X
Lessons Learned From
Architecture Reviews

Rebecca Wirfs-Brock

1 Wirfs-Brock Associates © 2009

Two Perspectives

» An outsider evaluating
strengths and weakness
of products, enterprise
applications, and systems

» As an insider with
recognized
communication skills

2 Wirfs-Brock Associates © 2009

What You Need to
. Explain

» What your design is and
why it is a good solution

» Rationale—why you made a
key decision

» Your thought process

‘irfs-Brock Associates © 2009

Wirfs-Brock Associates © 2009

Collaborate

= -2 TRga
To cooperate treasonably, as with an enemy occupation
force

Explaining and Defending Architecture

» Decision

» Alternatives: Options

» Constraints U ﬁwaey BmS |
considered and reasons 4 Archltecture
for ruling them out

» Effects: What the does ’ ‘ @

decision imply
» Evidence: Confirmation
the decision is good

NICK ROZANSKI - EOIN W0O0DS

6 Wirfs-Brock Associates © 2009

Explaining to a Constructive Reviewer

Design idea

Requirements

Advantages

Disadvantages

Limitations

Design notes

Issues, uncertainties

Resource Managers

A is ible for relating to the external ications that own those
Therefore, a identifies the external application that should be the owner

of a newly created Resource and a ResourceManager is able to locate an existing Resource based on

the names by which the Resource is known in external applications.

Business Requirement

A ResourceManager has to assign a new Resource to an external application that should own the data

for that Resource. For example, when a new Account is created, the AccountManager might assign it

to a specific billing system based on the billing address of the account.

Design Notes

The prototype has four ResourceManagers:

« AccountManager
* CustomerManager
* ProductManager
+ ServiceManager

Each creates the ing type of Resource for a given ExternalReference and
PropertyList. For example, the AccountManager creates Accounts and the ProductManager creates
Products. After creating the Resource, the ResourceManager maintains a mapping of
ExternalReference to Resource. For example, any object that needs to resolve an ExternalReference to
an Account will ask the AccountManager to get the Account for a given ExternalReference.

vantages

Irc the iation of to so that the
‘mapping is centralized in one location.

‘A ResourceManager encapsulates the business rules that associate Resources with external
applications, so that the rules are localized in one central location.

Li

tions

In the prototype, we assume that an ExternalReference maps to a unique Resource. In the future, it
might be useful to locate a set of Resources that match a particular set of Qualifiers.

Each Resource must be fully owned by a single external application. It is not possible for some of a
Resource’s data to be owned by one application, while the rest of that Resource’s data is owned by
another application. For example, in the prototype, we have a service definition called Calling Card
Plastic. It builds two tasks: Emboss Calling Card and Mail Calling Card. For the prototype, both of
these tasks are being handled by the Manual adapter but the chances of both of these tasks being
accomplished by the same system is not likely. Either the Task Strategy or the resource needs to be
able to point to multiple adapters for getting work accomplished. This however does not mean that one
system does not own the data concerning a given service.

alReferenceManager provides a local cache of the mapping of ExternalReferences to
Resources. Some testing is required to determine whether such a cache provides a significant
enhancement in performance compared to accessing a ResourceManager directly. It is also necessary
10 verify that the cache cannot get out of synch with the mapping held by the ResourceManager.

Advice and Its Impact

A “triage”
mentality can
help you as a
reviewer
focus your
energy and
efforts

Wirfs-Brock Associates © 2009

t'l"_—J

1
'
|

'

AdVi ce Key Finding: The business object model and logical data model need to be developed
concurrently with the technical architecture. The initial Visio diagram of the business
object diagram is just a start. It simply names objects and shows associations between

Example gt deenmis) Py d

Recommendation: Add detail to the preliminary business object model: define key
concepts, relationships between them, major responsibilities, and their lifecycles.

Recommendation: Assign someone to work on the logical database and schema design.

A business object model is different than a logical database design, and they both are
needed. In the current products, the logical database design is non-existent. Any original
intent behind the current physical database design has been obscured by years of product
customizations. Development of logical data model is a big effort that shouldn’t lag other
elements of the architecture.

Key Finding: The project needs to produce architecture and design documents which
have value to developers and new staff.

Much of the design for the existing system is “in the heads™ of the developer or buried in
code that is poorly understood. There isn’t a culture for producing design documentation.

Developers are used to reading code, not design documents.

Recommendation: Develop design documentation and models for key concepts and
design ideas.

Suggestion: Consider documenting the existing xxx product architecture as an aid to
fleshing out the integrated functional architecture.

11 Wirfs-Brock Associates © 2009

Observations Example

Observation #2: Database locking or single-threaded access to the Provisionable
Database might be a perceived rather than a real problem.

We say this for a number of reasons. It is our understanding that the length of time any
process should hold a lock on the Provisioning Database should be very small. In
fact, the design intent is for ManagementRequests to be implemented so as to
acquire a lock for the smallest unit of work. So the design intent is to: do a small
amount of work, unlock, then try to get another lock to do some more work, etc.
So, if they are designed right,a complex Management Request that affects multiple
provisionable entities will be broken down into multiple transactions. In theory, there
is an opportunity that xxx queries and updates could be interleaved with any
longstanding xxx command, for example, that is “in progress.”

Furthermore, if a process needs to affect or read the status of a number of entities in
the Provisionable Database, it can perform multiple operations within the same
transaction. So, if xxx needs to perform a number of queries before it can
determine what resources to provision, database access should be guaranteed (and
be relatively fast).

12 Wirfs-Brock Associates © 2009

Lesson: Comment on Good Decisions Too

Observed Best Practice: Use of interfaces.

Java interfaces are being used wherever possible with Spring’s dependency injection, so
that XXX and YYY objects depend on an AP, rather than using implementation
classes directly. This allows the implementation to change more easily without
affecting client objects. It also provides a mechanism for supplying mock objects for
unit tests.

Observed Best Practice: Use of JMS.

The Java Message Service (JMS) AP is being used to initiate heavyweight processes.
Even though the asynchronous services are currently running in the application
server JVM, use of JMS for calling these services, such as attachment processing, will
make it easy to distribute those services to separate JVMs at a future time.

In summary, we are impressed by the thoughtful discussions we had with the
architects. They clearly articulated rationale behind their technology choices and the
integrating new technologies. The team seems to have made significant progress and
we expect them to continue. From our perspective, no unresolved issue seems
insurmountable.

13 Wirfs-Brock Associates © 2009

Lesson: Rainy Day Scenarios are Hard

14 Wirfs-Brock Associates © 2009

A Rainy Day Scenario Example

» “One scenario we used to work through the issues was
an update of 50 documents, where 3 documents failed
and the rest succeeded. A document update could fail for
a variety of reasons: a security violation, a failed business
validation, a vetoed operation, or more rarely: a system
error (e.g.lost connection, timeout) or optimistic lock
failure.”

15 Wirfs-Brock Associates © 2009

Lesson: Scale the Review to the Size of the
Project

“As you gain
experience,
consider whether
you might want to
organize questions
according to
whether a review is
“bronze”, “silver”,
or “gold” and/or
whether it is early
or late in the

process.”

16 Wirfs-Brock Associates © 2009

Lesson: Level the Playing Field

“Setting up an
architecture
review board has
meant more
balanced
discussions. It
makes managing
easier.”

17 Wirfs-Brock Associates © 2009

Lesson: Agile Development Has
Architectural Impacts

» Enterprise Architecture can
be accessed for agility:

Does it support automation
of acceptance tests? How
much automation is possible
at what cost?

How to encode domain rules
and knowledge to be easily
testable (potentially by
analysts rather than
developers)?

How easy is it configure?
Reconfigure?

Can it be delivered and
deployed incrementally?

18 Wirfs-Brock Associates © 2009

Agility Assessment: A COTS Component

“Testing practices and automatic improvements can and
should be made, but they are all feasible. Unit testing
suggestions:

Write xxx formulas in a modular decomposed fashion.

Write tests in Java to call formulas and/or sub-formulas to see
if they are correctly implemented, perform, and work against
correct tabular data.

Exploit ability to run tests locally and remotely.

Acceptance testing should be done via Java with the system
under test either locally or remote.These could be driven from
Fitnesse when that makes sense and also from scripts.”

Wirfs-Brock Associates © 2009

Agility Assessment Example: SOA

“Build out SOA patterns, interfaces, and collaborations incrementally:

20

Start sending messages between components as soon as possible. Early
on, the only messages available may be “heartbeat” and similar messages.
Use those messages to work out “baseline” integration problems.

Start performance and load testing soon after. Over time this testing will
reveal emerging problems so they can be addressed early. Also,
implementing this testing early will avoid having to add it under pressure.
Constant monitoring will provide useful feedback on optimal service
partitioning, and reducing excessive message passing.

Early on, select and implement features that work like tracer bullets
through the entire system, touching as many of the major components
as possible.

Flesh out the details of orchestrated service design patterns with simple,
realistic and concrete scenarios. Then, if desired, write up more generic
patterns. Documentation should lag (not drive) proven practice.”

Wirfs-Brock Associates © 2009

10

Lesson: Beware of the Technical Stack

21 Wirfs-Brock Associates © 2009

rea\\Y
Lesson: Merging Existing Systems is"Hard

“Many hidden requirements
are in the heads of
support or buried in
custom code.

There is no migration
strategy.

The core of the
architecture team is in
CA while needed

expertise is in P...”

22 Wirfs-Brock Associates © 2009

11

Lesson: Risks Compound

“While no one particular technology
choice stands out as being highly risky,
the overall project risk is high due to
the fact that the team is using new
technologies, building an extensible
platform, and implementing a new
software and system architecture

While there is significant technical risk,
we feel the architecture team has been
judicious in their technology selection.
The technology is not unproven.The
challenge is that the team needs to
acquire expertise and work through
detailed design issues.”

23 Wirfs-Brock Associates © 2009

Lesson: Get the Right People Involved

“We suggest that several,
realistic scenarios be
written down, and agreed
upon as representative by
product marketing.”

24 Wirfs-Brock Associates © 2009

12

Focused
Questions

“There are separate sets
of questions for each
reviewer, as well as a set
of questions to be
considered by all. These
questions are intended as
a guide for reviewing.
However, we welcome
all comments and
suggestions.”

All Reviewers

1. Should we have a framework running at each installation? Or should
it be one system? What about federated systems?

2. What kind of problems will we encounter trying to build the
relationships between resource objects? What about strategies for
refreshing the framework’s view of the data in applications?

3. Should we keep some functionality in the framework (e.g. task
management) or would we be better to push it out to external systems,
even if we write them?

4. Do you think that tasks are structured such that failure recovery can
be worked in or are there design flaws? Where should recovery occur?
What about canceling?

5.1s our document consistent? What do you find useful? Is there too
much or too little?

Brian
1. Critique our current transaction boundaries between queues.

2. What is the cost of passing too much data? If we use CORBA? If we use
JavaBeans? Adapters only referent to external references. Was this a
good decision?

3. Comment on properties and how they might be constructed using a
tool.

Order App Vendor
1. What limit should be set on how many threads run in one process?

2. Comment on our product catalog design, and your thoughts about
what you keep track of products.

Lesson: Ask the Right Questions

26

>
,5@
—

‘b—-

O

Wirfs-Brock Associates © 2009

13

Lesson: Ask the Right Questions

27 Wirfs-Brock Associates © 2009

Probing Questions

» Evaluation...how good do you
think it will be

» Accuracy...how did you come
up with those numbers

» Completeness...is that all
» Relevance...does this apply here

» Purpose...why did you suggest
that

» Extension...tell me more

28 Wirfs-Brock Associates © 2009

14

Clarifying Questions

» Get them to think:
Why do you say that?
What exactly do you mean?

How does this relate to what
we discussed earlier?

Can you give me an example?
Are you saying ...or ...?
Can you restate your concern?

29 Wirfs-Brock Associates © 2009

Handlin

-

Valid
Not Valid
Aesthetics

Judgmental

Complexity
Personal

Great

Accepting Criticism

» Listen

» Acknowledge the critic’s
viewpoint

» Be sure you understand

» Take appropriate action

» Don’t become defensive

31

Valid Info indicates a flaw or weakness | Refine your idea—but don’t
in idea lose its advantages

Not valid Clear misfit between your idea and | Improve your ability to explain
criticism

Aesthetic Negative reaction reflecting form Acknowledge, defuse by
vs. substance explaining your position

Judgmental Negative reaction with/without Ask critic for more specific
enough info to indicate a problem | info

Complexity Value judgment with implicit Explore. May need to educate
assumption that a simpler solution | about inherent complexity
exists

Great! May or may not be judgmental/ Optionally, probe behind the

specific

praise

16

Graham’s Disagreement Hierarchy

—

» When in a good mood
people judge things s

e,

“Traditiona) Y Medicinals.
more favorably

o St.John's
» When grumpy, we judge -0 Goo({MOOd.
N

more harshly

34 H-r.rh..l Tea

17

Questioning Perspectives

Show other viewpoints

Why do you think this is
better than ...?

Is there another way we
could look at this?

What are the strengths

and weaknesses of...?
How are ...and ... similar?

35

Lesson: Recognize Cognitive Biases

» Cognitive biases are
distortions in how people
naturally tend to process
and interpret information

» Not every one shares the
same biases

» They cause us to “react
blindly” rather than “think
and behave logically”

36 Wirfs-Brock Associates © 2009

18

Contrast Effect

¢ 4 d

People can’t avoid comparing items against each other
rather than against a fixed standard

N

37

Lesson: Increase Information Availability

» People decide based on
what they remember

» To increase information
availability make it

Recent
Vivid
Easy to imagine

» To decrease, make it
Complex
Uncomfortable

38 Wirfs-Brock Associates © 2009

19

Presenting Tradeoffs: Version 1

Option |: One Large Option 2: Split into many
Transaction smaller transactions
Can’t handle optimistic lock Can’t batch updates
exception

Slower performance
Can batch updates

Can handle validation business logic

Can only rollback entire
transaction

One set of code

Partial failure easier

Rollback code could update db
Cannot use first level Hibernate cache

Could run small transactions in parallel
but...

Added complexity getting partial
results and setting up txns

39 Wirfs-Brock Associates © 2009

Presenting Tradeoffs: Version 2

Option I: One Large Batch Transaction Option 2: Split into many smaller transactions

20 times faster than split Slow performance
transactions Can’t batch updates
Can use Hibernate cache Cannot use first level

Hibernate cache

Can only rollback entire Partial failure possible
transaction

Optimization possible

Could run small transactions in parallel

but...adds complexity of handling
partial results and setting up txns

40 Wirfs-Brock Associates © 2009

20

Ambiguity Effect

People favor
a choice
where there
is a known
probability
over an
option with
uncertain
probability

Photo courtesy http://www.geocities.com/pixiewarp/atanytime.html

41 Wirfs-Brock Associates © 2009

Presenting Tradeoffs: Version 3

Option I: One Large Batch
Transaction

20X faster than split
transactions

Simpler batch code

Can only rollback entire
transaction

Can use Hibernate cache

Bottom line: Significantly
greater batch performance
with simple txn logic.

Option 2: Split into many smaller
transactions

20x slower

Optimization possible by
parallelizing txns

Optimization complex

Can support partial failure (but
recovery actions unclear)

Cannot use first level
Hibernate cache

Bottom line: Performance is
significantly slower. Some
optimization possible with extra
dev. time

42 Wirfs-Brock Associates © 2009

21

Lesson: Visualize the Benefits

43 Wirfs-Brock Associates © 2009

Two Scenarios
New Release of TBS, APIs Change

Sales Orders Trading Partners Salei-s tOrders Trading Partners
s Q-Connect ous Q-Connect

T |
CustomerCare
| l \ CustomerCare J ISM-BC

l

‘‘‘‘‘ ==21 SAIL Framework

| TBS - OM | — | Arbor/BP

TBS - Prov.

WW - Prov. WW - Alarms

44 Wirfs-Brock Associates © 2009

Sunken Costs Effect

» People are reluctant Gasoline Self Serve
to pull out of

. | 9
expensive — A R M -

investments UNLEADED

» Counteract by -)
presenting UNLEA0ED L E G]U

B PRUTAL)
SUPER o th i
UglEEADED 10

opportunity costs

45 Wirfs-Brock Associates © 2009

Hyperbolic Discounting

People prefer smaller,
more immediate rewards
over larger rewards
promised in the future

Tough to counteract

46 Wirfs-Brock Associates © 2009

23

Confirmation Bias

» The tendency to

» Seek and interpret
information in a way that
confirms preconceptions

» Avoid things that will
disconfirm beliefs

47 Wirfs-Brock Associates © 2009

Common appeals...

» Emotion

» Fear

» Novelty

» Standard practice
» Authority

48 Wirfs-Brock Associates © 2009

24

Persuasion

» To be persuaded a person W‘

must:
Listen to your advice

Compare to previously held
views

Reconcile it with contrary ones
Agree with it

49 Wirfs-Brock Associates © 2009

T—

Thanke Yo

_Rebecca 07
\:becca@wwfs—brock‘o
r Q)

www.w'\rfs—brock.com

50 Wirfs-Brock Associates © 2009

25

