
Implementing Design Responsibilities: Guidelines for
Constructing Usable Objects

 by Rebecca Wirfs-Brock

An object designer's job isn't over when she starts coding. We can ruin perfectly
good work by translating crisp designs into murky implementations.

"Consider the books, radios, kitchen appliances, office machines, and light
switches that make up our everyday lives. Well-designed objects are easy to
interpret and understand. They contain visible clues to their operation. Poorly
designed objects can be difficult and frustrating to use. They provide no clues or
sometimes-false clues. They trap the user and thwart the normal process of
interpretation and understanding. Alas, poor design predominates. The result is a
world filled with frustration, with objects that cannot be understood, with devices
that lead to error." - Donald Norman, The Design of Everyday Things

Donald Norman's words of advice apply equally to the design of software as well
as physical objects. To implement an object's responsibilities that we have
designed we specify one or more method signatures. A method signature
consists of a method name, arguments, and return value. We then code the body
of each method and also declare necessary internal object storage. As we
implement our designs we should take care not to create brittle, breakable
objects. Meilir Page-Jones cautions against creating objects having awkward,
illegal, irrelevant, redundant, incomplete or inappropriate behavior. There are
safeguards we can take to protect against these ills. Let's look at some
guidelines for designing interfaces and implementations that make objects more
usable.

Suppose we design a rectangle having responsibilities for knowing its
dimensions and its location. During implementation we transform these
responsibilities into four instance variables to represent our rectangle's corners,
and provide methods for setting and moving its corners. We provide the public
method

moveCorner(oldCoordinate, newCoordinate)

that relocates a single corner. What's wrong with this picture?

Guideline: Avoid messages that break objects.



Don't permit unchecked changes to an object's instance variables. Providing
these interfaces leaves an object open to a flurry of incorrectly ordered
messages that will break it.

If our moveCorner() method blindly moves one corner independently of the other
three, our rectangle becomes a trapezoid in a single message! We need to
preserve our object's property of rectangleness: having four corners and four
right angles.

Let's fix our vulnerable rectangle to be more robust. To retain its rectangle shape,
one corner cannot move independently of the other three. We can fix our
rectangle by disallowing direct, unguarded corner changes. A more robust
moveCorner() implementation would check and preserve the constraints between
each corner. We can do this by adding the distance between oldCoordinate and
the newCoordinate to all four corners. Our new, improved moveCorner() method
moves all corners in response to a request to relocate a single corner. This is a
better implementation because it prevents inconsistent state changes.

Guideline: Don't allow messages which cloak hidden limitations

These kinds of messages don't cause an object to be inconsistent, yet its users
still thinks it is broken!

Let's imagine our rectangle to be constrained to a minimum size: we cannot
create a rectangle smaller than one unit per side. How should we implement a

createRectangle (lowerLeftCorner, width, height)

method to support this constraint?

One startling way to do so would be to allow the sender to think she was creating
a small rectangle, but to silently return a minimum-size rectangle, regardless of
the requested width and height. Another, still somewhat unsatisfying solution
would be to return an error or throw an exception in response to a request to
create too small a rectangle. Ideally there shouldn't be arbitrary restrictions on an
object's legal states: why limit a rectangle's size?

If there are such limitations, and there will be, the world is full of imperfections,
how best can we convey these limits in our implementation? Does it make our
design better to describe these limits in our method comments? Someone
attempting to create a too small rectangle might be better informed: Aha! It isn't a
bug, merely a design limitation! But she still won't be satisfied. Documenting
limitations improves understanding, but not an object's usability or maintainability.
Unless the reasons why such limitations exist are documented, maintainers won't
be able to discriminate between gratuitous implementation limitations, design



quirks or mandatory restrictions.

A better solution is to provide more than one way to create rectangles. We still
can’t avoid generating exceptions to exceptional arguments in

createRectangle (lowerLeftCorner, width, height),

but a second method could provide an implementation that constrains without
throwing exceptions the rectangle's size to its minimum size,

createConstrainedRectangle (lowerLeftCorner, width, height).

This improves the usability of our rectangle for situations when supplied values
might be slightly smaller than the minimum. Rather than have the client code
constrain the values of with and height, these can be performed once within
createConstrainedRectangle().

We might even include a third method to create a minimum sized rectangle,
which allows a user to create small rectangles without having to know minimal
dimensions:

createMinimumSizeRectangle (lowerLeftCorner).

If we embed enough information about rectangle creation behavior in each
method's name, these clues to help avoid surprising behavior and can lead users
to find details in documentation or method comments.

Guideline: Avoid implementation revealing messages

Providing public accessing methods to every instance variable can cause an
even more insidious problem. Client code will tend to rely upon the details,
making it hard to change them without breaking client code. Fortunately, the fix
for this is very simple. Provide methods to set and/or retrieve the values of
instance variables only if you believe they should be publicly visible throughout
the object’s lifetime. For example, while it is appropriate to provide methods to
retrieve the values of our rectangle's corners, e.g.,
• lowerLeftCorner()
• lowerRightCorner()
• upperLeftCorner()
• upperRightCorner(),

we don't provide setter methods to independently change corner values.

Guideline: Avoid spreading an atomic responsibility across multiple messages

When multiple messages are required to carry out a single responsibility, the



possibility exists that the client will not finish directing our object to do its proper
work. This is especially bad if one or more of those messages put our object into
an inconsistent state. For example, if to move a rectangle we had to send it four
messages to move its four corners, our rectangle would be misshapen if only
three messages were sent. We've seen how to fix our rectangle's interface,
above. We can remove this problem by providing a single method that in one
atomic operation moves the rectangle to a new location. This trivial example is
easy to fix; however it is tempting to provide power interfaces for power users in
addition to well-behaved atomic methods (power users know what they are
getting into, so let have fine control over an object). Whenever you expose
minute details of an object's behavior to external control question whether it is
possible to abuse this power, and whether the resulting control outweighs the
potential danger.

Guideline: Don't arbitrarily place responsibilities.

Designing an object to support a responsibility that is tangentially related (at best)
is simply not a good idea. Question whether an object's responsibilities are
appropriate. When you cannot find an appropriate existing object to place a
responsibility, consider adding a new object to your existing design.

Should you burden a Product object with determining the best means of
shipment?

To answer this question we need to analyze why a suspect responsibility landed
in this object, and what other objects are involved in fulfilling the responsibility.
We need to ship an Order (consisting of one or more Product Items) reliably to a
customer's shipping location. Determining the best means of shipment involves
knowing the size, weight and quantity of the Product, the shipping location
(represented by an Address object), any restrictions/constraints on shipping (for
example when the customer wants the order), how many other Product Items are
in the Order, etc. A single Product object is just a minor player in this complex
relationship between customer Order, Product Items and Means of Shipment. It
is reasonable to expect a Shipment object (which is either a completed or a
partial order) to know its shipment details, but even then, it might collaborate with
another, as yet undetermined object, perhaps a Shipment Planner, who knows
the rules for shipping.

Guideline: Avoid overly restrictive or incomplete implementations of a
responsibility.

Design an object to support all behavior needed by an application. Question
arbitrary restrictions

One example of this was an initial design of a Customer object for a banking
application. Once a customer is activated (moved from a pending to an active



status), it was thought that the customer object could not or should not be
returned to a pending status. This simply wasn’t so. If a Bank Agent incorrectly
changed a customer’s registration status, she needed to reset it! The initial
design was too restrictive, not allowing mistakes to be corrected.

Guideline: Avoid redundant messages

Don't support multiple ways to accomplish the same request. In the design of a
result object, which conveyed information between distributed components in an
internet banking application, the Result objects supported over a dozen
messages for checking on and setting the result value. Did the interface designer
go overboard?

ifError: actionBlock

" If the receiver indicates error or fatal error, answer the result of evaluating the
actionBlock without arguments; otherwise, answers the receiver. "

isContinuableError

" Answers true if the receiver indicates a non-fatal error; otherwise, answers
false. "

isError

" Answers true if the receiver indicates error or fatal error; otherwise, answers
false. "

isFatalError

" Answers true if the receiver indicates a fatal error; otherwise, answers false. "

isSuccess

" Answers true if the receiver indicates success; otherwise, answers false. "

isWarning

" Answers true if the receiver indicates warning; otherwise, answers false. "

setCorruptDataError: aTemplateID

" Sets the receiver's condition to #CorruptDataError and sets its templateID from
the argument and answers the receiver. "

setDeveloperError



" Sets the receiver's condition to #DeveloperError and answers the receiver. "

setDeveloperError: aTemplateID

" Sets the receiver's condition to #DeveloperError and sets its templateID from
the argument and answers the receiver. "

setError

" Sets the receiver's condition to #Error and answers the receiver. "

setError: aTemplateID

" Sets the receiver's condition to #Error and sets its templateID from the
argument and answers the receiver. "

setFatalError

" Sets the receiver's condition to #FatalError and answers the receiver. "

setFatalError: aTemplateID

" Sets the receiver's condition to #FatalError and sets its templateID from the
argument and answers the receiver. "

setProcessingError

" Sets the receiver's condition to #ProcessingError and answers the receiver. "

setProcessingError: aTemplateID

" Sets the receiver's condition to #ProcessingError and sets its templateID from
the argument and answers the receiver. "

setSuccess

" Sets the receiver's condition to #Success and resets its templateID to nil and
answers the receiver. "

setSuccess: aTemplateID

" Sets the receiver's condition to #Success and resets its templateID to nil and
answers the receiver. "

setWarning



" Sets the receiver's condition to #Warning and resets its templateID to nil and
answers the receiver. "

setWarning: aTemplateID

" Sets the receiver's condition to #Warning and sets its templateID from the
argument and answers the receiver. "

The Result class designer chose to provide a unique message to set each
possible result value, and another message for setting each status with a
message template. This resulted in thirteen messages instead of one. An
alternative design would have been to provide a single message with two
arguments, status and message template, e.g.:

setStatus:aSymbol message: aTemplateID.

The designer chose to not do this. He felt that the internal details of how status
was represented should remain hidden: all a client should be able to do is to set
a status with a specific message, and then ask the object if it were in that state.

If he had modified his design to provide one method to set the status with an
argument, he felt this implied that status was stored directly in an instance
variable whose type matched the status argument. The designer vigorously
argued for his implementation that did not reveal nor imply any details about
status was internally stored. This led to a verbose implementation of a single
responsibility.

Sometimes we overwork our designs. Designers get protective and insist that
their way is the right way. Egos clash and cloud good judgement. In truth there is
no one correct way to implement a design. I argued for a simpler implementation
of the Result object. It was one argument I lost. Fortunately the consequences
weren't disastrous. We turned out to use only a very small fraction of the elegant
Result interface. Most messages ended up never being sent! Wonderful design,
moderately complex implementation, but simple usage prevailed. In conclusion
I'll calmly interject a guideline which serves me well in everyday life as well as
software design.

Guideline: Favor simplicity and comprehension over completeness and
complexity.

Don't be enamored with complexity for complexity's sake. When you find yourself
admiring an elegant implementation, consider whether your object's users think
as highly of it as you do.

References



D. Norman, The Design of Everyday Things, Bantam Doubleday, 1988 ISBN 0-
38-52677-64

M. Page-Jones, What Every Programmer Should Know about Object-Oriented
Design, Dorset House Publishing, 1995 ISBN 0-932633-31-5


