
© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Designing with an Agile Attitude

Rebecca J. Wirfs-Brock

Vol. 26, No. 2
March/April 2009

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

68 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

design
E d i t o r : R e b e c c a J . W i r f s - B r o c k W i r f s - B r o c k A s s o c i a t e s r e b e c c a @ w i r f s - b r o c k . c o m

G ood software designers share many traits,
habits, practices, and values, whether they
work on agile teams or not. Many design-
ers value design simplicity, communica-
tion, teamwork, and responsiveness to
stakeholder needs. So what distinguishes

agile design from other design processes? Do suc-
cessful designers working on agile projects need

radically different techniques and
skills?

Agile Design Supports
Existing Values
As a reviewer of experience re-
ports at several agile conferences
for the past five years, I’ve vi-
cariously experienced the joys,
struggles, and triumphs of several
successful design teams. Most

didn’t ignore their corporate culture or existing de-
sign context even though they shifted priorities and
added many new practices. Adopting agile develop-
ment seems to go hand in hand with articulating
what you value, then finding ways to improve on
what you already do well.

Jon Spence, a principal engineer at a medical-
instrumentation company, sums up his initial at-
traction to agile development (“There Has to Be a
Better Way,” Proc. 2005 Agile Conf., IEEE Press,
2005, pp. 272–278):

There’s nothing wrong with plan-driven,
waterfall-based, document-centric approaches.

They’re just not suited to controlling com-
plex activities like software development. We
needed to adopt agile software development
because it’s the best technique for the activities
we’re trying to manage and control.

After studying literature, talking to agile thought
leaders, and thinking about how agile practices
might fit in his company’s development process, Jon
and a handful of colleagues launched an agile ini-
tiative. They proposed adopting new practices that
seemed radically different from their current ones:

forming small development teams;•
giving each team freedom to adapt its develop-•
ment process;
emphasizing simple design—designing only for •
current, not speculative, needs;
developing in short, two-week iterations; and•
reflecting at the end of each iteration.•

They followed test-first development on all new and
changed, nontrivial, non-GUI code. They refactored
code to maintain simple design only when that code
had unit tests in place.

Initial reactions to their proposal were largely
supportive. Yet some wondered about how pair pro-
gramming might impact productivity and whether
it would disrupt the status quo of solo development.
Management viewed refactoring as having the po-
tential for gold plating. So, they proceeded with the
understanding that these practices would get a fair
trial and were subject to change as they learned and

Rebecca J. Wirfs-Brock

Attitude is a little thing that makes a big difference. —Winston Churchill

Designing with
an Agile Attitude

 March/April 2009 I E E E S O F T W A R E 69

DESIGN

applied them. In addition to having project
management support, Jon asserts, “it was
equally important to have friends and allies
in management, both immediate manage-
ment and upper management.”

Jon’s team came from a culture that
values measuring productivity and mak-
ing process improvements. So, as part of
adopting agile practices, they closely moni-
tored the amount of rework, the speed with
which they completed tasks, and how ef-
fectively they worked through their feature
backlog. As a result, they decided to re-
duce teams from 12 members to four to six
members, add a team of system engineers
to support the product manager in defin-
ing product features and functionality, and
adjust their planning meetings to improve
intrateam communication.

Agile Design Improves
through Reflection
Frequent checkpoints let designers learn
and refine their software and how they
work. Marilyn Lamoreux, a colleague of
Jon’s, has recounted how she introduced
end-of-iteration reflection meetings into
their project (“Improving Agile Team
Learning by Improving Team Reflections,”
Proc. 2005 Agile Conf., IEEE Press, 2005,
pp. 139–144). Initially, some developers be-
lieved that meetings weren’t “real work” no
matter what the meetings’ agendas were. A
common belief was that effective meetings
should have a detailed agenda and result in
actions, decisions, and to-do lists. Her first
attempts at conducting reflections were
only moderately successful.

After investigating, Marilyn decided
to introduce Conversation Café (http://
tinyurl.com/4kxmcv), a technique that
com bines simple ground rules and a talk-
ing token to guide conversation. The first
time she tried it, Marilyn was stunned by
how successful it was. She was able to insti-
gate a thought-provoking design discussion
about why some code had errors and how
to improve it. Marilyn speculates that this
technique worked because it “taught our
teams some of the conversational practices
that open minds and hearts to new ideas.”

Even following this technique, teams
still occasionally have unproductive reflec-
tion meetings. Marilyn says, “Learning to
reflect is a process that takes persistence,
practice, feedback, and adaptation.” And, I
might add, determined efforts to seek out

and experiment with ways to make a par-
ticular practice effective.

Agile Happens
One Step at a Time
Agile design and development practices
don’t have to happen all at once to be suc-
cessful. David Kane reports on how he in-
crementally introduced agile development
techniques into a team that designs soft-
ware used by US National Cancer Institute
scientists and researchers (“Introducing
Agile Development into Bioinformatics:
An Experience Report,” Proc. 2003 Ag-
ile Development Conf., IEEE Press, 2003,
pp. 132–139). David’s team already worked
collaboratively on development and had
ready access to experimental biologists in
a lab across the hall. The team wanted to
adopt agile methods, but they also needed
to continue to make releases while they
learned new techniques. They had varying
degrees of knowledge about agile methods
and needed time to develop their skills.

One of the first things David did was get
their code base under better configuration
management. Shortly afterward, he intro-
duced the team to automated testing. As
their test case coverage grew, they started
refactoring portions of ugly code, cleaning
up the design and removing unnecessary
complexity and coupling. It wasn’t until
more than a year and a half into agile adop-
tion that they introduced code reviews and
one-day-a-week pair programming. They
wanted code reviews to complement their
existing practices and help share knowledge
among team members. Each iteration, one

developer would pick two to six classes to
review from those he or she created or mod-
ified. Others would review the code well be-
fore the end of the iteration, giving enough
time for revision. They found reviewing and
discussing code let them raise design and
implementation issues that occurred across
larger portions of their code.

Agility Comes
with an Attitude
Developing complex software can be dif-
ficult no matter how good designers get
at architecture, tooling, or technology.
Although agile techniques and practices
vary, successful agile designers I know are
passionate about producing high-quality
incremental design solutions. They aim
to design and implement solutions for the
current problems at hand simply and ef-
ficiently. They adopt practices, tooling,
and technology that enable them to pro-
duce results. They prefer to connect their
design work to real, not presumed, needs
and aren’t satisfied with being only heads-
down problem solvers or coders. They
expect to give and take criticism and ask
clarifying questions of teammates and
other project stakeholders. And they take
care not to ignore details that could derail
design quality or put their project at risk.

S o what does it take to be an effective
designer in an agile development envi-
ronment? Although I don’t find agile

development to require drastically different
design or technical skills, it does demand
teamwork and cooperation. Agile designers
need to sharpen their communication and
collaboration skills as well as their techni-
cal practices. They should value collabora-
tion and collective understanding as much
as good design and development practices.
It’s a matter of attitude more than any spe-
cific technique or process.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates. Contact her at rebecca@wirfs-brock.com; www.
wirfs-brock.com.

Developing complex
software can

be difficult no matter
how good designers
get at architecture,

tooling, or technology.

