o
L% (& z .
Introduci -oblem |
LEiugsro
. W A
S 5

s 47AJuI 2006
‘;,_\ %4 becca Wirfs-Brock
""A < Wirfs-Brock Associates

rebecca@wirfs-brock.com

Problem Frames: A tool for seeing
typical patterns of software tasks

structure that
gives shape
or support

Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 2

A Problem Frame...

“... defines the shape of a
PROBLEM problem by capturing the
rea characteristics and
FRAMES i%te e interconnections of the
e parts of the world it is
b concerned with, and the
Michael Jackson concerns and difficulties
that are likely to arise. So
roblem frames help you to
ocus on the problem,
instead of drifting into
inventing a solution.”

—Michael Jackson

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 3
-

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 4
-

Why frame problems?

“It’s not easy to focus on problems in
software development.”

Problems:

h Partly precise, partly&
," Imprecise ,
Scylla and Charybdis
Programming: Precise Sociology, psychology:Imprecise
m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 5

A case study: Email

/'\f\ﬁ
/\./\'{
/\f\" 7
I~

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 6
-

Framlng strategy:

® Decompose problems |

B Focus on the
requirements and the
concerns of each

subproblem

Tactics for decomposing problems

O Identify the core problem

B Sending and receiving mail
O Look for ancillary problems

® Constructing mail

Managing mail folders ‘
Sorting mail e
Reading mail

B Maintaining address lists
O Examine problem concerns for more =

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 8
-

Look for different tempos

O When parts of a
problem have different
speeds

B Expect to treat them
as different
subproblems

B A shared domain is
often dynamic in the
faster subproblem
and static in the
slower one

Mail folders and email messages

m Wirfs-Brock Associates www.wirfs-brock.com
-

Copyright 2006

4
Email Users J a C kSO n S
view of a
context
shaved _— .
phenomena d Iag ram
lnterfaces Email Clien! «—————plom.ains
‘machine’ Email Post Office Networks Other Post Office
domain Service Internet Services
Service
Administrator
Address Directory

Service

Email Users

Email Client
B

The context
diagram relabeled

Domain types:
causal—predictable cause § effect
Biddable—usually people
Lexical—sywbolic values

Service

Administrator F

Email Post Office Network/ Other Post Office
Service Intemet Services
C C C
Address Directory

Service F

Problem Diagrams:
Simple workpieces problem

atool that ~ Sh%rd rexical
phenomena : domain
allows users I Email
to create and twterfaces messages
. X" e -
manipulate =
structures / Correct effects of
8 { user'scommands |
Email | on message)
Editing _ contents /
Tool P
“waching requirement
domain
biololable
m Wirfs-Brock Associates www.wirfs-brock.com doma Ll/\z Copyright 2006 12

Transformation problem

converting some input
to some output
according to
certain rules

Email Decoder

Encoded
Emai

Decoding

| Requirements |

Viewable
Emai

X

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 13
Information display problem
information is
needed about
some thing’s o
state and or Incoming Mail . -
behavior
‘/"/Identify Junl}
Junk Mail Mail |
Filter Requirement /
Filter Repor ’/
www.wirfs-brock.com Copyright 2006 14

Wirfs-Brock Associates
-

Commanded behavior problem

. Takes email from predefined outbox ematl folder
controlli n_g the Puts received email into predefined email folders
behavior of Some (nbox or folders designated by filter function)

“thing” according

to operator Mail Service
Provider _ [W
commands o
./,P’"’Send anc
Mail Folder Email recene |
Manager | | Client User Send Queue \ Email wher /
c Check mail.. user says tc 7
User

- [

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 15
-

Required behavior problem

controlling behavior of some “thing”

Automatic Email Internet Service 77 Sendand ggucheck \
_ B e 4 for Email or |

Controller Provider X /
 predefined schedule,”

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 16
-

Jackson’s view on problem
descriptions

O Optative- describes
domain properties and
behavior that your
software must
guarantee

U‘Prescrlptive

O Indicative- describes =
objective truth or facts |

\ descriptive

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 17
-

About phenomena and domains

O Individual phenomena-
B Event-a happening: MailSent

B Entity-an individual that persists over
time and changes its properties and
states: EmailMessage, Inbox, Mailfolder

B Value- a quantity or quality: 50 junk mail
confidence rating

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 18
-

Relating phenomena

B State-relating values to entities
JunkMailRating(EmailMessagexxx,100)

B Truths-a relation among individuals that cannot
change LaterThan(“timestamp: 07.19.2006",
“timestamp:1.1.2000”)

B Roles-relation between an event and individuals
MailMoved(Inbox, ToDoFolder,EmailMessageyyy)

B Cause and effect
MailRecieved(Inbox, EmailMessagexxx) =
JunkMailRating(EmailMessagexxx,100)

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 19
[}

Shared Phenomena

domains are
“direct”:

Events, states, and
values are shaved

2 Letween connected
B domaing

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 20
-

10

Required behavior problem frame

Your
Software CM C1 Controlled — _C3_ —/ Requirec
Contro! Domain Behavior
Machine CC C2 E
A “frame diagram’- a fancier
generic problem diagram with
named parts and sets of phenomena
m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 21
Required behavior concerns
Your «
Software Controlled — Required
Control % Domain 3 Behavior
Machine ‘ =

We will build our
software to behave
like this so that..

{specification}

1

Knowing that the
controlled domair
works like this...

\{:omain description}

—

~we'll be su
this way
{requiremen

re it acts
ts}

Wirfs-Brock Associates
-

www.wirfs-brock.com

2
<

Copyright 2006 22

11

Stylized Required Behavior
Questions

What external state must be controlled?

How does your software find out whether
its actions have had the intended effect?

What should happen when things get “out
of synch”?

How and when does your software decide
what actions to initiate?

Is there a sequence to these actions?

Are there complex interactions with your
software and the thing under its control?

OoO O 0O oO0

Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 23

&

...resulting in this
4 change of workpiece
values and states...

{information properties} 5
...orignore it if it isn’ -
viable or else invoke --.thus achieving the
these operations... required results..
{requirement}
specification s
5 ; Work
pieces
Your
Software
Editing
Tool o
) User
...in that case the

software will reject
it...

{specification}

2 —

When the user issues’
this command it may
be out of context or
syntactically incorrect
then..

{requirement}

Workpieces
frame
concerns

12

Stylized Workpiece Questions

O Will it take different forms?

O Does it have an interesting lifecycle (or is it
just something that is changed and then
treated-as'statictaftereach: change e

O Is it passed around between various users?
Is there a workflow associated with a

workpiece?
O Should it persist? Should it be published or
printed?
m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 25
-
.. finding these values
in the domain
structuredﬂke this..
a
{domain properties-g} 3
— - .. the software
m’st:zl eLzzlrr:gemput : ensures that these
q - values...
{specificatior -a} (reqw;gmeni}
a N / p N Y,
R N0 S
N s
Your N4 @
N |
Software Relatior /
Transform 4
Machine _

v e prodube these
in this sequence.. values..
‘b ,
{specificatior-b} | {requirement}

.. creating these valué
in the domain

3b
structured like this.. T TranSformation

{domain porperties-b}

- 2b frame concerns

; //,/)\\\\\\»V 7777777 ”‘/“//’l o
ey .. Which satisfy
Outputs . the rules..
.. and simultaneousl R ' {requirement}
traversing the output k ’

13

Stylized Transformation Questions

O What data do you start with?
How will it be changed?
Is the transformation complex?

Will it always work? What should happen
when you encounter errors in the input?

Is the transformation “lossy” or reversible?

What speed, space, or time tradeoffs are
there?

O o0

O O

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 27
-

Information display concerns

...then because the

! things are like this..
2
{domain properties-a)
7 >

...the software will
detect these 7
phenomenz.. 7

When the state of th
world is this..
{requirement}

{specification] N
Real worlc K\

3 3
R
Your > > \/)
Software ~N Display — ;
real world F
Information N
Machine \ e —
A
2 A L
L Display =
_..and cause these z E .
svents.., —which correspond as
4 ey A required to what is
ispecification] \ happening in the worlc
Sq the output will be requirement]
this...
Wirfs-Brock Associates {domain properties: b} Copyright 2006 28
] 5 e

14

Stylized Information Display
Questions

O How precise does the information need to
be? Is the information “fuzzy”?

O How much computation does your software
have to do to come to an observation?

O Is the user only interested in current
information? Or is historical information
important?

O Are there questions that the user may want
to ask about the information? What are
they? How easy are they to accurately
answer?

OO0 Does you need to about it?

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 29
-

...resulting in this
4 | change in the

’ g
...orignore it if it isn't™, | domair ...
viable or else cause ...thus achieving the
these events...

]

{domain properties} required result
{specification} Controlled
2 Domain
E ,,,,,,,,,,
Your
Software Commandec
Behavior
Control / .
Machine e
: Operator -
_ifit's not sensible E
the machine will
reject if... When the operator CO mman d ed
issues this 1
{specificatior command it may or b S h avior

2 e concerns

{requirement}

15

Stylized Commanded Behavior
Questions

O What does the user need to know in order
to “command” the system to do things?

O Do certain commands need to be inhibited?
Do they always make sense?

Is there a lag between issuing a command
and the system performing the action?

What happens when a command fails?
Should certain commands be ignored?

Do commands need to be reversible?
logged? monitored or otherwise tracked?

OooOoOo 0O

Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 31

&

Fitting problems to frames

The wrong
frame will
have some
descriptions
that don't
make sense
and will
leave out
other
necessary
ones

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 32
-

Problem frame expectations

O For each frame there is a clear expectation
of the relative complexities

Frame Complex Simple

Required Controlled

behavior domain

Commanded Controlled Operator domain
behavior domain

Information Real world Display domain
display

Simple Work pieces User domain
Workpieces domain

Lians/capatcs Input and Qutput domains

m Wirfs-Brock Associates www.wirfs-brock.com
[}

Copyright 2006 33

Frame Variants:

Required behavior problem revisited

controlling behavior of some “thing”

T
1
1
|
Automatic Email e

Controller \//) IS
Email transfer
. schedule -

P

Internet Service
Provider

/“Send and geticheck ™,
1 for Email or)
AN predefined schedule /

EC! GetEmailToSend cmc ‘\jescnptww domain-

FN! EmailToBeSeni
Mail Folder Manager

B

a oesigned Lexical
domatn

m Wirfs-Brock Associates www.wirfs-brock.com
-

Copyright 2006 34

17

The ideal...

O Your software
directly shares
phenomena with
the problem domain

[0 A rich interface
gives access to
phenomena it
needs to detect or
control

m Wirfs-Brock Associates www.wirfs-brock.com
-

Reality...

O An “intermediary”
often lies between
O This connection

domain can be
quirky

m Wirfs-Brock Associates www.wirfs-brock.com
-

18

Sometimes documents are
connection domains

lolewtiﬂj ‘ Bar cooled :
= \L W

|
B f\% i N l‘t\i“ \\ %"

PGP
Certifleates of trust

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 37
-

Composite problems

0 Interactions among subproblems
gives rise to composition concerns
m Consistency

B Precedence
® Interference
B Synchronization
m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 38

19

Commanded and required behavior

- : Co:/\,sLstewcg :
Software s Z ;
machine * { Requirement | s it PDSSLbLe to SﬂtLS'{:B
7 both requirements?
Controllec |, -
domain ~
Precedence:
ST T Where requirements
Second) -
Software = / Requirement | ﬂVﬁ}/» t consistent,
Machine 2 e _~ which takes precedence?
S e
Operator |~
m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 39
-

Integrating framing with other req'ts
L

[0 desired behavior
and given
domain
properties can
be missing or
jumbled

Framing cawn help clarify

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 40
-

Requirements Roadmap

Stakeholder ALtorlebie Prototypes

Categories Actor Map, Dialog Hierarchies
Dialog Maps Personas

Class Model
Data Model! Data Dictionary
Data Tables

Project
Charter
State-Data

Matrix
Product

Vision

Decision Tables

Business Policies Business 7.4 Decision Trees

Process Map™

use 5
Use Case Packages

Source: Ellen Gottesdiener, EBG Consulting
m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 41

Where problem frames don't fit

0 Framing’s emphasis on phenomena
doesn’t help describe or understand:
B Mathematical computations or algorithms
B Graphics user interfaces
® Compilers
.

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 42

21

What about a more agile world?

O Jackson advocates fully understanding
problems before starting design

OO0 Agile developers expect to incrementally
discover requirements. Framing
m ..can focus design spikes

B ..can lead to deeper understanding of user
stories and their dependencies

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 43
-

How do Problem Frames Relate to
Sprints and Story Cards?

Internet Service

Provider —
[} S~
' <
! ~
Automatic Email N 7 “Send and gef/check >,
= N { for Email on)
Controler \/ Email transfer k *. predefined schedule
. schedule i S~ T

EC!: GetEmailToSend cmc
FM!: EmailToBeSent
Mail Folder Manager

i

m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 44
-

How do frames relate to Sprint
Story Cards?

Impl . ¢ Technical req’t
mplementation o story
feature .. =
“simple path” |-~ ~ >
v 0.1) :
Implementation of Ty Designed
feature B — R Domain
extended case [affecting story
(v0.2)
Implementation of
dependency
____________ > feature === F
Sprint story cards extended case omain attecting story
FS DS TSC (v0.3)
m Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 45
Resources

O Problem Frames: Ana/yzing/and structuring

O O 0O 0o 0O

software development pro
Addison-Wesley, 2001

Study guide (questions/key ideas) for Problem
Frames

Software Requirements And Specifications,
Michael Jackson, Addison-Wesley, 1995

A website devoted to problem
frames:http://www.ferg.org/pfa/

Michael Jackson’s home page:
http://mcs.open.ac.uk/mj665/

Some of my blog entries:
http://www.wirfs-brock.com/rebeccasblog.html

ems, Michael Jackson,

V¥

Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006 46

23

Introducing Problem Frames

Rebecca Wirfs-Brock
Wirfs-Brock Associates, www.wirfs-brock.com

Problem frames are a way of mentally dividing our software’s purpose into manageable
chunks. Software systems can be thought of as a set of sub-problems or “problem
frames”. By breaking down a problem into its constituent problems, you can consider a
large system one smaller piece at a time. Michael Jackson, who invented the notion of
problem frames, writes about them in Problem Frames: Analyzing and structuring
software development problems. Jackson suggests that because software serves so many
purposes that software developers start by describing and structuring their problems in a
way that, according to Jackson, is “rarely necessary in other engineering disciplines,
where the diversity of problems to be solved is much smaller.” As software analysts,
developers or agile designers must become adept at asking: What kind of problem is this?
What is our software all about? What purpose does it serve? What behavior and
properties must our software have to achieve that purpose?

Each different class of problem frame has specific concerns and issues. When you think
about a problem, if you can “fit your problem (or a piece of it) into a relevant frame” then
it will lead you to ask appropriate questions and make appropriate tradeoffs. Here are
definitions of Jackson’s five problem types or frames and example frame diagrams:

e Required behavior—controlling state changes of something outside your software machinery
according to specific requirements.

Automatic Emai Internet Service | . y Sengofg?ng‘:tgh“k \
. - \ /
Controller Provider c _predefined schedule /

¢ Commanded behavior—controlling changes based on an operator or user’s commands

Mail Service
Provider \
ol .
,//;/Send anc .
Mail Folder Emai E reglelv:
Manager Client User Senc Queue , Emailwhen
E Check mai .. user says to
User

© 2006, Wirfs-Brock Associates 1

¢ Information display—produce information about some observable phenomena

Incoming Mail
/" Identify Junk
Junk Mail Mail
Filter ‘_ Requirement

Filter Report »

e Simple workpieces—a tool that allows users to create and manipulate structures, so that they can

be copied, printed, analyzed, or used

Email
messages | ¥-.

‘,/"/Correct effects of .

. user's commands
Email \ on message

Editing contents
Too

User

E

Transformation—convert input to one or more outputs according to specific requirements

Encodec
Email

Decoding

Email Decoder . Requirements

Viewable
Email

X

Frame diagrams are just a convenient iconic way to represent the structure of a problem, but they are
secondary to the real value of framing—a tool to help you gain understanding and focus requirements and
design activities. If you understand the nature of the problem your software needs to address, you can ask
relevant questions that help shape and focus your work. You can use problem framing in many different
situations even if you don’t adopt Jackson’s formal approach.
¢ In more traditional development processes
o To enhance requirements descriptions and artifacts with richer descriptions. For example,
if you are aware that a connection domain sits between your software and a “controlled
domain”, your requirements can be beefed to describe exceptional conditions and how
they should be addressed and possibly, to model that connection domain’s properties.

© 2006, Wirfs-Brock Associates 2

o To distinguish truths or facts (indicative qualities) from desired (optative) behavior which
is often imprecisely expressed as statements beginning with “shall” or “should”.

o To help you recognize where state models are appropriate to more precisely model
complex behaviors.

¢ In agile development:

o To initially brainstorm what kinds of design challenges will predominate and what parts
of your software they are likely to impact. In all but the simplest system there are usually
multiple problems (and frames) that are evident. Problem framing is a good way to get
teammates acquainted with upcoming design work and identify the potentially hard parts.

o As you discuss specific user stories with your customer. While I don’t even mention
problem frames to customers, I keep them in mind as we discussing any issue. I use them
as a mental tool to sharpen my thinking. If you think about which problem frame is
relevant (and what concerns there are) you will find yourself asking questions that buy
you more information. And you can have more meaningful discussions with your
customer about what your software should or shouldn’t do.

o To assess additional work during a design spike. As you dig deeper into implementation
you need to rethink and occasionally reframe the problems you are solving. A design
spike happens whenever something is more complex than you had thought. It could be
that reframing the problem might bring clarity.

Frame Concerns. Your goal is to design and build software that will behave appropriately and solve the
customer’s problem. Jackson advocates that you convince yourself and your customer that your proposed
software will tackle the right problem by writing an appropriate set of descriptions about the problem
domains. As a problem framer, your central task is to investigate and describe problem domain properties.
Each class of frame has a different set of concerns that are typically addressed.

This is one area where Jackson and agile developers diverge on their approaches (and value equation).
While I may advocate for formal descriptions when they add value, 1 find Jackson’s insistence on writing
descriptions of various domain properties to be a difficult task for most developers whether they are agile
or not. I find these formalisms to be less valuable than knowing what questions to ask and what issues are
commonly encountered in particular problem frames. So instead of going formal, I find myself asking
probing questions about a particular frame. Once I've framed a problem, I can start asking questions. Or
conversely, as I am asking questions I'm exploring what frames seem to fit and push harder to gather
appropriate requirements.

Here are some stylized questions to ask about a workpiece frame:

What are the basic elements of the workpiece?

Will it take different forms?

Does it need to be shared? If so, how?

Does it have an interesting lifecycle (or is it just something that is changed and then treated as
“static” after each change?

Is it passed around between various users? Is there a workflow associated with a workpiece?
e Should it persist? In what forms? Should it be published or printed?

Here are some questions to ask about required behavior problems:

® What external state must be controlled?

¢ How does your software find out whether its actions have had the intended effect? Does it need to
know for certain, or can it just react later (when the state of some thing is not as expected)? What
should happen when things get “out of synch” between your software and the thing it is
supposedly controlling?
How and when does your software decide what actions to initiate?
Is there a sequence to these actions? Do they depend on each other?
Are there complex interactions with your software and the thing under its control?
Can you view the connection between your software and the thing under control as being direct
(easier) or do you have to consider that it is connected to something that transmits requests to the

© 2006, Wirfs-Brock Associates 3

thing being controlled (and that this connection can cause quirky, interesting behavior)? If so, then
you may need to understand the properties of this “connection domain” that stands between your
software and the thing being controlled?

Here are some questions to ask about transformation problems:

What data do you start with?

How will it be changed?

Is the transformation complex?

Will it always work? What should happen when you encounter errors in the input?
Is the transformation “lossy” or reversible?

What speed, space, or time tradeoffs are there for performing any transformation?

Here are some questions to ask about commanded behavior problems (in truth these are only the tip of the

iceberg):

What’s a good model of user-system interaction?

What does the user need to know in order to “command” the system to do things?

Do certain commands need to be inhibited based on the current state of the system? Do they
always make sense? Does a sequence of actions make sense?

Is there a lag between issuing a command and the system performing the action? Is that a
problem?

What happens when a command fails? How should users be involved in “steering” the software
when a command fails?

Should certain commands be ignored (e.g. how many times do you need to press the elevator
button to call the elevator to your floor)?

Do commands need to be reversible? logged? monitored or otherwise tracked?

Here are some questions to ask about information problems:

What is the form of “observation” that the software must make about some event or fact or thing?
Is it difficult to ascertain when an event has occurred? (For example, if your software is trying to
record how many “vehicles” passed over sensors place on the road it may be very difficult to
characterize what constitutes a vehicle—is it two axles passing within a time period, but what
about motorcycles, backed up slow traffic, etc., etc.)?

How precise does the information need to be? Is the information “fuzzy”?

How much computation does your software have to do to come to an observation? (For example,
consider assigning a “junk mail rating” to an email, based on Bayesian analysis of the contents of
the current message based on sample data currently loaded into the junk mail box?

Is the user only interested in current information? Or is historical information important?

Are there questions that the user may want to ask about the information? What are they? How easy
are they to accurately answer?

Does your software need to construct a “model” of the phenomena being observed in order to
answer questions about it?

Additional Resources
Two books by Michael Jackson

Problem Frames: Analyzing and structuring software development problems, Michael Jackson,
Addison-Wesley, 2001

Software Requirements and Specifications, Michael Jackson, Addison-Wesley, 1995

A website devoted to problem frames and their application: http://www.ferg.org/pfa/

Jackson’s home page: http://mcs.open.ac.uk/mj665/

Some of my blog entries are about framing: http://www.wirfs-brock.com/rebeccasblog.html

If you are interested in a copy of some study questions for Jackson’s book or wish to pursue practical hands
on framing activities contact me at rebecca@wirfs-brock.com

© 2006, Wirfs-Brock Associates 4

