oftware

www.computer.org/software

Creating Sustainable Designs

Rebecca J. Wirfs-Brock

Vol. 26, No. 3
May/June 2009

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.

[EEE(D) computer society

© 2009 |IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

Editor: Rebecca J. Wirfs-Brock

Wirfs-Brock Associates

rebecca@wirfs-brock.com

To live only for some future goal is shallow. 1t’s the sides of the mountain that sustain life, not the top.

e value code that’s comfortable—where
everything fits neatly in place, contrib-
uting to its familiarity and ease of un-
derstanding. Richard Gabriel, in Paz-
terns of Software (Oxford Univ. Press,
1996), describes software where “de-
velopers can feel at home, [and] place their hands
on any item without having to think deeply about
where it is.” He calls such soft-
ware habitable. So how should
we go about creating habitable
software? Should we just place
our trust in really good software

developers, or are there specific
design qualities and practices that
we should be paying more atten-
tion to?

Christopher Alexander, whose
work inspired the software pat-
tern movement, argues in The Nature of Order:
The Phenomenon of Life (Center for Environmen-
tal Structure, 2004) that both natural and designed
structures have a kind of life. Such living things are
characterized by 15 properties:

B levels of scale,

W strong centers,

B boundaries,

B alternating repetition,

B positive space,

B good shape,

B local symmetries,

B deep interlock and ambiguity,
B contrast,

0740-7459/09/$25.00 © 2009 IEEE

—Robert M. Pirsig

B gradients,

B roughness,

B echoes,

B the void,

B simplicity and inner calm, and
B not-separateness.

The more life a thing has, the more pleasant it is
to live with, use, or dwell within. Perhaps habit-
able software should also exhibit some of these life-
generating properties.

Genters, Scale, and Proportion

The notion of centers is fundamental to Alexander’s
ideas of well-designed things. In short, whatever
draws your attention is a center. You can find cen-
ters in the pleasing geometry of interlocking tiles or
the arrangement of rooms around an entranceway.
Complex structures often consist of interlocking
centers of differing sizes. For example, the south-
facing windows in my sunroom constitute multiple
centers, with the largest window surrounded by
smaller windows above and to the side, forming a
three-by-three grid.

Not every design element should be the same
size or shape. Alexander claims that a good de-
sign has differing levels of scale, whereas ugly,
lifeless designs don’t take into account the inter-
play between design elements at different levels of
scale. He cites a Josef Albers painting that contains
three nested squares (see www.artquotes.net/mas-
ters/josef-albers/homage-to-the-square-63.jpg ~ for
a similar Albers work) as an example of poor lev-
els of scale. Although the three squares in many of

May/June 2009 1EEE SOFTWARE 5

Albers’ paintings are different sizes, they’re
too close in size. They’re all roughly at the
same level of scale. A better, more pleasing
design would ensure that jumps between
centers at different scales aren’t too great
or too small—say, approximately a 2- to 4-
times jump in size between levels.

Once you're aware of physical centers,
they’re easy to spot. But what corresponds
to centers in software? Jim Coplien, in
“Space: The Final Frontier” (C++ Report,
Mar. 1998, pp. 11-17), suggests we “look to
the code for pleasing geometry and shape.”
Certainly, a properly nested function has a
pleasing shape. I see centers in classes, com-
ponents, software systems, and subassem-
blies as well. Different-sized centers are all
around if you know how to look for them.
Coplien even views design patterns and pat-
tern languages as “stereotypical configura-
tions of centers, centers that have specific
relevance in a particular domain.”

When I’m stymied in trying to compre-
hend a complex class diagram, I can’t help
but wonder whether it’s because 1 can’t
find meaningful centers to lock onto. Every
class is the same shape and relative size. If
I could only locate the central classes, then
I could explore their relationships to other
meaningful centers. I’'m sure strong classes
exist, but a class diagram representation
doesn’t help them stand out.

Knowing about centers is one thing,
but paying attention to their shape, rela-
tionship, and proportion to others is what
improves a design. A good design strives
to create harmony between elements at
different levels of scale. So when design-
ing a class, we should consider whether
it’s proportional to its role and whether it
fits into the context of other classes it or-
ganizes, interacts with, or extends. At a
lower level of scale, individual methods
shouldn’t be too big. At the next higher
level, we don’t want to pack too much be-
havior into any subsystem or component.
Even being aware of these levels, I don’t
have a good feel for whether pleasing ra-
tios for software centers at different levels
have any correspondence to those ratios
Alexander ascribes to physical centers.

Fortunately, to get a grasp of our soft-
ware’s overall shape, we can express our
design of components, classes, and sys-
tems at different abstraction levels. Mar-
tin Fowler observes in Analysis Patterns:
Reusable Object Models (Addison-

6 IEEE SOFTWARE www.computer.org/software

Wesley, 1997) that we can talk about soft-
ware objects at three levels:

B a conceptual level, where we speak of
a class’s responsibilities;

B a specification level of operations, at-
tributes, and test specifications; and

W an implementation level of class,
method, and variable definitions.

We don’t always have to view our designs
at the most detailed level. In fact, when we
move between abstraction levels, we gain a
better perspective.

Designing Strong Genters

At the class level, clearly defined roles
make for strong centers. Domain objects
also form centers. A domain concept’s
strength is based on its fit to the problem at
hand. You know a domain concept is weak
when too much work is shoved onto other
objects that interact with it. In Domain-
Driven Design (Addison-Wesley, 2003),
Eric Evans gives guidance on how to shore
up boundaries between different domains
by defining translation layers, using “anti-
corruption” mechanisms, and employing
strategies for stylized domain-entity ac-
cess. Using these patterns contributes to
improved encapsulation and strengthened
boundaries between domains.

Networks of collaborating objects
form centers, too. Centers are strength-
ened by boundaries that surround, en-
close, separate, and connect them to other
centers. In software, we value encapsu-
lation because it helps us manage com-

Although frameworks
Impose necessary
(and good) repetition,
doggediv selecting
and applving design
patterns doesn’t
guarantee design
goodness.

plexity. Interfaces clarify the boundaries
between classes or components and the
services they offer. Specifying contractual
agreements strengthens and formalizes
the connections between collaborators.
When we define contracts using mecha-
nisms that pull out contract-enforcing
logic into separate contract specifications
(as in the Eiffel programming language or
with aspects), the method’s purpose be-
comes more evident and stronger.

Class hierarchies are strengthened by
agreements between abstract classes and
subclasses on which methods and vari-
ables are visible (and which are hidden),
which behaviors can be extended and by
what means, and which invariants must be
preserved.

Programming languages don’t always
provide good support for clarifying these
agreements, so we fall back on applying
principles such as the Open-Closed prin-
ciple (Bertrand Meyer, Object Oriented
Software Construction, Prentice Hall,
1988) or reasoning about the intended
agreements. One reason inheritance has
fallen out of favor is the mental effort re-
quired to deduce these agreements. Defin-
ing contracts might strengthen class defini-
tions, but formal, rigid contract definitions
aren’t always appropriate. When I'm do-
ing exploratory design, I want to be able
to freely alter a class’s behavior. An overly
rigid class definition will cause me to
“bend” my design to use it.

Centers are strengthened by repetition.
Repetition also helps us become familiar
with a design and gain confidence in our
abilities to extend it. Stylized, repeated col-
laboration patterns improve the design of
a software control’s center. Consistently
repeating the ways we validate informa-
tion and requests improves our software’s
reliability. Although frameworks impose
necessary (and good) repetition, doggedly
selecting and applying design patterns
doesn’t guarantee design goodness. Alex-
ander cautions against banal repetition.

Alexander defines positive space as
“when every space is substantial in itself,
never the leftover from an adjacent shape.”
We appreciate classes and components that
aren’t tangled with unnecessary behaviors
or interdependencies. I've been involved
in many arguments about how best to
refactor a design into smaller constituent
parts. We spend time debating whether a

proposed reassignment of responsibilities
is pleasing or “balanced.” Alexander as-
serts that “of all the properties ... [positive
space] is probably the most simple and the
most essential, since it guarantees to every
part of space the status of being a relatively
strong center.” Sometimes our disagree-
ments are more about style than substance,
but I vow not to so readily dismiss these
discussions as irrelevant.

Symmetry also contributes to design
familiarity, coherence, and understand-
ing. In the name of symmetry, we refactor
a lengthy method into roughly equivalent
steps implemented by smaller helper meth-
ods. Yet we shouldn’t apply symmetry-
producing choices without thinking
through their consequences. It’s naive
to define getters and setters for all attri-
butes. We must consider how an object
should be used. We look to define sym-
metrical behavior where it fits—defining
a do() operation should lead us to con-
sider undo(). Our decision to add sym-
metrical operations is based on our no-
tion of how a design element should work

and fit into a larger scheme of things.
That’s why any thoughtful design has a
degree of roughness or irregularity.

A center’s strength can be increased
when it’s attached to a nearby strong cen-
ter, through a design element that seem-
ingly belongs to both. In the physical
world, an obvious example is a tongue-
and-groove joint. The interlock between
centers can also form another center that
can be a focus of design effort. That’s one
reason we define interface definitions and
service contracts.

Process Matters
Alexander is an ardent advocate of emer-
gent design. He claims that living struc-
tures, both biological and human de-
signed, are brought about by a sequence
of structure-preserving transformations.
The design and construction processes
are more important and larger in their de-
sign effect than any designer’s ability or
training.

Alexander asks us to think of the
properties of living things not merely

as static characteristics of a design but
as names of particular kinds of struc-
tural transformations. For example, a
levels-of-scale transformation might in-
troduce intermediate-sized centers to fill
out the hierarchy of scales in a design.
A boundary transformation creates fur-
ther distinctions between a center and its
surrounding area. A simplicity transfor-
mation cleans up a design by removing
unwanted centers, gratuitous differences,
or other complexities.

These activities have obvious and direct
connections with incremental, iterative
software design. As our ideas evolve, de-
signs are refactored and code is reshaped
and transformed. So rather than looking
for complex design tools with the hope of
creating the ultimate design, we should
continue to seek out practices, techniques,
and tools that support a sustainable soft-
ware design process and adaptable, habit-

able designs. @

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates. Contact her at rebecca@uwirfs-hrock.com; www.
wirfs-brock.com.

CALL FOR ARTICLES

Successful Practices
in Software Product Lines

n increasing number of organizations are taking their

software-intensive product production to the next level by

adopting software product line practices. These practices coor-
dinate the software engineering, technical management, and organi-
zational management activities necessary for the efficient production

© How to comhine agile approaches with product line practices.
© How to combine SOA with product line practices.

PusLicaTion: May/June 2010
SuBmissioN DEADLINE: 17 November 2009

of a set of similar products. The growing body of experience needs
to be communicated to those considering adopting the approach.
This special issue of IEEE Software will focus on success-
ful software product line practices. We solicit arficles on top-
ics within this scope, including these topics:
o How to systematically manage safety (or any other qual-
ity attribute) in a product line context .
© How to engineer product lines in a complex organizational network
of OEMs and suppliers including COTS or open source components.
© How to center a product line approach around a given ref-
erence archifecture in a certain domain or market seg-
ment (e.g. AUTOSAR for the automotive industry).

GuEesT EpITORS:
© John D. McGregor, Clemson University, johnmc@cs.clemson.edu
o Dirk Muthig, Fraunhofer Institute for Experimental
Software Engineering, dirk.muthig@iese.fraunhofer.de
© Paul Jensen, Textron, pjensen@overwatch.textron.com

For a full call for papers, see www.computer.org/software/cfp3.htm.
For IEEE Software author guidelines and submission details, visit www.
computer.org/software/author.htm or contact the publications coordinator

(software@computer.org). Submit

Electronic Submission System (htip://
mc.manuscriptcentral.com/cs-ieee).

your article via the Computer Society’s
May/dune 2009 |EEE SOFTWARE 7

