
1

Dynamic Hook Points
Eli Acherkan1,2, Atzmon Hen-Tov2, David H. Lorenz1,

Lior Schachter1, Rebecca Wirfs-Brock3, Joseph W. Yoder4

1The Open University of Israel, Raanana 43107, Israel

2Pontis Ltd., Glil Yam 46905, Israel

3Wirfs-Brock Associates

4The Refactory, Inc.
eliac@pontis.com, atzmon@pontis.com,

lorenz@openu.ac.il, liorsav@gmail.com,
 rebecca@wirfs-brock.com, joe@refactory.com

Abstract. When building dynamic systems, it is often the case that new
behavior is needed which is not supported by the core architecture. One way
to vary the behavior quickly is to provide well-defined variation points, called
hook-points, at different places in the systems, and have a means to
dynamically lookup and invoke new behavior at runtime when desired.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming;; D.2.2 [Design Tools and Techniques]: Object-
oriented design methods;; D.2.11 [Software Architectures]: Patterns

General Terms
Design

Keywords
Adaptive Object-Models, Dynamic systems, Reflection, Variation points, Hook points

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission. Preliminary versions of these papers were presented in a writers' workshop at the 2nd Asian Conference
on Pattern Languages of Programs (AsianPLoP). AsianPLoP'2011, October 5-7, Tokyo, Japan. Copyright 2011 is held by
the author(s). ACM 978-1-XXXX-XXXX-X.

2

Introduction
It is often necessary to adapt the behavior of an Adaptive Object-Model (AOM)
system [YBJ01; YJ02] in a way not supported by the core AOM architecture. One way
to extend the behavior quickly and without going through a complete build-redeploy
software delivery cycle is to provide well-defined hook-points at different places in the
domain model where custom behavior can be defined.

It is also highly desirable to enable custom behavior to be defined by the AOM user,
who isn‟t necessarily a programmer. One way to achieve this is by providing the AOM
user with the ability to define Business Rules [Ars00]; that is, to specify actions to be
taken when certain conditions are met.

Sometimes, complex custom behavior must interact with external systems or data
repositories. In such cases, writing imperative code cannot be avoided. Often using a
lightweight scripting language is a good way to add custom code. Sometimes, however,
the extra requirements of a particular custom behavior demands highly optimized
performance, which requires programming in the hosting language (e.g., Java, C#) to
implement the hook.

Intent
This DYNAMIC HOOK POINTS pattern is intended primarily for those that are building
dynamic or flexible AOM systems and need ways to incorporate variation points in the
architecture where new behavior can be added dynamically without a full compile-
build-deploy cycle.

Context
In an AOM, the model is often revised as new business requirements emerge. These
modifications to the AOM may also require changes in the system behavior not
anticipated by the AOM developer. While the proper way to address such changes is to
modify the AOM domain entities, this entails new software delivery and redeployment
of the system.

Problem
How can you allow a system that is changing in specific locations to adapt to
unpredicted behaviors without deploying a new software version? These changes are in
well-known places, but the changes are not known in advance.

Forces

 Customizability: There are many customers using the product, each customer may
modify their own AOM model.

 Adaptability: The AOM model changes over time. The variations are required to
withstand model changes.

 Extensibility: Over time, new locations in the system may be recognized as apt to
change. The development effort required to introduce a variation point in a new
location should be taken into account.

3

 Crosscutting concerns: The varying behavior should be subject to the same
common design practices as enforced in the rest of the system, such as logging,
performance tracing, persistence validation (e.g., type safety), and security auditing.

 Scoping: The variations need a well-defined scope, which controls what they can
and cannot do, and which parts of the system are accessible to them and can be
affected by them.

 Reuse: The same behavior may be required in several variation points. On the one
hand, a solution that promotes reuse (e.g., via libraries or inheritance) is preferable
to a solution that forces duplication of behavior. On the other hand, supporting reuse
may introduce more complex regression problems, e.g., when changing a shared
component all dependent components should be verified for consistency, preferably
using static analysis.

 Testability: The solution should support users in testing the behavior extension
before launching it to production.

Solution
Analyze your business flows and identify the places that should support behavioral
variability. Modify the behavior of the Entities in those well-defined places to
invoke dynamic hooks. Employ AOM mechanisms to connect dynamic hook
implementations to the user-defined AOM classes, by letting your EntityTypes
hold dynamic hooks as data members, thus connecting a dynamic hook instance to a
user-defined class. The class diagram in Figure 1 depicts the main classes involved in
the definition and invocation of dynamic hooks.

Figure 1 - Class diagram of the main classes involved in hook points

4

IDynamicHook represents a generic interface containing a single execute()
method. The interface is implemented by the abstract base class
AbstractDynamicHook. JavaDynamicHook, JavaScriptDynamicHook
and RuleDynamicHook are different types of hooks that allow users to extend the
system behavior in Java, JavaScript and Rules respectively.

EntityWithHook is an AOM core application entity that is to be subclassed
dynamically via AOM. It allows a dynamic hook to adapt the behavior of its user-
defined subclasses (e.g., UserDefinedEntity). Its EntityType is
EntityWithHookType.

EntityWithHookType contains a property hookPoint1 of type
IDynamicHook. When the AOM user defines a subclass of EntityWithHook (and
therefore an “instance” of EntityWithHookType), the user can supply an instance
of IDynamicHook as the value for the hookPoint1 property. The dynamic hook
instance can be of any concrete subclass of IDynamicHook (e.g., Script1 is an
instance of DynamicJavaScriptHook in Figure 1).

The dynamic hook is invoked by EntityWithHook in the appropriate place in the
flow. The data that EntityWithHook passes to the dynamic hook is encapsulated in
an instance of RuntimeContext. In its simplest form, it can be a map of key-value
pairs. A RuntimeContext is created and populated by EntityWithHook prior to
each invocation.

Using a common interface (IDynamicHook), the caller (EntityWithHook) is
unaware of the concrete type of the dynamic hook supplied (e.g., Java, JavaScript, or
Rule-based). Moreover, the same property (hookPoint1) can contain different types
of hooks in different subclasses of EntityWithHook.

A single Entity can have several hook points and invoke several dynamic hooks during
its execution. Some of the hook points can invoke the same dynamic hooks, while other
hook points invoke different hooks (for example, EntityWithHookType can have
data members hookPoint1 and hookPoint2, and EntityWithHook may have
two points in the logic flow where it invokes hookPoint1, and only one from which
it invokes hookPoint2).

5

Figure 2 shows the sequence of operations during dynamic hook invocation.

Figure 2 – Sequence diagram of dynamic hook invocation

A client invokes an operation (doSomething) on an instance of
UserDefinedEntity. UserDefinedEntity is a dynamic subclass of
EntityWithHook.

At the appropriate place in its execution of doSomething, EntityWithHook
invokes the corresponding dynamic hook by creating an instance of
RuntimeContext, populating it with the data that should be accessible to the hook‟s
body, and calling the doHookPoint1 method of EntityWithHookType.

EntityWithHookType retrieves the value of its hookPoint1 property, and (if the
value exists) invokes the execute method. The dynamic hook performs its logic
(accessing the RuntimeContext if needed), optionally returning a value. When
control returns to EntityWithHook‟s doSomething method, it processes the
returned value if needed, and proceeds.

Example
Comfortable Couch (CC) is a fictitious conference management system. CC supports
submissions of papers, assignment of submissions to reviewers, and audits the

6

submissions lifecycle. In CC one can customize the system for each conference. For
example, the conference chairs can customize the review form.

One of the conference chairs requested from the CC product management a new feature:
every time a reviewer submits a review, the conference chair wants to be notified with a
text message (SMS). Since sending text messages requires integration with many
service providers and there are charges per message transmission, the CC product-board
is reluctant to develop this capability as part of the product. However, they remembered
a few old requests made by the conference chairs for adapting the behavior of the
system upon a submission of a review. A researcher once asked for the ability to track
the “time-before-deadline” of review submissions as part of a research on “the student
syndrome among PC members.” Another chair wanted to validate the review form and
to deny a submission in which a poor rating is not accompanied by a well-justified
explanation of sufficient length (e.g., a rule that states that if the technical quality of a
paper is graded under 3, then the “technical quality comments” field must contain at
least 200 characters).

After considering the varying needs for behavior adaptation in the review form‟s
lifecycle, the CC product-board decided to open a new hook point to allow each chair to
customize the behavior for his conference.

Luckily, Comfortable Couch is developed using the AOM architecture style, which
provides for a natural solution (object-oriented wise) for fitting the hook into the design.

Figure 3 shows the main classes involved in the use-case.

7

Figure 3 - Example class diagram

Conference and ReviewForm are AOM Classes. A Conference specification
includes the type of review form to be used (<<link>> from AOM_Conference to
AOM_ReviewForm in Figure 3). Defining the new hook point in ReviewForm
resulted in adding the data member onReviewSumbission and the method
doOnReviewSubmission to the EntityType ReviewFormType. This new
structure allows the conference chair (AOM user) to customize the behavior of CC by
specifying an instance of IDynamicHook, such as sendSMSToChair in Figure 3.

The ReviewForm„s business logic is implemented in the ReviewForm AOM
application class. In the proper point in the logic flow the hook is invoked. This is done
by populating the RuntimeContext (possibly with objects such as the review form,
reviewer and paper) and invoking the doOnReviewSubmission() method on the
ReviewFormType, the implementation of which delegates the processing to the
onReviewSubmission data member. In Java it may look like this:
boolean doOnReviewSubmission(RuntimeContext runtimeContext) {
 Boolean result = true;;
 IDynamicHook onReviewSubmissionHook = getOnReviewSubmission();;
 if (onReviewSubmissionHook != null) {
 result = (Boolean)onReviewSubmissionHook.execute(runtimeContext);;
 }

8

 return result;;
}

The ReviewForm allows the dynamic hook to stop the submission process by
returning false:
RuntimeContext context = prepareContext();;
boolean shouldProceed = getEntityType().doOnReviewSubmission(context);;
if (shouldProceed) {
 //
}

Implementation notes
- Adding a list of dynamic hooks as a data member to an EntityType (instead of a

single object) allows the user to define several behavior extensions that will
operate sequentially, aiding separation of concerns.

- There are several techniques for invoking a scripting language from a separate
host language. For example, the Java Development Kit (JDK) includes a
scripting engine with built-in support for JavaScript.

- In Java, hooks can be implemented either as a plugin in an OSGi environment
e.g., Equinox [EEQX] or with on-the-fly Java compilation (using the Java
Compiler API in a JSP-like manner).

- Rules can be implemented with expression-languages. For example, in Java using
Spring EL [SEL], JSF EL [JSFEL] and JXPath [JXP].

- The ability to reuse a dynamic hook depends on the implementation. Possible
solutions include allowing many-to-one references to instances of
IDynamicHook, or multi-level inheritance between user-defined AOM
classes.

Consequences
 Time to market: Changes to the architecture or new behaviors can be added without

the need for another complete compile-build-deploy cycle.

 Increased flexibility: It is possible to choose on a per-case basis whether to use a
scripting language, your favorite programming language, or a RULE OBJECT pattern
language [Ars00]. If the variation needed is of limited expressiveness then using
rules is preferable, since it provides a controlled solution with good performance
(rules are implemented in the system programming language). If expressiveness is a
major concern, then a scripting language can be used. When both expressiveness
and performance are critical, hooks can be implemented using the system
programming language and introduced to the system using reflection or other
methods.

 Ease of use: Definition of a new hook point (performed by the application team)
and implementation of a dynamic hook (performed by the AOM user) require a
relatively small effort.

 Higher complexity: The usage of dynamic hooks increases complexity through the
addition of a new level of indirection and interpretation when binding the hook
context to the dynamic hook implementation. This extra level of complexity also
requires more sophistication in debugging and testing. Testing of the system can be

9

more complex, because tests must be provided not only for the core AOM
architecture, but also for all the hook points to make sure they work properly in
conjunction with the core AOM system.

 Performance overhead: Using scripting languages to implement hooks can impact
performance. Using caching mechanisms can eliminate the performance overhead
related to just-in-time compilation and creation of temporary objects.

 Increased cohesion: The dynamic hooks must follow the contract defined by the
AOM application layer. This increases the number of dependencies between
components, and puts the dynamic hooks at risk when the AOM application is
changed. This is particularly important for hooks that don‟t support type safety. The
EVOLUTION RESILIENT SCRIPT pattern [HNS10] addresses this issue and improves
type safety.

Related Patterns
The STRATEGY pattern describes a similar mechanism for non-AOM systems, where
both the hook point and its implementation reside in application classes. The STRATEGY
pattern doesn‟t address dynamic modification of the behavior at runtime.

The EVOLUTION RESILIENT SCRIPT pattern enhances DYNAMIC HOOKS by providing type
safety and ongoing validation.
Known Uses
Pontis Ltd. (www.pontis.com) is a provider of Online Marketing solutions for
Communication Service Providers. Pontis‟ Marketing Delivery Platform (MDP) allows
for on-site customization and model evolution by non-programmers. The system is
developed using ModelTalk [HLPS09] based on AOM patterns. Pontis‟ MDP system is
deployed in over 20 customer sites including Tier I Telcos. A typical customer system
handles tens of millions of transactions a day exhibiting Telco-Grade performance and
robustness.

Pontis‟ MDP system aggregates data received from the Communication Service
Provider‟s systems, such as information about a subscriber‟s usage patterns, and grants
various benefits to subscribers based on the subscriber‟s data and the currently active
promotions (e.g., a subscriber that sent 100 text messages receives a promotional
coupon).

The DYNAMIC HOOK POINTS pattern is widely used in MDP. One such hook point is
invoked whenever a benefit is granted to a subscriber. Each customer project and each
benefit class (represented as a user-defined class) can augment the system‟s behavior by
writing code (in either JavaScript or Java) that will be invoked every time a benefit is
granted. Several projects use this hook point in order to record the details of certain
classes of benefits into an external data warehouse system.

Two adaptive systems for Invoicing and Import developed by The Refactory
(www.TheRefactory.com) in C#/.NET used dynamic hook points to define known
places to add new behavior. One dynamic hook point in the Import system was for
adding new rules. New rules can be added by creating a DLL, which contains a subclass
of ValidationRule. This class will be tagged with the name of the validation rule
and have a Validate method which is invoked during the validation process. By

10

including the DLL in the config file that specifies what will dynamically loaded, you
can easily add new rules that can be used by the Import Process. The following is a
simplified definition for the InvalidIdValidationRule class. It is for a rule that
makes sure invalid ids are not accepted during the import of orders.

[ValidationRule("Invalid Id")]
public class InvalidIdValidationRule : ValidationRule{
 public InvalidIdValidationRule() : base() { }

 public override void Validate(ImportContext context)
…}

Different rules can be invoked based on client-specified values stored in the database. A
common ImportContext was passed in that could be used as the context for the new
rules. A dynamic tag such as "Invalid Id" could be used for associating the rule in the
import language to designate the new rule and when to invoke and run the new rule.

A medical-based AOM system developed by The Refactory for the Illinois Department
of Public Health [YJ02] is another example of a system that extensively uses dynamic
hook points. In this system, reflection is also used to dynamically bind hook points.
Custom behavior can be described as a dynamic method or strategy associated with new
types of objects. Thus a new class can be created, and by using reflection, the new
behavior can be dynamically associated with new types of diseases and invoked using
stored descriptive information.

There are also well-known non-AOM uses of the DYNAMIC HOOK POINTS pattern in the
Spring and Eclipse [EIDE] frameworks. They have different implementations with
similar intent; the ability to support the definition of hook points and the ability to
dynamically invoke new behaviour in well-defined ways.

Acknowledgements
We thank our shepherd Kiran Kumar Reddy for his valuable comments and feedback
during the AsianPLoP 2011 Shepherding process. We also thank our 2011 AsianPLoP
Writers Workshop Group, Jorge Ortega-Arjona, Gabriele Kahlout, Hironori Washizaki,
Masayuki Tokunaga, Norihiro Yoshida, Jonatan Hernández Hernández, for their
valuable comments.

11

References

[AOM] Adaptive Object-Models. http://www.adaptiveobjectmodel.com

[And98] Anderson, F. A Collection of History Patterns. Proceedings of the 6th
Pattern Language of Programs Conference (PLoP 1998), Monticello,
Illinois, USA, 1998.

[Ars00] Arsanjani, A. Rule Object Pattern Language. Proceedings of the 8th
Pattern Language of Programs Conference (PLoP 2000). Technical
Report WUCS-00-29, Dept. of Computer Science, Washington
University Department of Computer Science. (2000).

[BMR+96] Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.
Pattern Oriented Software Architecture, Volume 1: A System of
Patterns. Wiley & Sons. 1996.

[BR98] Bäumer, D., D. Riehle. Product Trader. Pattern Languages of
Program Design 3. Edited by Robert Martin, Dirk Riehle, and Frank
Buschmann. Addison-Wesley, 1998.

[CW86]

Caudill, P., Wirfs-Brock A. "A Third Generation Smalltalk-80
Implementation.", p. 119-130, OOPSLA '86 Conference Proceedings,
Portland Oregon, September 29-October 2, 1986.

[EIDE] http://www.eclipse.org/

[EEQX] http://www.eclipse.org/equinox/

[FCW08] Ferreira, H. S., Correia, F. F., and Welicki, L. 2008. Patterns for data
and metadata evolution in adaptive object-models. Proceedings of
the 15th Conference on Pattern Languages of Programs (Nashville,
Tennessee, October 18 - 20, 2008). PLoP '08, vol. 477. ACM, New
York, NY, 1-9.

[Fow97] Fowler, M. Analysis Patterns: Reusable Object Models. Addison-
Wesley. 1997.

[Fow02] Fowler, M. Patterns of Enterprise Application Architecture.
Addison-Wesley. 2002.

[FPR01] Fontura, M., Pree, W., Rump, B. The UML Profile for Framework
Architectures. Addison-Wesley. 2001.

[FY98] Foote B, J. Yoder. Metadata and Active Object Models. Proceedings
of Plop98. Technical Report #wucs-98-25, Dept. of Computer
Science, Washington University Department of Computer Science,
October 1998.

[GHJ+95] Gamma, E., R. Helm, R. Johnson, J. Vlissides. Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley.
1995.

[HNS10] Atzmon Hen-Tov, Lena Nikolaev, Lior Schachter, Joseph W. Yoder,
Rebecca Wirfs-Brock. Adaptive Object-Model Evolution Patterns,
SugarLoafPLoP 2010.

[HLPS09] Atzmon Hen-Tov, David H. Lorenz, Assaf Pinhasi, Lior Schachter:
ModelTalk: When Everything Is a Domain-Specific Language, IEEE

12

Software, vol. 26, no. 4, pp. 39-46, July/Aug. 2009.

[Jon99] Jones, S. A Framework Recipe. Building Application Frameworks:
Object-Oriented Foundations of Framework Design.Edited by Fayed,
M., Johnson, R., Schmidt,.D. John Wiley & Sons. 1999.

[JSFEL] JavaServer Faces Expression Language. http://developers.sun.com/
docs/jscreator/help/jsp-jsfel/jsf_expression_language_intro.html

[JW98] Johnson, R., R. Wolf. Type Object. Pattern Languages of Program
Design 3. Addison-Wesley, 1998.

[JXP] JXPath. http://commons.apache.org/jxpath/

[KJ04] Kircher, M.; P. Jain. Pattern Oriented Software Architecture, Volume
3: Patterns for Resource Management. Wiley & Sons. 2004.

[KSS05] Krishna, A., D.C. Schmidt, M. Stal. Context Object: A Design
Pattern for Efficient Middleware Request Processing. 13th Pattern
Language of Programs Conference (PLoP 2005), Monticello, Illinois,
USA, 2005.

[Mar02] Martin, R. Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall, 2002.

[RFBO01] Riehle, D., Fraleigh S., Bucka-Lassen D., Omorogbe N. The
Architecture of a UML Virtual Machine. Proceedings of the 2001
Conference on Object-Oriented Program Systems, Languages and
Applications (OOPSLA ‟01), October 2001.

[RTJ05] Riehle D., M. Tilman, and R. Johnson. Dynamic Object
Model.Pattern Languages of Program Design 5. Edited by Dragos
Manolescu, Markus Völter, James Noble. Reading, MA: Addison-
Wesley, 2005.

[RY01] Revault, N, J. Yoder. Adaptive Object-Models and Metamodeling
Techniques Workshop Results. Proceedings of the 15th European
Conference on Object Oriented Programming (ECOOP 2001).
Budapest, Hungary. 2001.

[SEL] Spring Expression Language. http://www.springsource.org/.

[WYWJ07] Welicki, L.; J. Yoder; R. Wirfs-Brock; R. Johnson. Towards a
Pattern Language for Adaptive Object-Models. Companion of the
ACM SIGPLAN Conference on Object Oriented Programming,
Systems, Languages and Applications (OOPSLA 2007), Montreal,
Canada, 2007.

[WYW09] Welicki, L.; J. Yoder; R. Wirfs-Brock. Adaptive Object-Model
Builder. 16th Pattern Language of Programs Conference (PLoP 2009),
Chicago, Illinois, USA, 2009.

[WYW07] Welicki, L, J. Yoder, R. Wirfs-Brock. Rendering Patterns for
Adaptive Object Models.14th Pattern Language of Programs
Conference (PLoP 2007), Monticello, Illinois, USA, 2007

[YBJ01] Yoder, J.; F. Balaguer; R. Johnson. Architecture and Design of
Adaptive Object-Models. Proceedings of the ACM SIGPLAN
Conference on Object Oriented Programming, Systems, Languages
and Applications (OOPSLA 2001), Tampa, Florida, USA, 2001.

13

[YJ02] Yoder, J.; R. Johnson. The Adaptive Object-Model Architectural
Style. IFIP 17th World Computer Congress - TC2 Stream / 3rd
IEEE/IFIP Conference on Software Architecture: System Design,
Development and Maintenance (WICSA 2002), Montréal, Québec,
Canada, 2002.

[YR00] Yoder, J.; R. Razavi. Metadata and Adaptive Object-Models.
ECOOP Workshops (ECOOP 2000), Cannes, France, 2000.

