
Adaptive Object-Model Builder
León Welicki

Microsoft
lwelicki@microsoft.com

Joseph W. Yoder
The Refactory, Inc.
joe@refactory.com

Rebecca Wirfs-Brock
Wirfs-Brock Associates

rebecca@wirfs-brock.com

Abstract

An Adaptive Object-Model system represents user-defined
classes, attributes, relationships, and behavior as metadata. This
paper presents the Adaptive Object-Model Builder pattern that is
used to construct AOM entities. An AOM Builder reads an
externally stored build description to construct a build process.
This process is then executed to construct a properly initialized
AOM entity. Since an AOM Builder is driven by metadata
descriptions of entities and their build processes, a single generic
AOM Builder implementation can construct different entity types.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-oriented
Programming; D.2.2 [Design Tools and Techniques]: Object-
oriented design methods; D.2.11 [Software Architectures]:
Patterns

General Terms

Design

Keywords

Factory Objects, Adaptive Object-Models, Creational Patterns

1. Introduction
An Adaptive Object-Model is a system that represents user-
defined classes, attributes, relationships, and behavior in an
object-oriented domain model as metadata [YBJ01; YJ02]. In an
AOM system, domain entities are constructed from externally
stored definitions (metadata) that are interpreted at run-time.

Users, who may not be programmers, can change externally
stored metadata whenever they want to change the definitions of
domain entities. Whenever externally stored definitions are
modified, the system can immediately reflect those changes
without recompiling the application. This is similar to a UML
Virtual Machine implementation described by Riehle et. al
[RFBO01]. As a consequence, the object model in an AOM
system is dynamically adaptable.

This is in contrast to how domain models are typically built in
traditional object-oriented programming languages. In normal OO

design, the programmer defines domain entities and their behavior
using programming-language classes. Whenever a change is
required to a domain entity, one or more class definitions may
need to be modified and the application recompiled.

The pattern presented in this paper describes the creation of
instances of AOM entities using an AOM BUILDER. AOM
BUILDER is one Creational pattern that is part of a pattern
language for AOM systems [WYWJ07]. Figure 1 shows the
context of this pattern with other creational patterns.

Adaptive Object-Model architectures are usually made up of
several smaller patterns. In the existing literature they are
documented by the patterns TYPE OBJECT, ATTRIBUTES,
PROPERTY LIST, TYPE SQUARE, ACCOUNTABILITY
(ENTITY-RELATIONSHIP), STRATEGY, RULE OBJECTS,
COMPOSITE, BUILDER, and INTERPRETER.

More information about the AOM architectural style can be found
in Appendix A. An overview of a larger pattern language for
AOM systems is presented in Appendix B. For a more
comprehensive treatment and bibliography on AOM systems and
patterns, see www.adaptiveobjectmodel.com.

The AOM BUILDER pattern presented in Section 2 uses a pattern
format which includes the context, problem, forces, solution,
dynamics, implementation, resulting context, and related patterns
sub-sections.

2. AOM Builder Pattern
Typically, at object construction time an entity’s attributes are
initialized to well-defined values and links are made to associated
objects, which themselves are properly formed. This can be a
complicated process in any system. But creating entity objects
based on metadata definitions, as is the case for AOM systems, is
slightly more involved. External definitions must be read and
interpreted in order to construct a TYPEOBJECT. When
constructing a TYPEOBJECT, its PROPERTIES, TYPE-SQUARE,
STRATEGIES and ENTITY-RELATIONSHIP must also be created with
valid values.

2.1 Context
You are creating an application using an Adaptive Object-Model.
Your model relies on a variant of TYPE SQUARE so you are using a
combination of TYPE OBJECT and PROPERTIES patterns.

You want to create instances of entities of a concrete type based
on metadata. Since the creation process is complex, the BUILDER
pattern can be used (which could be combined with the
INTERPRETER pattern). However, a maintenance problem may
arise if you hand code in the BUILDER steps to create an instance
of entity which might vary according to its type or some arbitrary
rules (specifically when these vary or evolve).

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific
permission. Preliminary versions of these papers were presented in a
writers' workshop at the 16th Conference on Pattern Languages of
Programs (PLoP). PLoP'09, August 28-30, Chicago, IL, USA.
Copyright 2009 is held by the author(s). ACM 978-1-60558-873-5

2.2 Problem
How can you encapsulate the process of building instances of
persisted entities allowing the process to change dynamically
according to the composition rules of the entities types?

2.3 Forces
 The rules for creating an entity may vary according to its

type or according to rules that apply to its data.

 You want to encapsulate the construction of entities.

 You want to reuse the different steps involved in creating an
instance of an entity to create other entities.

 You want to be able to adapt to changes in the entity

definition or to add new arbitrary steps in the creation
process (like logging, security, etc.)

 You don’t want to bloat your construction code with lots of
conditional statements to handle different entity types.

 You don’t want to have an explosion of Builders, one for
each entity type, or cope with all the conformation rules of
the concrete entities by writing builder code that must be
rewritten and compiled whenever entity definitions change.

2.4 Solution
Abstract the building process into a well defined interface, break
it into small steps, configure the steps using metadata based on
the type of the entity to be built, and execute build steps in order.

cd Logical Model

AOMBuilder

+ Build(id, EntityType) : Entity

BuildStep

+ Execute(BuildContext) : void

ConcreteBuildStepA ConcreteBuildStepB

BuildContext

+ entity: Entity
+ entityType: EntityType
+ data: object[]
+ entityMetadata: object[]

MetadataReader

+ Read(string) : object[]

AnotherPackage

ConcreteBuildStepC

Client

EntityType

Entity

PropertyType

Property

BuildStepListFactory

+ Create(EntityType) : BuildStep[]

creates

1..*

creates

Figure 2 - AOM Builder Structure. The classes in red (the client and the type square instance) are not part of the solution

Figure 1 - AOM Pattern Language for Creational Patterns

A complex entity build process can be divided into atomic steps
that are executed in order. Build steps can share data, if necessary,
using a context object [KSS05]. Specification of the steps can be
done dynamically using externally stored metadata. The
configuration of the steps should be based on type, since each type
of entity may need different build steps. This also allows you to
define a default build procedure which can be arbitrarily extended.
There are two main “sources” of metadata used by the
implementation of the AOM BUILDER pattern: the definition of the
build steps for each type and the metadata which defines the
entities. The first is used to drive the overall process, the second to
load the AOM entity with information.

The entry point to the building process is provided by the
AOMBuilder. This object defines a generic interface for creating
instances of several types of entities [YBJ01]. The AOMBuilder
first initializes the process, asking for the building pipeline from
the BuildStepListFactory (which loads the necessary
build steps based on the given TYPE OBJECT). The AOMBuilder
then creates the BuildContext and fills it with the metadata of
the required entity (loading it from the metadata repository
through the MetadataReader object).

Each BuildStep is a specialized part of the entity building
process. The building process can be extended by defining new
ConcreteBuild steps. BuildStep implementations can be
in different packages or assemblies (as is the case for
ConcreteBuildC shown in figure 2). A BuildStep can be
loaded dynamically using REFLECTION [POSA1] or any other late
binding technique.
The classes in red in figure 2 (Client, Entity, EntityType,
Property, PropertyType) are not part of the solution itself:
the Client uses the AOMBuilder and the Entity. The
Entity, EntityType, Property, and Property Type
represent a canonical implementation of TYPE SQUARE [YBJ01],
the product of the building process.
For complex cases, the metadata that indicates the build steps for
each type may contain additional rule definitions and constraints.
While this will increase the complexity of the build process
execution, it allows for an even more flexible build process.

The idea behind the AOM BUILDER pattern is the same as for the
BUILDER [GoF95] pattern (dealing with the creation of complex
objects in several steps. But the AOM BUILDER is targeted to a
clearly different execution context and has different design goals.
The BUILDER relies on composition and inheritance for dealing
with flexibility and extensibility; the AOM BUILDER is based on
composition, dependency injection, smart properties, and
polymorphism driven by externally defined metadata.

2.5 Dynamics
Figure 3 shows how the participants interact to produce an AOM
entity. The Client asks the AOMBuilder for an entity. The
AOMBuilder is responsible for coordinating the build process.
The AOMBuilder first asks the MetadataReader to read the
requested entity’s metadata from the metadata repository. It then
creates the BuildContext and an ordered set of BuildStep
objects using the BuildStepListFactory. The order of the
BuildStep objects is defined by the metadata. Each
BuildStep is executed in order. In our example there are just
two build steps, the ConcreteBuildStepA and the
ConcreteBuildStepB.
The reader may notice that the participants of the TYPE SQUARE
pattern (Entity, Entity Type, Property, and Property
Type) are not shown in figure 3. This wasn’t shown so as to
simplify the sequence diagram. The interaction with these entities
is as follows: the AOMBuilder creates the empty Entity
instance (based on the Entity Type) and also loads it into the
BuildContext. Thereafter, only concrete BuildSteps
interact with the Entity or any of its Properties, either to
properly define their values or to perform any other arbitrary
action such as logging, audit, security, or tamper checking.

2.6 Implementation
The complexity of implementing this pattern lies in the
implementation of the concrete build steps, following the
Dependency Inversion Principle as presented in [Martin02]. The
main build control logic is the same and is contained in the imple-
menttation of the AOMBuilder Build()method (see code 1).

sd Interactions

:AOMBuilder:Client :MetadataReader :BuildStepListFactory:BuildContext :ConcreteBuildStepA :ConcreteBuildStepB

Entity:= Build(string,type)

entityInfo:= Read(entityId)

new(entityInfo, new Entity())

BuildStep[]:= Create(type)

new()

new()

Execute(context)

Execute(context)

Figure 3 - AOM Builder Dynamics. The TypeSquare members have been left out to make the diagram simpler
(they interact with the concrete build steps)

public class AomBuilder {
 public Entity Build(string id, EntityType type)
 {
 // load entity metadata
 IEntityMetadataReader reader = new
 EntityMetadataReader();
 XmlDocument entityMetadata = reader.Load(id,
 type);
 // create building context
 BuildContext context = new
 BuildContext(entityMetadata,
 type.CreateInstance());
 // obtain building pipeline and execute it
 IList<IBuildStep> buildSteps =
 BuildStepListFactory.Create(entity.Type.ID);
 foreach (IBuildStep buildStep in buildSteps) {
 buildStep.Execute(context);
 }
 // return result
 return context.Entity;
 }
}

Variations in building behavior are controlled by the concrete
implementations of the build steps which implement the
IBuildInterface, as shown in code 2. Their order is
specified by a configuration in the build metadata repository.
Code 3 shows a configuration file with four build steps. Any
common information that needs to be shared between the build
steps, including the Entity, is passed using a context object,
following the Context Object [KSS05] pattern. For each step a
class name and assembly are specified. In this example, the last
step registers audit information for statistical purposes and doesn’t
affect the entity.

public interface IBuildStep {
 void Execute(BuildContext context);
 }

The sample configuration shown in code 3 contains several steps
for dealing with various phases of construction: creating the
entity, loading its properties, loading the relationships, and saving
audit information for statistical purposes. Build steps can be
complex and may need to be broken in several pieces. This is the
often case for the PropertiesBuildStep (the step that loads
the values into the properties), since each property may need to be
handled differently. Each step can also manage its own metadata
and be as complex as it needs to be (code 4 shows a sample of the
configuration file for property loaders used by the
PropertiesBuildStep). This metadata is used by the
PropertyLoader build step

<buildSteps>
 <buildStep type="AOM.Builder.BuildSteps.
 EntityInfoBuildStep,AOM.Core"/>
 <buildStep type="AOM.Builder.BuildSteps.
 PropertiesBuildStep,AOM.Core"/>
 <buildStep type="AOM.Builder.BuildSteps.
 RelationshipsBuildStep,AOM.Core"/>
 <buildStep type="AOM.Builder.BuildSteps.
 AuditBuildStep,AOM.Core"/>
</buildSteps>
<propertyLoaders>

 <loaderFor
 type="AOM.Core.StringProperty"
 factory="AOM.Core.StringPropertyTypeLoader,
 AOM.Core"/>
 <loaderFor
 type="AOM.Core.NumberProperty"
 factory="AOM.Core.NumberPropertyTypeLoader,
 AOM.Core"/>
 <loaderFor
 type="AOM.Core.DateProperty"
 factory="AOM.Core.DatePropertyTypeLoader,
 AOM.Core"/>
 <loaderFor
 type="AOM.Core.FileProperty"
 factory="AOM.Core.FilePropertyTypeLoader,
 AOM.Core"/>
 <loaderFor
 type="AOM.Core.UrlProperty"
 factory="AOM.Core.UrlPropertyTypeLoader,
 AOM.Core"/>
 <loaderFor
 type="AOM.Core.EntityProperty"
 factory="AOM.Core.EntityPropertyTypeLoader,
 AOM.Core"/>
</propertyLoaders>

2.7 Resulting Context
� The complex process of creating instances of AOM entities

is encapsulated into a single, well-known object.
� Responsibility for creating instances of properties, rules, etc.

is factored into fine-grained building step objects.
� Creation code is separated from the consumer code.
� The pipeline of the building process is specified using

metadata. It can be modified without needing to recompile
the application.

� The build steps can be modified or extended dynamically.
� The build process of any AOM entity can be modified

dynamically at run-time.
� Additional concerns can be easily added to the build process

(e.g. by adding a build step for logging, another for security,
etc.).

� Since the build process is specified using metadata there is
no possible compile-time verification.

� More complexity. Although less flexible, the alternative of
defining several factories (based on entity and property
types) which contain hand-coded rules for creating instances
of AOM entities can be simpler to understand.

� There is more indirection involved in reading and
interpreting external metadata to build entities. This can lead
to lower performance.

2.8 Related Patterns
AOM BUILDER is an evolution of the BUILDER [GoF95] pattern.

AOM BUILDER uses PIPES AND FILTERS [POSA1] to orchestrate
the building steps.

Information shared between build steps can be accomplished
using the CONTEXT [KSS05] pattern.

Code 4 - Metadata configuration for property loaders.

Code 2 - Interface definition for build steps.

Code 1 - Main body of the AOM Builder participant.

Code 3 - Build step metadata specification.

Build steps instances can be created using a PRODUCT TRADER. In
this case the rules for selecting one step or another are not hard-
coded in external definitions of metadata but determined at run-
time using Specification objects [BR98].

The AOM BUILDER can be seen as a REGISTRY [Fowler02] for
instances of entities in an AOM based application.

AOM BUILDER performance can be dramatically enhanced using
CACHING [POSA3].

This pattern is similar to a COMPLETE CONSTRUCTOR [Beck08] as
it attempts to create full constructed objects.

2.9 Known Uses
The entity loader in [WCJ06] uses the AOM Builder pattern to
create instances of entities in the system. An entity is composed of
several parts (tags, metadata, relationships, pattern definition, and
implementation). The AOM builder is configured with a set of
steps to build each one of these parts and then assemble a
complete entity. These steps also include an audit step that saves
data about the entity being loaded (e.g. last loaded date, user that
is loading the entity, and hit count).
An AOM framework for medical systems built for the Illinois
Department of Public Health uses Builder pattern to create
instances of Observations and its related objects.
An AOM-based content management system developed and used
at a telecom company where one of the authors worked uses this
pattern to create instances of entities. The AOM Builder pattern
implementation coordinates the work that needs to be done in
order to create a new or load an existing entity instance.

3. Appendix A - A Brief Summary of the
Architectural Style of AOMs
Notice: This section is a summary extracted from [YJ02] and
[YBJ01] and has been included with informative purposes to help
readers that are not familiar with the AOM architectural style. To
get a more complete view we recommend the reader see the
original papers at www.adaptiveobjectmodel.com.

The design of Adaptive Object-Models differs from most object-
oriented designs. Normally, object-oriented design would have
classes for describing the different types of business entities and
associates attributes and methods with them. The classes model
the business, so a change in the business causes a change to the
code, which leads to a new version of the application. An
Adaptive Object-Model does not model these business entities as
classes. Rather, they are modeled by descriptions (metadata) that
are interpreted at run-time. Thus, whenever a business change is
needed, these descriptions are changed which are then
immediately reflected in the running application.

Adaptive Object-Model architectures are usually made up of
several smaller patterns. TYPE OBJECT [JW98] provides a way
to dynamically define new business entities for the system. TYPE
OBJECT is used to separate an Entity from an EntityType.
Entities have Attributes, which are implemented with the Property
pattern [FY98]. The TypeObject pattern is used a second time in
order to define the legal types of Attributes, called
AttributeTypes.

This core set of patterns working together is very common to most
AOM architectures as described by Dynamic Object Models
[RTJ05]. Therefore if the user is selling products, the AOM will
describe different types of Entities to represent their different
types of products. Non-AOM systems would model these with
different product classes.

As is common in Entity-Relationship modeling, an Adaptive
Object-Model usually separates attributes from relationships. In
usual OO design, entity-relationships are commonly implemented
through an attribute as a pointer or direct reference to the related
objects. Also, methods are used to implement any rules about the
relationship. However in AOMs these relationships are reified
thus enabling a way to describe new types of relationships and
rules governing the relationships via metadata. The STRATEGY
pattern [GoF95] is used to define the behavior of EntityTypes.
These strategies can evolve into a rule-based language that gets
interpreted at runtime. Finally, there is usually an interface for
non-programmers to define the new types of objects, attributes
and behaviors needed for the specified domain. This also includes
ways to define subtypes and relationships between objects.

Therefore, we can say that the core patterns that may help to
describe the AOM architectural style are:

� TYPE OBJECT

� PROPERTY

� ENTITY-RELATIONSHIP / ACCOUNTABILITY

� STRATEGY / RULE OBJECT

� INTERPRETER (of Metadata)

Adaptive Object-Models are usually built from applying one or
more of the above patterns in conjunction with other design
patterns such as COMPOSITE, INTERPRETER, and BUILDER [GoF95].
COMPOSITE is used for building dynamic tree structure types or
rules. For example, if the entities need to be composed in a
dynamic tree like structure, the COMPOSITE pattern is applied.
BUILDERS and INTERPRETERS are commonly used for building the
structures from the meta-model or interpreting the results.

But, these are just patterns; they are not a framework for building
Adaptive Object-Models. Every Adaptive Object-Model is a
framework of a sort, but there is currently no generic framework
for building them. A generic framework for building the
TypeObjects, Properties, and their respective relationships could
probably be built, but these are fairly easy to define and the hard
work is generally associated with rules described by the business.
This is something that is usually very domain-specific and varies
quite a bit.

3.1 The Type Square
In most Adaptive Object Models, TYPE OBJECT is used twice,
once before using the PROPERTY pattern, and once after it. TYPE
OBJECT divides the system into Entities and EntityTypes.
Entities have attributes that can be defined using
Properties. Each property has a type, called
PropertyType, and each EntityType can then specify the
types of the properties for its entities. Figure 4 represents the
resulting architecture after applying these two patterns, which we
call TYPE SQUARE [YBJ01].

Entity

Property

EntityType

PropertyType
-name : String
-type : Type

0..n type

0..n properties

0..n type

0..n properties

Figure 4 - The Type Square

It often keeps track of the name of the property, and also whether
the value of the property is a number, a date, a string, etc. The
result is an object model similar to the following: Sometimes
objects differ only in having different properties. For example, a
system that just reads and writes a database can use a Record with
a set of Properties to represent a single record, and can use
RecordType and PropertyType to represent a table.

4. Appendix B – An Overview of AOM-
Related Patterns
Our primary goal is to document in a uniform and standardized
way all the existing patterns that can be used to create adaptive
object models. A secondary goal is to make the pattern language
more complete. This will ease the task of creating this kind of
architectures to designers, architects and developers.
We started with a brainstorming session where a big set of
patterns (more than 40) was listed and categorized. We also
classified the patterns in three groups according to their
publishing status: published, not published, ongoing)
The pattern language map will help to establish a roadmap to
document (or recast) all the patterns involved in creating
applications using this architectural style.

4.1 Categories
We have grouped our patterns in the following categories:

 Core: includes the core patterns that are present in the
basic implementation of AOMs. These are the basic
patterns and they are the ones that govern this
architectural style.

 Process: includes the patterns that deal with the process
of creating AOMs. They establish guidelines for
evolving frameworks and boundaries to avoid going up
to the meta-levels far beyond than necessary.

 Presentation: includes the patterns that deal with how
to present AOMs to end-users in applications.

 Creational: includes the patterns that help to create
instances of AOMs

 Behavioral: includes the patterns for dynamically
adding, removing or modifying behavior to the AOMs

 Miscellaneous: includes patterns that help to instrument
the usage, control, and instrumentation of AOMs. They
also help to provide guidelines for non-functional
requirements such as performance and auditability.

4.2 Status
The status refers to the publishing state of the patterns. In our
pattern mining session, we found more than forty patterns. Some
of them were published, some of them where included in
unpublished work and some of them where ideas.

 Published: patterns that have been published in
previous works. These patterns have been through the
community process (shepherding and writers
workshops).

 Unpublished: patterns that we aware of their existence
but haven’t been publicly published yet.

 Ongoing: patterns that are being written at the moment
of creating our patterns list.

4.3 Conclusions and Future Directions
Creating AOMs is not a trivial task. The architects and developers
involved in creating AOM-based applications need to use and
combine many patterns. Some patterns have been written about in
published conference proceedings but the topic is still incomplete.
Very often, developers don’t even use the patterns and arrive at
this kind of architecture intuitively. What we are trying to achieve
with our research and further publications is to provide a
comprehensive set of patterns for creating AOMs, thus making it
easier for developers who are creating applications using this kind
of architecture. The set of related AOM patterns and their
relationship to other published patterns, as shown in Figure 5, is a
clear step towards that objective. It establishes a visual roadmap
for documenting the patterns involved in the AOM architectural
style.

Besides these patterns, less widely known patterns are often used
in AOM systems. Descriptions of these other patterns are
scattered among a number of different papers patterns with
different templates and styles. Additionally, not all the pattern
examples use the same example. Some patterns haven’t been
updated to reflect current implementation trends or programming
language environments or development platforms. We ultimately
see the pattern described in this paper as part of a more complete
pattern language for building Adaptive Object-Models.

Figure 5 - AOM System patterns and their relationships to other patterns.

5. Acknowledgements
We would like to thank our shepherd Alejandra Garrido for help
and advice on improving the contents of this paper. We would
also like to gratefully thank to the participants of the PLoP 2009
Architecture Writers Workshop (Brian Foote, Alexander M. Ernst,
Eduardo Guerra, Maurice Rabb, and James Siddle), and to Agile
2009 for supporting PLoP 2009 in Chicago, Illinois.

6. References
[AOM] AdaptiveObject-Models.

http://www.adaptiveobjectmodel.com
[BR98] Bäumer, D; D. Riehle. Product Trader. Pattern

Languages of Program Design 3. Edited by Robert
Martin, Dirk Riehle, and Frank Buschmann.
Addison-Wesley, 1998.

[Beck08] Beck, K. Implementation Pattern. Pearson
Education Inc. 2008

[Fowler97] Fowler, M. Analysis Patterns: Reusable Object
Models. Addison-Wesley. 1997

[Fowler02] Fowler, M. Patterns of Enterprise Application
Architecture. Addison-Wesly. 2002.

[FY98] Foote B, J. Yoder. Metadata and Active Object
Models. Proceedings of Plop98. Technical Report
#wucs-98-25, Dept. of Computer Science,
Washington University Department of Computer
Science, October 1998.

[GoF95] Gamma, E.; R. Helm, R. Johnson, J. Vlissides.
Design Patterns: Elements of Reusable Object
Oriented Software. Addison-Wesley. 1995.

[JW98] Johnson, R., R. Wolf. Type Object. Pattern
Languages of Program Design 3. Addison-
Wesley, 1998.

[KSS05] Krishna, A., D.C Schmidt, M Stal. Context
Object: A Design Pattern for Efficient
Middleware Request Processing. 13th Pattern
Language of Programs Conference (PLoP 2005),
Monticello, Illinois, USA, 2005.

[Martin02] Martin, R. Agile Software Development:
Principles, Patterns, and Practices. Prentice Hall,
2002.

[POSA1] Buschman, F. et al. Pattern Oriented Software
Architecture, Volume 1: A System of Patterns.
Wiley & Sons. 1996

[POSA3] Kircher, M.; P. Jain. Pattern Oriented Software
Architecture, Volume 3: Patterns for Resource
Management. Wiley & Sons. 2004.

[RFBO01] Riehle, D., Fraleigh S., Bucka-Lassen D.,
Omorogbe N. The Architecture of a UML Virtual
Machine. Proceedings of the 2001 Conference on
Object-Oriented Program Systems, Languages
and Applications (OOPSLA ’01), October 2001

[RTJ05] Riehle D., M. Tilman, and R. Johnson. "Dynamic
Object Model." In Pattern Languages of Program
Design 5. Edited by Dragos Manolescu, Markus
Völter, and James Noble. Reading, MA: Addison-
Wesley, 2005.

[RY01] Revault, N, J. Yoder. Adaptive Object-Models and
Metamodeling Techniques Workshop Results.
Proceedings of the 15th European Conference on
Object Oriented Programming (ECOOP 2001).
Budapest, Hungary. 2001.

[WCJ06] Welicki, L.; J.M Cueva, L. Joyanes. Patterns
Meta-Specification and Cataloging: Towards
Knowledge Management in Software Engineering
Proceedings of the 11th European Conference on
Pattern Languages of Programs (EuroPLoP 2006),
Irsee, Germany, July 2006.

[WYWJ07] Welicki, L.; J. Yoder; R. Wirfs-Brock; R.
Johnson. Towards a Pattern Language for
Adaptive Object-Models. Companion of the ACM
SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and
Applications (OOPSLA 2007), Montreal, Canada,
2007.

[WYW07] Welicki, L, J. Yoder, R. Wirfs-Brock: Rendering
Patterns for Adaptive Object Models. 14th Pattern
Language of Programs Conference (PLoP 2007),
Monticello, Illinois, USA, 2007

[YBJ01] Yoder, J.; F. Balaguer; R. Johnson. Architecture
and Design of Adaptive Object-Models.
Proceedings of the ACM SIGPLAN Conference
on Object Oriented Programming, Systems,
Languages and Applications (OOPSLA 2001),
Tampa, Florida, USA, 2001.

[YJ02] Yoder, J.; R. Johnson. The Adaptive Object-Model
Architectural Style. IFIP 17th World Computer
Congress - TC2 Stream / 3rd IEEE/IFIP
Conference on Software Architecture: System
Design, Development and Maintenance (WICSA
2002), Montréal, Québec, Canada, 2002

[YR00] Yoder, J.; R. Razavi. Metadata and Adaptive
Object-Models. ECOOP Workshops (ECOOP
2000), Cannes, France, 2000.

