
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating 

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. 

 
For more information, please see www.ieee.org/web/publications/rights/index.html. 

 

 
www.computer.org/software 

 
 
 
 
 

 
 
 
 
 

Design Strategy 

 
Rebecca J. Wirfs-Brock 

 
Vol. 25, No. 3 

May/June 2008 
 
 
 
 
 
 
 
 
 
 

This material is presented to ensure timely dissemination of scholarly and technical work. 
Copyright and all rights therein are retained by authors or by other copyright holders. All 

persons copying this information are expected to adhere to the terms and constraints 
invoked by each author's copyright. In most cases, these works may not be reposted 

without the explicit permission of the copyright holder. 
 

 



design

14	 I E E E  S o f t w a r e    P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0  ©  2 0 0 8  I E E E

E d i t o r :  R e b e c c a  J .  W i r f s - B r o c k  n  W i r f s - B r o c k  A s s o c i a t e s  n  r e b e c c a @ w i r f s - b r o c k . c o m

Design Strategy
Rebecca J. Wirfs-Brock
 
The essence of strategy is that you must set limits on what you’re trying to accomplish. —Michael Porter

S
oftware designers and managers can find it 
challenging to agree on the “sweet spots” 
of their system that warrant their best de-
sign efforts. Most projects are short on 
time, budget, and resources. How can you 
stay ahead of the design curve, and where 

should you focus your design energies to gain the 
most leverage?

Start sharing 
assumptions
Throughout my engineering ca-
reer, I’ve used a variety of tech-
niques to organize my thoughts—
from private journaling to list 
making to sketching out chal-
lenges. Experienced designers are 
expected to devise good solutions 
despite uncertainty, conflicting 

priorities, and limited time. Early in most design 
efforts, we typically don’t know enough to make 
informed decisions or predict accurately what the 
hard parts will be.

Over time, I’ve improved my ability to antici-
pate problems. But I still find it useful to set the 
stage for design work by writing about my hopes, 
wishes, fears, and convictions in a couple of short 
paragraphs that state how I see the situation. In this 
short designer’s story, I identify things I know with 
certainty, things that need to be explored, or any 
nagging concerns I might have. People might have 
been talking about what’s important, but in my 
story I get to put my own spin on things. I can make 
bold statements about what’s notable, what I think 
we should focus on, and what I suspect will be easy 
or difficult.

I used to write these stories and tuck them away. 

While writing them helped me collect my thoughts, 
no one else knew what I was thinking! And I didn’t 
get a whiff of others’ concerns or confident asser-
tions until much later (sometimes too late). Collec-
tively as a team we had to stumble upon each oth-
ers’ hidden assumptions and aspirations. Today 
I find that collaborative design efforts get off on a 
better footing if teammates air their thoughts about 
their design future in a nonconfrontational setting. 
Whenever I have the chance, I encourage teams to 
kick off new design efforts or major iterations by 
writing and sharing their initial design thoughts.

Even the most reluctant developers who only 
want to hack code can bang out a designer’s story 
if it is short, sweet, and to the point, and takes only 
15 minutes. They usually go along if I suggest it 
will be good for the team to air their unedited ini-
tial thoughts on the design. After writing stories, we 
read them out loud. It’s remarkable how this simple 
activity can help a team gel and gain a collective per-
spective on the nature of the work that lies ahead. 
And it also provides an opportunity for those peren-
nially quiet voices to be heard.

Although we can stop after merely writing and 
sharing stories, I sometimes find it helpful to use 
them as “seed corn” to start our design planning. 
Perhaps we might make a candidate list of design 
hot spots on which we think we’ll need to focus or 
even an “is it really as easy as that?” list to verify 
with project stakeholders.

Balance design efforts
Being armed with a toolkit of design techniques and 
practices doesn’t preclude unpredictable challenges 
or unexpected twists. To keep focused, I find it use-
ful to fit day-to-day design and development work 
into three categories:



	 May/June 2008   I E E E  S o f t w a r e � 15

design

Core design work. The core is the core 
because without it there’s no reason to 
build the rest.
Revealing design problems. These prob
lems, when pursued, lead to a funda-
mental, deep understanding about the 
nature of your software. However, just 
because some part is difficult or tricky 
doesn’t mean that it’s revealing.
The rest. Although not trivial, the rest 
requires hard work and attention to de-
tail but far less creativity or inspiration.

Each problem type warrants a different 
kind of energy and has a different work 
rhythm.

Core problems must be solved. Your 
software won’t meet users’ needs or stand 
up to the rigors of use without a well- 
designed core. This is engineering at its best. 
Designing the core requires energy and fo-
cused attention. It requires steady, consis-
tent consideration.

Revealing problems can be squishy; it 
can be difficult to characterize them or 
even know when they’re completely solved. 
Each time you dig deeper into revealing 
problems, you learn something new. They 
can’t always be resolved tidily. They de-
serve special attention and can derail the 
best-laid plans and intentions. Working on 
revealing problems often involves periods 
of intense concentration, design, reflection, 
testing, and implementation, interspersed 
with open, honest communication about 
progress. Sometimes these problems can 
cause you to completely shift your view and 
discard what you had assumed were funda-
mental truths about your design. Manage-
ment cringes when you expose a revealing 
problem because the path to its solution is 
always unpredictable.

The rest includes mundane, tedious, or 
mildly interesting design work. An over-
abundant supply is always present, press-
ing, and willing to soak up every spare 
cycle on most projects. The challenge is to 
avoid getting bogged down in the rest—or 
slighting it as mere “grunt work.” If the 
bulk of your code base isn’t core, you still 
don’t want it to drag your project down. 
Tactically there might not be many stra-
tegic design decisions in the rest that re-
quire heavy mental lifting, but you still 
need to pay attention to it. Developing 
and promoting standard ways of doing 
things—recipes or patterns of practice, if 

n

n

n

you will—can take the guesswork out of 
designing the rest.

Tackle core design problems
The key to balancing core design work with 
other design activities is to ensure that the 
core is well known, solid, understood, and 
nurtured. But what exactly is core? Core 
problems include those fundamental as-
pects of your design (no, not every part can 
be fundamental) that are essential to your 
software’s success. It might be the design of 
error handling and recovery, key domain 
objects, critical algorithms, performance 
optimization mechanisms, security, op-
timized data retrieval, or any number of 
other system aspects.

Eric Evans (Domain Driven Design, Ad-
dison-Wesley, 2003) claims that most teams 
who develop complex products or enter-
prise-wide applications give short shrift to 
domain models. He’s found that developers 
often discount domain models and business 
logic, instead preferring to prove their de-
sign mettle by working through the tough 
technical-infrastructure bits. While getting 
infrastructure in place is important, Eric ar-
gues, it isn’t what will distinguish your soft-
ware over the long run. He suggests that to 
remedy this, we “find the core domain and 
provide a means of easily distinguishing 
it from the mass of supporting model and 
code.” He suggests making the domain core 
small and bringing top design talent to bear 
on designing and building it. To do so effec-
tively, developers must interact and develop 
deep knowledge by working directly with 
domain experts—something that’s often out 

of their comfort zone. Although he makes 
no claims that finding and agreeing on the 
core domain is easy, once you’ve reached 
consensus, he suggests, most subsequent de-
sign decisions will be easier. Whenever you 
need to choose between alternatives, choose 
the one that has the least negative or most 
positive impact on the core.

My experience developing complex sys-
tems has varied from Eric’s. Sometimes I 
find domain-specific behaviors to be at the 
heart of core design problems; sometimes 
there isn’t much domain-specific behavior. 
So there’s not much reason to develop a rich 
domain model (in which case, I usually say 
so and suggest we move on to more press-
ing design concerns). With most complex 
systems, however, isolating a single area for 
concentrated design focus isn’t easy. There 
might be several “core” problems and a slew 
of important design constraints to consider.

Nick Rozanski and Eoin Woods (Soft-
ware Systems Architecture: Working with 
Stakeholders Using Viewpoints and Per-
spectives, Addison-Wesley, 2005) suggest 
a relatively straightforward process for fo-
cusing on architecturally significant design 
aspects. They advise designers and archi-
tects to engage in conversations with sys-
tem stakeholders to develop consensus on 
the relative importance of desired system 
functions and qualities such as reliability, 
scalability, or usability. This prioritized set 
of concerns can then drive appropriate stra-
tegic design, modeling, and prototyping 
activities.

I t’s hard to optimize the design effort for 
complex, multifaceted systems. We must 
balance conflicting priorities and exercise 

a wide range of design skills, techniques, 
and tactics. Iterative development lets us fo-
cus on areas that present significant design 
risk and establish design baselines upon 
which we can build. But even when apply-
ing these techniques, we must sharpen our 
focus and apply design energy to where we 
think it will have the most impact. You 
can’t apply the same level of effort every-
where.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock 
Associates. Contact her at rebecca@wirfs-brock.com; www.
wirfs-brock.com.

Whenever you need 
to choose between 

alternatives, choose 
the one that has the 

least negative or most 
positive impact  

on the core.


