
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Connecting Design with Code
Rebecca J. Wirfs-Brock

Vol. 25, No. 2
March/April 2008

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

design

20	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

E d i t o r : R e b e c c a J . W i r f s - B r o c k n W i r f s - B r o c k A s s o c i a t e s n r e b e c c a @ w i r f s - b r o c k . c o m

Connecting Design
with Code

Rebecca J. Wirfs-Brock

Let us change our traditional attitude to the construction of programs. Instead of imagining that our main
task is to instruct a computer what to do, let us concentrate rather on explaining to human beings what we
want a computer to do. —Donald Knuth

J
on Bentley wrote his thesis on divide-and-
conquer algorithms and came to greatly
admire C.A.R. Hoare’s original quicksort
algorithm. Yet for years, Bentley “tip-
toed around its innermost loop” because
he didn’t understand it (Beautiful Code,

O’Reilly, 2007). It was only after he implemented
his own quicksort based on an elegant partitioning

scheme for Programming Pearls
(Addison-Wesley, 1999) that he
truly understood the reason for
that inner loop. He also trimmed
the original bulkier algorithm to
a mere dozen tight lines of code.

Code clutter and unnecessary
complexity can obscure a design.
However, connecting design de-
cisions to code won’t happen un-
less developers embrace the prac-

tice of writing code as if expressing design intent
matters.

Start with style
Kent Beck in Implementation Patterns (Addi-

son-Wesley, 2007) presents a set of principles for
creating well-structured, legible code. While leg-
ibility isn’t sufficient to make design intent clear, it
certainly helps me make connections between what
some code is supposed to do and why it’s written a
particular way. I appreciate the design more read-
ily when code is structured so changes to any code
have local consequences, unnecessary duplication
is eliminated, and similar operations follow recog-
nized coding conventions.

A fundamental principle Beck applies when pro-
gramming is symmetry. According to Beck, “Sym-
metry in code is where the same idea is expressed
the same way everywhere it appears in the code.”
I prefer to think of this simply as being consistent,
maintaining particular standards with minimal
variation. Symmetry leads us to expect a remove() to
accompany an add() operation. Consistency leads us
to assign similar names to classes and methods with
analogous responsibilities and to structure the code
in a similar manner. Code that varies from estab-
lished patterns and practices will then deservedly
grab my attention. Variations should appear for a
reason; intentional variation draws the reader’s at-
tention to important differences. Code that’s riddled
with accidental inconsistencies is that much harder
to read, making it difficult to comprehend its design
purpose.

Although the following method is easy to read,
Beck claims we could improve its consistency (or
symmetry):

void process() {
	 input();
	 count++;
	 output()
}

Beck suggests replacing the line that increments
count with a call to a method that performs this ac-
tion. He further suggests that naming that method
tally() instead of, say, incrementCount(), would better re-
flect intent and match the naming conventions of
input() and output().

	 March/April 2008 I E E E S o f t w a r e � 21

design

Beck’s revisions might express design
intent slightly better than the original, but
it’s difficult to see how tweaking only three
lines of code greatly improves clarity. I find
myself arguing that the work of tallying
the count is so inconsequential it doesn’t
warrant its own method because I imag-
ine the code in input() and output() to be more
substantial.

If there had been several lines of tallying
code between calls to input and output, I’d
be more inclined to factor out this related
code into a separate method as Beck sug-
gests for reasons of symmetry. That’s be-
cause I’ve learned to divide any complex
action into two parts—one that sequences
the substeps of that operation and another
that invokes separate helper methods that
implement each substep. Separating action
details from controlling execution makes
my design intent more obvious. The diffi-
culty is knowing when to chunk a complex
operation into smaller parts. Some devel-
opers have a greater capacity for keeping
lots of details in their head than others
and don’t feel compelled to employ this di-
vide-and-conquer strategy. Bentley advises
programmers who long to write beautiful
code to practice paring code down to its
essence, suggesting that they practice on
small fragments containing at most two
dozen lines.

What surprises me about Beck’s simple
example is how subtle this notion of sym-
metry is and how it can profoundly influ-
ence low-level programming choices. It’s
debatable whether a single choice made
in the name of consistency improves code
clarity, but when I read a large amount of
code written by someone who has pursued
consistency, I encounter affordances that
connect design intent to the code. Code
that has been purposefully structured to aid
reading comprehension helps me “see” its
design. Beck asks programmers to take as
much care crafting their code as an author
does in crafting prose.

Provide insight
into your intent

However, consistent code isn’t all that’s
needed to connect design ideas with their
implementation. Depending on code com-
plexity, a deep understanding and appre-
ciation of that code can require extensive
study and reflection or experimentation as
well as a conversation with the code’s au-

thor. For me, a critical aspect to connect-
ing design to code is to be able to generally
grasp what a section of code should do and
then be able to examine how it works in
greater detail.

When I read code, I welcome every clue
that helps me get inside the developer’s head.
What was that person thinking? I look for
code comments that point out important
decisions and remark on specific processing
details or nuances. I want just enough dis-
cussion interspersed with the code so that
I can follow the designer’s original train of
thought. Too much chitchat or too many in-
nocuous comments only distract or annoy
me. Jef Raskin claims that good documen-
tation and code comments are essential, ad-
vising, “Do not believe any programmer,
manager, or salesperson who claims that
code can be self-documenting or automati-
cally documented” (“Comments are More
Important than Code,” ACM Queue, Sept./
Oct. 2007). Raskin believes that good com-
mentary contains background information
that you can’t derive from reading code—
for example, why did the author choose
this hashing scheme? What’s the reasoning
behind his or her threading strategy? What
are the code’s limits and why?

A senior developer recently remarked,
“At some point in the [development] pro-
cess, implementing the design turns into
writing the code, and the overall design
that I remember laboring over so intently
fades into the background.” It can be
hard to remember your initial design ideas
when you’re buried in code. For him, de-
sign fades away once he gets deep into pro-

gramming because his attention turns to
making the code work, not implementing
the design. I suspect that if he started add-
ing constructive commentary to his code
as Raskin suggests, he might feel a stron-
ger connection. Design ideas evolve as we
implement them. Leaving a trail of our
design choices and clarified ideas inter-
spersed with code can help us remember
our design journey. It benefits others who
work with our code, too.

Bentley remarks that programming
“involves much more than typing symbols.
One implements the program in code, runs
it first on a few test cases, then builds thor-
ough scaffolding, drivers, and a library of
[test] cases to beat on it systematically.”

 Proponents of test-driven development
echo Bentley’s sentiments but further sug-
gest that we can improve code quality by
shortening the delay between thinking
about design and implementing it. TDD
involves short cycles of writing tests that
“prove” the design, followed by writing
just enough code to pass those tests. The
key to TDD is incremental design and im-
plementation of tests and production code.
Design becomes a matter of choosing what
line of code to write next and what test to
write next to best express how your cur-
rent implementation works. Each time you
rework your code to make it more com-
plete, you have an opportunity to revisit
your current design, remove any accidental
complexity, and rethink how best to ex-
press design intent.

I t can be difficult to find the design in a
code base that contains dense, complex
code written by developers who show no

interest in or talent for expressing symme-
try, writing clean and consistent code, or
leaving any clues about their design intent.
Connecting design decisions to code won’t
happen unless developers make the effort
to write code and commentary with read-
ability and design intent in mind.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates. Contact her at rebecca@wirfs-brock.com; www.
wirfs-brock.com.

Leaving a trail
of our design choices

and clarified ideas
interspersed with code
can help us remember

our design journey.

