
layers—make sure outgoing requests are
honored and incoming requests are valid

29

57
Copyright 2002, Wirfs-Brock Associates, Inc.

Objects At The “Edges” Take On Added
Responsibilities

MessageBuilder Timer

Selector Presenter

Message

Guess

Guesser

Guess
Dictionaries

Controls pacing

guess letters, words, and sentences

coordinates guessing

knows contents and delivers itself

adds itself when selected

signal when user selects voice or display the guess

coordinate everything

Debounces
eye blinks

Debounces
eye blinks

Collaborates
with Mailer

that handles
exceptions

Collaborates
with Mailer

that handles
exceptions

Assumes
“trusted”
requests

Assumes
“trusted”
requests

Assumes
“trusted”
requests

Assumes
“trusted”
requests

© 2002, Wirfs-Brock Associates.

Tools for Describing Designs

30

59
Copyright 2002, Wirfs-Brock Associates, Inc.

“It often happens that after being hard at work,
and having arrived at results that are perfectly
clear and satisfactory to myself, when I try to
express them … I feel that I must begin by putting
myself upon quite another intellectual place. I
have to translate my thoughts into a language
that does not run very evenly with them.”
— Francis Galton

60
Copyright 2002, Wirfs-Brock Associates, Inc.

Where UML Diagrams Fall Short

The best way to see isn’t always with a
standard diagram
Use words, pseudo-code, code, BNF
grammar, decision tables, state tables, or
pictures that emphasize certain features
Sequence diagrams sometimes fall short

They do not show side-effects
It’s hard to emphasize special areas
It’s hard to interpret algorithms
Control flow is mostly hidden
Hard to see iteration

31

61
Copyright 2002, Wirfs-Brock Associates, Inc.

Bubble Sort:
A UML Sequence Diagram

:BubbleSorter :Array

sort(anArray)

get j+1th element
get jth element

*[loop thru array array size times]

[if a[j] > a[j+1]]

set jth element

set j+1th element

*[loop pass number-1 times]

62
Copyright 2002, Wirfs-Brock Associates, Inc.

Bubble Sort Explained

The algorithm for a bubble sort consists of two
nested loops. The inner loop traverses the array,
comparing adjacent entries and swapping them if
appropriate, while the outer loop causes the inner
loop to make repeated passes. After the first pass,
the largest element is guaranteed to be at the end
of the array, after the second pass, the second
largest element is in position, and so on. That is
why the upper bound in the inner loop decreases
with each pass; we don’t have to revisit the end of
the array.

32

63
Copyright 2002, Wirfs-Brock Associates, Inc.

Bubble Sort: A Visual Illustration

Consider the array 42,56,13,23
Let’s start sorting… … …
42,56,13,23 no swap
42,56,13,23 swap
42,13,56,23 swap – end of 1st pass outer loop
42,13,23,56 swap
13,42,23,56 swap – end of 2nd pass outer loop
13,23,42,56 no swap – end of 3rd pass

64
Copyright 2002, Wirfs-Brock Associates, Inc.

Bubble Sort: Some Code

class BubbleSorter{
void sort(int a[])

{ for (int i = a.length; --i>=0;)
{ boolean swapped = false;
for (int j = 0; j<i; j++) {

if (a[j] > a[j+1]) {
int T = a[j];
a[j] = a[j+1];

a[j+1] = T;
swapped = true; }

if (!swapped) return; } } }

33

65
Copyright 2002, Wirfs-Brock Associates, Inc.

Use Multiple Descriptions

Get comfortable looking at a design at
different levels of abstraction. Describe a
design multiple ways:

Use CRC cards to set the stage and explain
object roles and responsibilities
Draw UML sequence diagrams to show
specific interaction sequences
Write text to explain the details of objects’
behavior during a specific interaction

66
Copyright 2002, Wirfs-Brock Associates, Inc.

Collaboration Storytelling Strategy

Tell interesting stories—not every story is worth
telling
List the items you want it to cover
Establish scope, depth and tone
Decide how detailed the story should be
Choose the appropriate forms—tell it, draw it,
describe it
Organize your story
Revise, clarify, compress, and expand as needed
Present your design so important things get
emphasized

34

67
Copyright 2002, Wirfs-Brock Associates, Inc.

Illustrate The Non-Exceptional Case

result

:MakePayment
TransactionUI :Session

performTransaction()
makePayment()

Legacy Server

prepareRequest()

submitRequest()

connect()

disconnect()

logResult()

submitRequest()

resultresult

Then use the
non-exceptional

case to guide
your

consideration of
exceptional

cases.

Then use the
non-exceptional

case to guide
your

consideration of
exceptional

cases.

68
Copyright 2002, Wirfs-Brock Associates, Inc.

Explain And Document Policies

User will be logged
off with a notice that
system is
temporarily
unavailable and will
learn of transaction
status on next login.

Attempt to re-
establish connection.
If this fails,
transaction results
are logged as
“pending” and the
user is informed that
the system is
momentarily
unavailable.

Connection dropped
between domain
server and backend
bank access layer
after request is
issued.

User session is
terminated… user
could've caused this
by closing his or her
browser, or the
system could have
failed. User will be
notified of
transaction status
the next time they
access the system.

Transaction
continues to
completion. Instead
of notifying user of
status, transaction is
just logged. User will
be notified of recent
(unviewed)
transaction results
on next login.

Connection is
dropped between UI
and Domain Server
after transaction
request is issued.

Affect on UserRecovery ActionException or Error

Use
descriptions

approachable
to marketers,

developers
and other

stakeholders

35

69
Copyright 2002, Wirfs-Brock Associates, Inc.

Consider Your Audience

selection varies
with user’s
abilities

presentation
varies with

user’s abilities

pacing
varies for

each guess

guessing algorithm
varies for each
type of guess

data formats
of guesses
vary

message
delivery

strategies vary

destination
formats varystorage

locations of
guesses vary

I/O

Interfacing
with the user

Coordination Timing
decisions vary
according to
selection and state

Guessing
Message
Delivery

hooks … areas where
variations occur

70
Copyright 2002, Wirfs-Brock Associates, Inc.

The Same View In UML

<<coordinator>>

MessageBuilder Timer

<<interface>>

Selector
<<interface>>

Presenter

<<coordinator>>

Guesser

Sentence
Dictionary

AddressBook

extend the application by adding new
types of Bidders and Guesses

Guesser collaborates with different
kinds of objects, but it views them all
as Bidders

<<interface>>

Guess

SentenceWordLetter

many classes
realize the Guess
interface

<<interface>>
Bidder

<<abstract>>
GuessDictionary

Vocabulary

Button

EyeSwitch

Display

SpeakerDLL

subclasses define
the way that they
parse their data
during load()

GuessDictionary provides
common algorithm for load()

different Selectors and Presenters are plugged in
to present guesses to different users

Space

CommandNoGuess

control utility classes
make control style
consistent

Destination

Alphabet

36

71
Copyright 2002, Wirfs-Brock Associates, Inc.

Strunk and White’s Elements of
Style

Do not overwrite. 10 pictures are not worth 10k
words

If collaborations are similar, show a typical case
first, then note how remaining ones differ. Draw
representative interactions

Do not overstate. Don’t tell more than what you
believe at any given point in your design.

If you only know general paths of collaboration—
don’t show specific messages. If you know specific
messages, but not the arguments—don’t invent
arguments just to fill in the blanks.

72
Copyright 2002, Wirfs-Brock Associates, Inc.

Strunk and White’s Elements of
Style

Omit needless words
Visual equivalents of “needless words”:

Return values
Internal algorithmic details
Details of caching and lazy initialization
Object creation and destruction

Revise and rewrite. If someone doesn’t “get it”, it
could be your problem.

A designer drew two views showing the same
collaboration. One view omitted the interface
details, the other included them. Some developers
wanted to know what interfaces to use. Others
who only wanted to how their parts of the system
were activated didn’t want to see these details

37

73
Copyright 2002, Wirfs-Brock Associates, Inc.

Strunk and White’s Elements of
Style

Do not affect a breezy manner. Don’t intentionally
leave things understated, undrawn, or unexplained

CRC cards are too breezy if you want to explain an
interaction sequence.
Don’t arbitrarily limit your diagrams to a single
page, or to ten or less objects. Stick with your
story. Get it down, then figure out how to show it.

Be clear. Choose the right form of expression
To emphasize message ordering, use a sequence
diagram. If timing is critical, add timing marks.
Add a running commentary to explain.

74
Copyright 2002, Wirfs-Brock Associates, Inc.

Strunk and White’s Elements of
Style

Make sure the reader knows who is
speaking. If you are telling a story from one
perspective, stick to that storyline.

If you are explaining how subsystems
collaborate, don’t drop down two levels
and show objects inside those
subsystems collaborating with objects
from a standard library.
If your intent is to show how a complex
responsibility is divided among
collaborators, show what helper
methods are invoked. Stop there.

38

75
Copyright 2002, Wirfs-Brock Associates, Inc.

Show Focused Interactions

Decide what to emphasize!
Consciously decide to ignore certain details

User interface
Delegated action
Details of an algorithm

An object’s central location, size and
boldness give it emphasis

76
Copyright 2002, Wirfs-Brock Associates, Inc.

:Guesser

:Message
Builder

/Presenter

:Message

:Timer

/Selector

Visual Emphasis: Locate Important Objects
in the Center

Placing a
coontroller in

the middle
draws attention

to it

Placing a
coontroller in

the middle
draws attention

to it

Place a controller
in the middle.
Messages radiate
from it like
spokes
on a wheel.

39

77
Copyright 2002, Wirfs-Brock Associates, Inc.

Being Detailed Isn’t Always Better

Precision should be a conscious decision
Use UML when you want to be precise and rough
sketches when you want to convey the gist of your
design
UML can be used with more or less precision. Add
details to sequence diagrams if you need to show:

Branching (using guard expressions)
Iteration
Return values
Timing (using timing marks and expressions)
Object creation and destruction

78
Copyright 2002, Wirfs-Brock Associates, Inc.

Show How to Adapt a Collaboration

To explain how to adapt a collaboration, you
really need to explain three things:

the current design
what aspects are adaptable
how to make these adaptations

Start by explaining how your design works
Move on to showing how it can be modified

Show step-by-step procedure for adapting it
Add notes to “pluggable” objects

40

79
Copyright 2002, Wirfs-Brock Associates, Inc.

What Can Be Configured

:Guesser /Bidder
:GuessDictionary

:Message
Builder :Timer1. handleTimeout()

2. nextGuess(Message)

3. bidOn(Message)

/Presenter
:SpeakerDLL

4. present(Guess)

bid

guess

Different Presenters
can be configured
according to the
user profile

As guessing
algorithms change,
different Bidders can
be plugged in

80
Copyright 2002, Wirfs-Brock Associates, Inc.

interface
Guess

+processMessage(m:Message):void
+getContent ():String

+displayableText():String
+speakableText():String
+waitTime(): Duration

WordLetter EndOfWordNoGuess EndOfSentence

SendMessageCommand

CommandSentence

What Can Be Guessed

41

81
Copyright 2002, Wirfs-Brock Associates, Inc.

Recipe for Adding a Guess

To Add a New Kind of Guess

1. Define a class that implements the Guess interface.
This type of object must know contents, formatted for both display
and speech, know how long to wait before continuing with another
guess, and be able to add itself to a message.
Specifically, it must implement these methods:
public String displayableText()
public String speakableText()
public String getContent()
public Duration waitTime()
void processMessage(Message m)

2. Define a class that implements the Bidder interface.
This type of object will contain all of the corresponding Guess objects
and determine which is most relevant to the current message and how
relevant they are. Specifically, it must implement:
Bid bidOn(Message m)

© 2002, Wirfs-Brock Associates.

Agility and Design Rhythms

A design journey is filled with curves,
switchbacks, and side excursions

revising the plan

dead end

Success!

42

83
Copyright 2002, Wirfs-Brock Associates, Inc.

All Design Challenges Are Not Alike

Software design problems vary:
Core design problems include those fundamental
aspects of your design that are essential to your
design’s success (no not every part can be
fundamental)
Revealing design problems when pursued, lead to a
fundamentally new, deeper understanding.
The rest. While not trivial, the rest requires hard
work, but far less creativity or inspiration.

Each type of problem warrants a different
approach and has different rhythms to solving it

84
Copyright 2002, Wirfs-Brock Associates, Inc.

Core Design Problems

Depending on your design requirements, you might
nominate for the core:

Mechanisms that increase reliability. These could
include the design of exception handling
mechanisms, recovery mechanisms, connection and
synchronization with other systems…
Mechanisms that increase performance
Key objects in the domain model
The design of important control centers
Key algorithms
Mechanisms that enable specific areas of your
software to adapt and flex

To changing environmental conditions
To evolving requirements

43

85
Copyright 2002, Wirfs-Brock Associates, Inc.

How Do You Decide What’s Core?

What are the consequences of “fudging” on that
part of the design?

Would the project fail or other parts of your design
be severely impacted? Then its definitely core.
When there are fundamentally different
expectations, dig deeper. Someone may know
something that others have ignored.

Whether you classify something as part of the
“core” or part of the “rest”, you’ll still have to deal
with it—it’s a matter of emphasis.

Give design tasks the attention they deserve and
be clear on your priorities.

86
Copyright 2002, Wirfs-Brock Associates, Inc.

Revealing Design Problems

Revealing design problems are always hard.
They may be hard because coming up with
a solution is difficult—even though that
solution may eventually be straightforward.
They may not have a simple, elegant
solution.
They may not be solvable in a general
fashion—each maddening detail may have
to be tamed, one at a time.
They may require you to stretch your
thinking and invent things that you have
never before imagined.

44

87
Copyright 2002, Wirfs-Brock Associates, Inc.

Core Problems Can Be Revealing

Not all core problems are revealing ones.
Sometimes when you work on a core
problem, you discover it to be a revealing
one, too.
What distinguishes revealing problems
from core problems is their degree of
difficulty and the element of surprise,
discovery and invention.

88
Copyright 2002, Wirfs-Brock Associates, Inc.

Revealing Problems lead to deep
understanding

Solutions to revealing problems can touch on any
aspect of a design:

They can impact an application’s control
architecture, key responsibilities of core objects,
design of central services, complex algorithms or
interfaces to external systems.

They can cause you to completely shift your world
view and discard what you had assumed to be a
fundamental truth about your design, and replace
it with something more complex.
If you find yourself reacting, “Nah..that could never
be!” to a design challenge, you just might have
uncovered a revealing problem.

45

89
Copyright 2002, Wirfs-Brock Associates, Inc.

Some Problems Are Really Hard

Wicked problems characteristics
They are hard to state concisely
They can be symptoms of other problems
They are one-of-a-kind
Solutions are open to value judgments
Solutions can be fuzzy or hard to describe
There is no obvious way to verify that a
proposed solution fixes the problem
Their solutions have unforeseen
consequences

. . . they are “tamed” not “solved”

90
Copyright 2002, Wirfs-Brock Associates, Inc.

Solving Wicked Problems

Problem solving requires
the ability to shift your perspective and vary
the problem,
the ability to gauge whether an approach, if
pursued, is likely to bear fruit, and
knowing when you’ve hit a dead end

Vary your perspective by
generalizing, specializing, forming analogies,
decomposing and recombining aspects

46

91
Copyright 2002, Wirfs-Brock Associates, Inc.

Example: Redefining the Problem

In Java, C#, or Smalltalk, memory is
automatically recovered from objects that
are no longer used. Early implementations
used reference counting to manage
memory. This technique is simple, but very
expensive. To speed up garbage collection
algorithms, implementers of the languages
redefined the problem—and now use
sophisticated scavenging algorithms

Often, redefining a problem doesn’t simplify; it
just opens up new possibilities

92
Copyright 2002, Wirfs-Brock Associates, Inc.

Observations On Solving Wicked
Problems

Time is required to let things “soak in” and
to form connections between the problem
and past experiences
Wicked problems are always either
squarely demanding your undivided
attention or lurking in your background
thoughts
They cannot be solved by a committee,
although a proposed solution can be
reviewed and tuned by a group
It can be nearly impossible to predict when
they will be solved

47

93
Copyright 2002, Wirfs-Brock Associates, Inc.

Handling The Rest

The rest is what you work on day in and day
out when nothing else demands your
attention. What might be included:

Common error logging or reporting
mechanisms
Data conversion
Basic features that are similar to ones
you’ve already implemented
Optional features
Alternate strategies for accomplishing
some behavior

94
Copyright 2002, Wirfs-Brock Associates, Inc.

Sorting Out The Rest From The Core

It’s easy to get caught up in a debate of what’s
core and what’s in the rest. Don’t waste your time.
If you know that something is just basic design
work that has to be there, nothing special, nothing
fancy, it’s probably part of the rest.

What about exception handling? Why isn’t the 90%
of your design work that supports the unhappy
path scenarios a core design task? Well,
depending on your project, they might be. Or they
might not.

Core problems should be given more attention.
That doesn’t mean the rest gets slighted. It just
isn’t at the top of your list.

48

95
Copyright 2002, Wirfs-Brock Associates, Inc.

Agility Means Finding a Balance

Those who pursue agile development
practices, “seek to restore credibility to the
concept of methodology. We want to
restore a balance. We accept modeling, but
not in order to file some diagram in a dusty
corporate repository. We accept
documentation, but not hundreds of pages
of never-maintained and rarely used tomes.
We plan, but recognize the limits of
planning in a turbulent environment.”
---Jim Highsmith

96
Copyright 2002, Wirfs-Brock Associates, Inc.

Resources
Read more about
seeing and thinking,
wicked problems, and
object design
strategies in our new
book
Object Design: Roles,
Responsibilities and
Collaborations,
Rebecca Wirfs-Brock
and Alan McKean,
Addison-Wesley, 2003
www.wirfs-brock.com
for articles & resources

