Solfware

www.computer.org/software

Does Beautiful Code Imply Beautiful Design?
Rebecca J. Wirfs-Brock

Vol. 24, No. 6
November/December 2007

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.

[EEE@ computer society

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

Editor: Rebecca J. Wirfs-Brock

Wirfs-Brock Associates

rebecca@wirfs-brock.com

Does Beautiful Gode Imply
Beautiful Design?

What beauty is, 1 know not, though it adberes to many things. —Albrecht Durer

n the short piece, “Treating Code as an Es-
say,” Yukijiro Matsumoto, chief designer
of the Ruby programming language, com-
pares writing programs to writing essays:

For both essays and computer code, it’s
always important to look at how each
one is written. Even if the idea itself is
good, it will be difficult to
transmit to the desired audience
if it is difficult to understand.
The style in which they are
written is just as important as
their purpose. (Beautiful Code,
O’Reilly, 2007)

According to Matsumoto, the
most important question a code
reader asks is, “What does it
do?” If a program’s purpose isn’t clear, it isn’t
good, let alone beautiful. And, Matsumoto
claims brevity is one of the most important con-
tributors to beautiful code. Although brevity can
contribute to code beauty—clarity of purpose,

expressive use of the programming language, and
design elegance also play a part. But is there more
to good design than beautiful code?

Beautiful code: Brevity vs. fluency

To illustrate his point about program
brevity, Matsumoto contrasted “hello world”
as written in Ruby (as well as Perl and
Python)—println “Hello World”—with
the equivalent Java code (see figure 1).

The Java program is bulkier because it in-
cludes type and class declarations and syntac-

IEEE SOFTWARE Published by the IEEE Computer Society

tic elements for specifying access rights to
methods and variables. But I've seen plenty of
Java code that reads well.

Contrasting Java code with Ruby illustrates
that strongly typed languages carry more pro-
gramming constructs and require that more de-
tails be specified. Most programmers, however,
quickly enough become familiar with the com-
plexities of the languages they program in and
can create reasonable code in their language of
choice. Of course, when I first wander into any
new programming language, my programs lack
elegance because of my limited fluency in the lan-
guage. Fluency demands practice and observa-
tion of other fluent programmers who can share
with you their code and reasons for program-
ming the way they do. If you’re around others
with more skill and practice in that language, and
you read a lot of good code, you can pick up a
language’s nuances. This helps you develop a
programming style that fits within the language’s
constraints and exploits its strengths. A great
C++ program might not match my Smalltalk
sense of aesthetics, but it still can be beautiful.

Recently, I participated in a grand experiment
run by Michael Feathers and Emmanuel Gaillot
to explore whether so-called experts (those at-
tending a conference’s discovery session) could
agree on the merits of various code snippets.
Even more ambitiously, Feathers and Gaillot
wanted to determine how to structure code ex-
amples to help novices more quickly develop an
intuitive feel for when a solution is appropriate.

After scanning over 100 small program-

0740-7459/07/$25.00 © 2007 IEEE

ming samples in an hour, I found it in-
creasingly difficult to judge whether
any particular coding example had
merit. Spotting quirky parts that would
make me grumble if I had to maintain
the code was much easier. Code that
lacked expressive variable and argu-
ment names, had hardwired constants,
had poor indentation, or was filled
with obscure programming hacks re-
ally irritated me.

What I found most disconcerting,
however, was the lack of any design con-
text for the code I read. Without any
meaningful design discussion, 1 felt
adrift. I didn’t feel confident rating a
sample as good if [wasn’t certain what it
was doing. And any bad programming
habits I spotted proved increasingly an-
noying. In fact, most code samples were
devoid of meaningful comments that
could have shed some light on the de-
sign. Comments that were present were
banal or private asides.

After a while, I began wondering
whether I was harsh with my judgments
simply because I didn’t understand the
code’s purpose. Or maybe I didn’t like
the code because I was hoping to spot
some ineffable elegant coding patterns.
This experiment confirmed my belief
that one of the biggest myths is that
well-structured code is self-document-
ing. If you can’t understand the sur-
rounding design context, the purpose of
most code snippets isn’t obvious.

Richard Gabriel, in Patterns of Soft-
ware (Oxford, 1996), argues against
clarity or beauty as an overarching
software goal and suggests instead that
we should strive for habitability: “the
characteristic of source code that en-
ables programmers, coders, bug-fixers,
and people coming to the code later in
its life to understand its construction
and intentions and to change it com-
fortably and confidently.”

Habitable code provides a place
where, Gabriel says, “developers can
feel at home, [and] place their hands on
any item without having to think
deeply about where it is.” He believes
that clarity often proves too elusive
and that most programmers and writ-

public class HelloWorld {

public static void main(String argsl[]) {
System.out.println(“Hello World”);

Figure 1. “Hello World” written in Java.

ers rarely demonstrate brilliance. He
says that intricately beautiful code of-
ten proves too constraining to the
maintainer who has to sustain all that
beauty and elegance while adding to it
after its creator has moved on.

Having worked with overly zealous
framework developers, I can attest to
similar frustrations with what seemed to
me unnecessary design embellishments.
But I've seen elegant frameworks too.
They usually aren’t overreaching in their
goals; rather, they provide the affor-
dances needed to extend and use them
without much mental effort.

In the chapter “Framework for Inte-
grated Test: Beauty through Fragility”
of Beautiful Code, Feathers discusses
the beauty of the flexible yet concise FIT
Framework. Instead of supporting mul-
tiple formats for tests, FIT supports just

HTML. Each framework class is rela-
tively simple but designed to let some-
one easily change it. All methods are
public and thus changeable. Feathers
claims that the beauty of FIT is a conse-
quence of it being small, useful, and un-
derstandable, yet open to change.

That’s an example of simple beauty,
but what about inherently more com-
plex systems?

Gan complex systems
be beautiful?

For the last couple of months, I’ve
been helping a small team refactor
their code. They didn’t want to be the
only ones who could sustain it. Their
software performs exceedingly com-
plex calculations, and, to compound
their design challenge, they’re con-
stantly adding new special cases. Noth-

November/December 2007 1EEE SOFTWARE

V'...:'[i el

19

ing ever goes away, and the required
processing complexity keeps increas-
ing. Consequently, over the years, their
code had grown incredibly dense and
tangled. And they found it increasingly
difficult to add new functionality. Any
beauty, if it had ever been present, had
become obscured. Although they
couldn’t simplify their processing re-
quirements, they hoped to simplify
how their code worked.

First, they cleaned up a class hierar-
chy that had grown somewhat arcane
because of a previous designer’s stylistic
convention that resulted in extraneous
classes. Next, they reworked the code
that controlled the processing to clarify
decision making and make the process-
ing steps more explicit. Finally, they
tackled an overgrown class, refactoring
it into a couple of smaller service pro-
vider classes with carefully chosen, ex-
pressive class and method names. The
responsibilities of each of these simpler
classes were much easier to understand.

The developers were pleased with
their efforts, because they felt the design
intent was more evident in their refac-
tored code. While the resulting redesign

g

e Rk

o

«or

wasn’t perfectly beautiful (we stopped
when they deemed it good enough), the
code certainly became more habitable as
a result of design rework that made in-
dividual classes’ responsibilities simpler,
more straightforward, and consistent.
And, as an added bonus, they reduced
the number of lines of code. Yet their
implementation was still very complex.

Can complex designs that are imple-
mented by complex code ever be con-
sidered beautiful? Most of us recognize
simple beauty when we see it. But find-
ing beauty in complex systems seems
more difficult. It takes time to appreci-
ate the code base and understand the
design. And if there are glimmers of
beauty in places, that beautiful code isn’t
necessarily understood or appreciated
by the casual reader.

It’s hard to scale functionality, pre-
serve a designer’s intent, and keep a sys-
tem beautiful (if indeed it ever was) when
continually adding behaviors. But when
the designer’s intent becomes lost, it’s
hard to find much beauty, even if there’s
a brilliantly coded method or two. A
glimmer of design beauty is preserved in
complex systems when responsibilities

are reasonably factored among design el-
ements and the behavior of any individ-
ual class or method is comprehensible—
given you know the design context.

look to create design solutions that

reflect the needs of those who will

sustain the code after I move on. A
good design is more than cleanly,
clearly, and consistently expressed
code. Beautiful code is beautiful only if
it preserves and makes evident the de-
signer’s intent. What was once a good
design often degrades as new function-
ality is added. It would be great to
throw code away and rebuild it anew
every few years, but that’s not practi-
cal. Instead, we should strive to make
our code habitable. If we do, we’ll pre-
serve the beauty and elegance that does
exist in our designs a while longer. Are
complex, pragmatic solutions to com-
plex problems ever beautiful? I sup-
pose it all depends on what aesthetics
you apply in judging beauty. @

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates. Contact her af rebecca@uwirfs-brock.com; www.wirfs-
brock.com.

Y -

200 words for each table and figure.

Software

Call for Articles

IEEE Software seeks practical,
readable articles that will appeal

to experts and nonexperts alike.

The magazine aims to deliver reliable
information to software developers
and managers to help them stay on
top of rapid technology change.
Submissions must be original and

no more than 5,400 words, including

Author guidelines: www.computer.org/
software/author.htm
Further details: software@computer.org

www.computer.org/software

20 IEEE SOFTWARE www.computer.org/software

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

