

A Program Backlog Story with Patterns

Expanding the Magic Backlog Pattern Collection

Lise B. Hvatum

lhvatum@acm.org

Rebecca Wirfs-Brock

 Wirfs-Brock Associates

 rebecca@wirfs-brock.com

ABSTRACT

This paper extends our Magic Backlog Patterns collection with

three additional patterns for managing the work of a program– or

rather how to deal with coordinating the work of projects which are

part of a larger program and where there may be dependencies and

shared deployment. While teams within a program may work fairly

independently, their work still needs to be coordinated to produce

a product. These three patterns, which represent alternative

strategies for structuring the backlog of work, are introduced

through a story of the correspondence of a business analyst as her

hypothetical program moves through different backlog

management strategies.

CCS CONCEPTS

• Software and its engineering → Requirements analysis

• Software and its engineering → Software implementation

planning • Software and its engineering → Software development

methods

KEYWORDS

Requirements engineering, requirements analysis, agile, product

backlog

ACM Reference format:

Lise Hvatum and Rebecca Wirfs-Brock. 2018. Program Backlog Patterns –

Expanding the Magic Backlog Patterns. 23rd European Conference on

Pattern Languages of Programming (EuroPLoP), EuroPLoP 2018, Jul 4-8

2018, 18 pages. https://doi.org/10.1145/3282308.3282338

1 Introduction

This paper extends our Magic Backlog Patterns collection [1, 2, 3]

with three patterns for managing the backlog of work for a program.

Often programs are formed from pre-existing projects and project

teams, which have established ways of managing their backlogs.

The challenge when forming such a program is how to best to

support individual projects’ established ways of working while

facilitating the coordination of work and a consistent view of the

overall program’s progress. Sometimes, programs are formed

anew. Even in this case, the question of how best to manage and to

coordinate the work of various project teams working on different

aspects of the overall program, still needs to be addressed. The three

patterns described in this paper represent alternative strategies for

structuring the overall work for a program and offer guidance for

those struggling with how best to manage their program backlog,

given their program’s history and unique context.

The structure of our paper is as follows: after providing a brief

overview of agile requirements, backlogs, and programs, we

present a story in three parts that motivates each backlog pattern.

After each part of the story, we present a particular program

backlog management pattern which, given the current context of

the story, appears to be a good fit to the current situation. After a

discussion, we draw some conclusions. An appendix summarizes

each pattern in our collection.

2 Background

The requirements for a software product are generated through

various elicitation techniques, and are further detailed and analyzed

using methods like story mapping, use cases, and workflows [2].

There are a number of useful publications [4, 5, 6, 7, 8, 9, 10] that

provide methods and techniques for how to elicit, analyze and

process information to reach detailed software requirements. Most

software projects use an ALM (Application Lifecycle

Management) tool like JIRA or TFS to manage the requirements

and the work that is needed to implement these in the “Product

Backlog.”

The term Product Backlog is part of Scrum terminology but

used in general by agile processes:

“The Product Backlog is an ordered list of everything that might

be needed in the product and is the single source of requirements

for any changes to be made to the product. […] The Product

Backlog lists all features, functions, requirements, enhancements,

and fixes that constitute the changes to be made to the product in

future releases.” --- Scrum Guide [11]

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Permissions@acm.org.

EuroPLoP '18, July 4–8, 2018, Irsee, Germany

© 2018 Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM ISBN 978-1-4503-6387-7/18/07 $15.00

https://doi.org/10.1145/3282308.3282338

EuroPLoP '18, July 4–8, 2018, Irsee, Germany L. Hvatum et al.

Most agile process descriptions are sketchy on how product

backlogs (for short we use the term “backlog” in this paper) are

developed and maintained, and so give little guidance to the product

team for this activity. Still, having a good backlog is really

important because it contains the fundamental information that

drives the development activities. Our work is aimed at filling this

knowledge gap with patterns that provide practical advice on how

to build a good quality backlog for a large and complex product

using an ALM tool. This paper is focusing on backlog patterns for

software programs.

So why Magic? We initially used the term “Magic Backlog” in

our earlier writing because of the lack of attention that agile process

descriptions pay to the creation of the backlog – so it appears as if

by magic. Feedback we got on our first backlog pattern paper made

us realize that the term has another meaning: done well with the

right contents and structure the backlog can do magic to support the

team. Readers familiar with the children’s stories of The Magic

School Bus [12] will recognize the connection. If you need a

submarine, the school bus will transform into one. If you need a

microscope, or a fully equipped biology lab, there will be one in the

bus. With careful design and preparation of your backlog, it can be

as magic as the school bus, supporting your current needs. It

provides a technical view of the product to the development team,

while the Product Owner can see a business view. It keeps the

current plan for the project manager, and the testing structure for

QA. It helps you know where you are and where you should be

going next.

Our patterns define role-based activities and responsibilities.

We expect individuals to be moving between roles depending on

what they are currently doing. A product owner could double as a

tester. A project manager might do the work of a business analyst,

as well as development and testing. One role that especially needs

clarification is that of the analyst. A Scandinavian proverb states

that, “A beloved child has many names,” and this is true of this role.

Business analyst, product analyst, and requirements engineer are

frequently used. In essence this role is an expert on requirements

engineering, i.e. the elicitation and management of requirements.

The analyst is not a domain expert, but a skilled resource who

knows how to drive elicitation efforts, how to analyze and structure

the outcome, how to translate from the business domain to the

technical domain, and how to administer and maintain a

requirements collection for a product. The role of the analyst often

falls on a product owner or the project manager, and sometimes is

distributed among the development team. But as products are

getting larger and more complex, there is an emerging analyst

profession, and more frequently teams include dedicated analysts.

Just as the agile tester is integrated into the team, so should the

analyst be. The primary audience for our patterns is the analyst.

3 Programs and Backlogs

A project is typically well defined, with a singular purpose and

result, and with a single, unified team. A program is a larger

endeavor. It consists of a collection of projects, which collectively

produce a desired business solution. Project related sub teams

within a program may work fairly independently, yet their work

still needs to be coordinated. While each project in a program may

have a valuable deliverable, the overall value to the business is

achieved only when all the projects in a program deliver on their

results [13]. So a program’s success is more than simply the

cumulative successes of its individual projects. Different projects

within a program are complimentary and help the program achieve

its overall objectives. Even so, on complex programs, there are

likely to be overlaps and dependencies between projects. The

overall objectives to be accomplished by a program are only

achieved by coordinating the work of various projects, resolving

any conflicting or competing priorities, and prioritizing the work.

One way to coordinate the work of various program teams is to

manage and coordinate their work via the product backlog (or

backlogs). The purpose of our work is to provide knowledge around

product backlogs, independent of any particular development

process. In our writing we try to be as process agnostic as possible.

Still, we have an expectation that the process applied to manage

a product backlog is a form of agile/lean, and this expectation will

decidedly influence our advice on how to structure and manage the

backlog. In particular, we have been influenced by Johanna

Rothman’s writing on program management, the Nexus

Framework for Large Scale Scrum and other Scum of Scrum

models [13, 14, 15, 16, 17]. Our focus is on how to best utilize the

tooling, and how a good handle on the tooling can help make the

workflows of the team more effective. What our work excludes are

patterns for team collaboration and agile practices (there is a wealth

of books, blogs, and training available on this already), and we

deliberately focus on the tooling.

To explore the unique challenges of creating and maintaining

program-level backlogs, we tell the story of the Bluebird program

via a series of emails, notes, and conversations between Caroline, a

business analyst and the main character in our story, and various

team members, friends, colleagues, and consultants. The story

highlights the choices and challenges a program has with keeping

their backlog useful to coordinate and plan multiple projects

collaborating to deliver a joint solution. As the story develops, we

pause to capture the program patterns emerging from the

experience of the program. An overview of the patterns collection

with some history of our earlier work is found in appendix A.

In this document, we use small caps for patterns, and small caps

italics for patterns in our collection that are not yet written. If we

refer to a pattern outside our collection it will also be in small caps

but with a reference attached to it.

4 Dear Dixie – Introducing the Story

We follow the story of Caroline through a set of e-mails, text

messages, diary entries, and personal notes. Caroline is a business

analyst on the Bluebird project. This project has been running for

almost three years. During this time, Caroline and her team have

been through the “storming-forming-norming-performing” [18]

process, and have reached a way of working together that enables

them to perform well. There is a high degree of trust between team

members. For the last six months they have steadily delivered

A Program Backlog Story with Patterns EuroPLoP '18, July 4–8, 2018, Irsee, Germany

software. Most of their builds pass the extensive automated test

suites. They normally update their production system weekly if not

more frequently.

The product backlog for the Bluebird project also went through

the “storming-forming-norming-performing” process. At the start

of the project Caroline was unfamiliar with TFS, the tool selected

by the company as their ALM tool standard, and this was the first

time she was working as a business analyst on a project this size.

After a few months using TFS, the Bluebird project backlog had

grown into a confusing mash up of technical and feature user

stories. This was mixed up with tasks that represented project work

like organizing meetings and training and as such did not contribute

to the product. Team members freely added contents, and items of

the same type were inconsistent with wide variation in granularity

and contents. Gathering metrics out of the contents was difficult,

and the QA team members struggled to support developers with

usable feedback. After several rounds of changing the structure of

the backlog and maturing the processes around use of the tooling,

Project Bluebird’s product backlog now has a well-defined

structure. It is easy to understand the product features (see FRAME)

as well as technical and quality aspects (see VIEWS). The contents

follow a clearly defined structure (see CONNECTIONS) and there is

understanding among the team members about who will modify

information and how (see RULES). Although the team keeps

tweaking and improving their backlog, it now is in a state where it

clearly supports the development effort in planning,

implementation and verification of the product. Management

perceives the Bluebird project as performing well.

When we enter this story, Caroline is about to get a new

challenge. Her company is merging with another company, and a

combined product strategy means that the Bluebird project along

with other projects will be formed into a program to deliver an end-

to-end customer solution. Caroline is a social and well-connected

person, which helps her in her expanded role as business analyst for

this new program. She reaches out to people both inside and outside

the company to share ideas and discuss program challenges. She

takes care not to expose information that is company confidential,

but instead focuses on sharing practices around requirements and

program backlog management. In particular, Caroline is

communicating with these people:

Dixie – a senior business analyst that Caroline worked with in the

past. When Caroline started her first job, Dixie was her mentor.

Over time, they have become close friends.

Ross – the program manager

Frank – the product owner

Cindy – the Bluebird project manager

Ivan – a project manager from the company that Caroline’s

company is merging with

Kate – the program level architect and Ivan’s best friend

Martin – an independent agile coach who has trained and coached

at Caroline’s company, and who is always willing to listen and

provide advice and pointers to resources. Martin is close with

Scrum.org and knowledgeable about Microsoft and VSTS.

Tommy – Caroline’s boyfriend

5 Program-level Backlog Patterns

In this chapter we let the story evolve and lead us to three different

solutions we have found when looking at how program backlogs

are structured. Each section culminates in a pattern that captures the

solution used in the associated part of the story.

Caroline’s story – part I

Dear Dixie, May 7 2016

Today was my work anniversary – it is hard to believe it is 3 years

since I joined the Bluebird project as their Business Analyst. My

manager, bless her heart, invited the team to lunch to celebrate.

Thinking back, we have come such a long way. Remember all those

half-finished sprints? And how the team demo was a hack and when

you tried to test it turned out it would only run OK on the

developer’s laptop? And how lost we were on organizing our

backlog and utilizing the TFS tooling?

I will never forget that silly training we went to. We learned

next to nothing. The trainer was remote so we spent the time talking

to each other and having fun. Maybe we should have paid more

attention to how to create those reporting queries. But the trainer

did not explain anything about the whys – only technical details

about using the tool. And since we had no significant data in our

backlog yet, it was pretty hard to be interested. Looking back, we

now know it is so important to decide how we structure and work

with our backlog to support the team and provide us insights with

fancy dashboards and cool graphics.

Anyway, just wanted to say hello to you old friend. Let us meet

for lunch soon!

Your friend, Caroline

Hi Dixie, May 15, 2016

So good to meet again. Corelli’s is my favorite lunch place!

I am back from a big reorganization meeting, and I just had to

let you know what is going on. Things are crazy! Only yesterday, I

was tooling along and feeling in control of my work and our nice

backlog and our progress and everything. Well, “how long was

Adam in Paradise?” as my Mom used to say. We are merging with

another company and our project is becoming part of a major

program with several projects joining to create a full-blown end-

to-end client solution. Since our Bluebird project is the most mature

and management has seen our successes delivering often and with

high quality, we are to be the model for how the entire program is

managed. And not just that, but I’m now the Business Analyst for

the whole program!

I need to run as we have meetings all afternoon to figure out

the impact and what we are to do. I’ll be in touch and let you know

how things are going.

Hugs, Caroline

(Text to Tommy) May 16, 2016

I will be home late tonight. Sigh. We have all these meetings to

come up with a strategy for how to combine the roadmaps and

requirements for the new program. Don’t wait up.

EuroPLoP '18, July 4–8, 2018, Irsee, Germany L. Hvatum et al.

Hi Cindy, May 16, 2016

Here are my notes and action items from our project planning

meeting today:

- Investigate overlaps in requirements with other projects

- We decided not to change anything before we know more about

how the program will be run

- Reach out to Ross about planning

Caroline

Hi Ross, May 20, 2016

I appreciate you making sure that I get involved early in the

planning. I know it will take time to align various stakeholders and

get clarity around various roadmaps and requirements. For now, I

will look into how the various projects manage requirements and

backlogs and get back to you with what I find.

With regards, Caroline

(Text to Tommy) May 23, 2016

Hi, let’s go out tonight! I need a break – work is crazy!

Dear Dixie, May 25, 2016

I wish you were here to help! I have started investigating how we

can practically bring together the requirements from the different

projects. And the product owners are working on this from the

business perspective. The more I look into the various projects, the

more variation I find. I had no idea there were so many ways to do

backlogs – correction: so many ways to mess up backlogs. I told

Tommy the other day that maybe I should find an easier job. He

thinks I should stick with this one as it is an opportunity to show

what I can do. As long as Ross supports and gives me the authority

to make changes I’ll keep trying.

Have you ever dealt with this before – having to merge

backlogs? Happy for any advice!

Yours, Caroline

Dear Dixie, May 27, 2016

Sorry, I realize that I did not give you enough details for you to

comment. Do you really think that if the backlogs are so different

and have a lot of content/history that is reasonable to let the

projects keep their individual backlogs? That is an interesting idea

I will discuss further with Ross.

Our situation is pretty complicated—not only are the backlogs

structured quite differently, but they are maintained in different

instances of the tool. Every project is using TFS, but some are in

the cloud, others on premises, and versions are different. It will take

time before they can all migrate to a common instance, which we

need to do before we can even consider combining them into a

single backlog.

And I promise, I will not just try but “give it my best try” as you

always said! And thanks for the reference to Martin. I think we need

some training and coaching help at this point.

Caroline

Hi Ross, May 29, 2016

Please find attached an overview of all the projects showing the

current tooling, backlog structure, and team process (Scrum,

Kanban, hybrids). There is so much variation. It will not be easy to

come to a common solution quickly. If and when we decide on a

common solution, projects will have to convert what they have into

a new, consistent format. Only then will we get full benefit of a

consolidated approach.

I reached out to an old friend who is an experienced BA for

advice. She suggested we don’t merge backlogs, at least not yet.

Instead we could create a program level backlog to support

planning and program level verification. She also recommended

that we look into scaling Scrum since most of the projects use

Scrum now as their development methodology. If we do want to

scale Scrum, she recommends a very experienced coach and trainer

Martin, who has helped her company recently.

Let me know when you have time to discuss, Caroline

(Text to Tommy) Jun 15, 2016

Will be home late again tonight. I’m helping QA produce metrics

reports from all projects.

Hi Dixie, Jun 29, 2016

Sorry for the radio silence. We are humping along. I am tired. Ross

felt it was too early for training. The focus now is on the business

side and trying to align the projects and come up with program

goals. Meanwhile, we are struggling with planning and QA and

product-level metrics. I feel sorry for the guys doing system

integration testing. We are kind of getting the end-to-end solution

together, but it is hard for the system testing team to know what

cross-product features should be working when each of the projects

are developing and testing individually but never checking how

they function in the overall product. Part of my responsibility is to

produce metrics from the individual backlogs that show overall

product status. This is a time-consuming, error-prone, manual

process. We pull data from several sources and merge it. I am not

even sure we are comparing apples with apples with these different

backlogs.

Caroline

Hi Dixie, Jul ,1 2016

Thanks for the advice! I cannot understand why I did not take

action on this before. Of course we need to make sure we share

some common definitions even if the backlogs are different. Thanks

again, Caroline

Hi Ross, Jul 1, 2016

As discussed, I need your help to ensure that our program level

metrics make sense. When we pull data from each project backlog

on completed users stories and bug statistics, we need each project

to apply the same definitions for user stories being “done” and for

bug criticality. I have attached drafts of the common definitions. If

you agree with them, could you please send these out and ask that

these definitions be applied consistently going forward?

Thanks, Caroline

A Program Backlog Story with Patterns EuroPLoP '18, July 4–8, 2018, Irsee, Germany

Hi Martin, Aug 3, 2016

I got your name from Dixie. My company is interested in some help

with scaling Scrum and handling program level backlogs.

Best regards, Caroline

Hi Ross, Aug 24, 2016

I agree. The 1-week workshop with Martin went very well and we

have a good plan for moving forward. His proposal of creating a

new backlog for the program level planning and monitoring is a

promising way forward. Fortunately we will also avoid merging all

the project level backlogs for now, although this does mean we still

need frequent communication across projects. I’ll start working on

a program level backlog right away.

Caroline

Hi Ross, Aug 30, 2016

Here is a first pass at the structure for the program level backlog.

As you see, it is purely focused on product features. We only added

top nodes for user documentation/online help and for crosscutting

quality requirements. Let me know what you think. We should have

the first program-specific user stories ready for our program-

planning event next week where we can try out the full flow from

program level backlog to verified feature.

Caroline

At this point, the Bluebird program has decided upon the following

solution – keep the project backlogs as they are and add a program

level backlog to help with the overall system-level planning and

integration.

Pattern: Pragmatic Program Backlogs

Your program is being newly formed to coordinate the work of

several existing projects. You have the goal of presenting a more

coordinated, consistent view of your products to your customer.

You need to be able to make plans and answer questions about the

overall status of work in progress.

You desire to create a view into the ongoing work of the various

projects so that you can understand and manage dependencies

between them and better coordinate deployments and feature

releases. Several projects will need to be better aligned with the

overall program objectives to improve the feature delivery in the

end-to-end solution. New projects may need to be started up to fill

some shortcomings and gaps in current products. All in all you have

a number of backlogs at very different levels of maturity, likely

structured in ways that are hard to consolidate, and with lots of

contents that constitute the history of each project and so their data

has to be preserved.

How do you manage a program-level view of the work of

individual projects with highly different backlog

implementations, so that you can better coordinate their work?

Overall, there is little consistency between projects and the way

they manage their backlogs. Some projects have been running

smoothly for a while and could potentially be models for how other

projects should operate. These project teams have learned how to

use the Application Lifecycle Management (ALM) tool in

sophisticated ways and can easily answer sophisticated questions

about their progress. They may even have a PIPELINE and a process

to FUNNEL new innovations into their individual backlogs. Other

projects, even though they may use the same ALM tool, have

backlogs that contain items of highly varying granularity and

content quality. These project teams largely use their backlog as a

giant prioritized To-do list, and have trouble tracking progress or

knowing when anything is done. Still other, smaller projects have

only just begun to manage their backlogs electronically. Some

project backlogs contain hundreds of backlog items.

Ideally, you desire a single program backlog shared by the

projects. But practically, this isn’t possible without a lot of rework

restructuring existing projects’ backlogs and developing a

consistent set of practices around how they are managed. This

rework may cause projects to slow down at a time when they cannot

afford to lose momentum. Changing their backlog structures and

contents may seriously disrupt and change existing work processes

and thereby frustrate and even alienate the project teams causing

their integration into the new program to be dysfunctional.

Some projects may have backlogs in different instances of the

same ALM tool, but others may be using different ALM tools

altogether. Merging the backlogs means you need to map items and

attributes across tools, and there may not be tooling to support the

automation of this migration.

Therefore, construct a separate program-level backlog, which

consists of a high-level view into the individual project

backlogs.

The program-level backlog is an additional backlog that has only

the FRAME representation of the product solution to be built. The

items in this program-level backlog are normally on the product

feature (epic) level and will typically be implemented by several

project-level user stories. These user stories will belong to multiple

projects as shown in figure 1. All technical content (e.g. the

enabling user stories along with their details and current status)

reside in the individual project backlogs. Tests defined at the

program level belong to the verification of overall system

integration. Defects may be associated with the epic-level user

stories if they represent issues with system integration. If not,

defects will be raised against the appropriate project-level’s

backlog items.

Instead of tracking individual product backlog items, this

program-level backlog enables you to manage the work at a higher

level, focusing on major features and sets of related features. Each

individual project will maintain its own separate backlog which

contains project-level user stories and details. In order to get a

picture of the overall program’s status, details from each backlog

will have to be distilled and translated into the status for program-

level backlog items. This is by no means an automatic process,

EuroPLoP '18, July 4–8, 2018, Irsee, Germany L. Hvatum et al.

Figure 1: A high-level Program Backlog with Multiple (Unlinked) Project Backlogs

especially since the status of each enabling user story can only be

found by digging into a particular project-level backlog. Depending

on the sophistication of any project, this status can either be

determined by asking questions of individual project backlogs and

feeding ANSWERS into the current status of project-level features

into program-level backlog items. Or, in the case of a project whose

use of the ALM tool isn’t consistent or structured into FRAMES,

this might involve a lot of tweaking of information gleaned by the

Product Owner by picking through details, which is then shoved

into a spreadsheet and tabulated. Accurate status for an epic-level

story when the enabling user stories are spread across multiple

projects is even more problematic.

While not ideal, this ad hoc approach to updating the program-

level backlog gets you some visibility into each project’s status as

well as a high-level view of the overall program’s status. The major

benefit with this approach is that it allows each project to keep its

individual backlog format unchanged, while still enabling

communication of the overall product status. It also helps support

planning across the projects to work on joint features and manage

dependencies in the implementations.

Because the project-level backlogs are not linked in the tooling,

all dependencies and relationships are managed through inter-

project communications. Consequently, these dependencies aren’t

explicitly represented in the program backlog. So they may be more

difficult to identify and manage. Another major drawback of this

approach is the difficulty of automating or ensuring the accuracy of

any consolidated state of the overall product (for example, quality

release criteria) drawn from separate backlogs that may reside in

different tools and tool instances.

Although this pragmatic approach may seem fraught with potential

problems, especially for a large program consisting of many

projects, its benefits should not be overlooked. Instead of spending

time trying to migrate various projects’ backlogs into a common

format, this approach allows you to quickly create a high-level

backlog for the overall program. Since the user stories in the

program backlog are at a high-level, you can focus on the big

picture of what needs to be accomplished while not getting bogged

down in lots of details. This high-level structure in the program

backlog can also help you sort out what various projects actually

are contributing to the overall product and identify overlapping

work or missing work that hasn’t been assigned yet to a specific

project team. Over the long term, as the program grows in

complexity, this simple approach may not be viable.

Caroline’s story – part II

Dear Dixie, Dec 19, 2016

Just wanted to wish you the best for the Holidays and let you know

I am still alive and kicking. Well, not literally kicking, ha-ha. Our

program has been running for 9 months now and we are doing OK.

Still there’s lot of challenges, and I keep nagging the project

managers to do a better job with their backlogs.

The program backlog has helped us a lot in the planning and

verification process, but it is still really hard to know how we are

performing. We manage to deploy roughly on a monthly basis now,

and most deployments go well. But the last one was a disaster

because we did not catch a major issue either during the project

level verification or in overall system integration testing. We need

A Program Backlog Story with Patterns EuroPLoP '18, July 4–8, 2018, Irsee, Germany

better automated testing, and need to keep it up to date as changes

happen. The deployment included 2 new features. One turned out

OK, but the second was influenced by some changes in the

architecture that were not fully understood by the development

teams. Oh, well, I did not mean to rant again. I hope we can meet

in the New Year!

Your friend, Caroline

Hi Ross, Dec 24, 2016

I am looking at the latest metrics for the program from QA. As you

see, we are finding more defects than we used to. It may be because

of the architecture modifications recently, but I am not sure, as

there was no spike in defects, just a steady degradation. Maybe

after the new year we can discuss how to better align in our

planning to make sure the user stories are more clear/detailed and

then we might be able to improve.

Caroline

Hi Ross, Jan 10, 2017

I have been discussing with Cindy how we can better structure our

requirements to improve traceability and find an easier way to

generate quality metrics for the program. We think it should be

possible to link items in the project backlogs and thereby know

when program-level features are completed and what defects are

associated. Can we discuss?

Caroline

Hi Cindy, Jan 12, 2017

Ross liked our idea, and proposed we run a workshop with the

project managers to see how we can better integrate the backlogs.

Next week?

Caroline

(Text to Tommy) Jan 22, 2017

Please buy some good wine for tonight. I am picking up dinner. I

know you are tired of my program problems, but you are the one

who told me to stay… we had a workshop today and I am so mad!

Most of the project managers were OK, but they are just so

unmotivated. Don’t they understand that their projects are not

successful unless the program is successful too? Anyway, it went

OK in the beginning, but then Ivan just did not want to collaborate.

His project never delivers! I think he just does not want better

visibility and improved planning because it will be more apparent

that his team is not delivering. Right now I am contemplating

various ways to remove him from earth ☺…

Hi Dixie, Jan 23, 2017

I need to see you! Lunch?? Please!

Dixie, Jan 24, 2017

I cannot believe you are going to Australia for 4 months!! It sounds

fantastic! So don’t worry about my problems, I will figure it out.

Ping me when you are back!

Safe trip, Caroline

Ross, Feb 28, 2017

We discussed last year having Martin come back for some

coaching. When can we do this? I think it would be good to have

some outside help look at how we are planning features. QA keeps

finding a lot of defects (broken logic in the functionality) during

system integration testing. This points to the program-level features

not being implemented as they should by the projects. This is really

slowing us down.

Caroline

Hi Ross, Feb 28, 2017

I do understand that we have budget limitations, but we really need

to do something to correct the current situation. Frank (the new

Product Owner) is asking me for a lot of data on how we are doing,

and when features will be ready, and it is costing us a lot of time

and effort to find the answers for him.

I think some help from Martin can really speed up our delivery

– if he can convince all the project managers to play along. Some

are already linking their user stories to the program backlog, and

this helps us in automating the metrics. But we still have a couple

of projects that need to migrate to the shared tooling, and

especially one project is not playing along.

Caroline

Hi Ross, Mar 10, 2017

Thanks, then I will set something up with Martin!

Hi Frank, Mar 10, 2017

Thanks for talking with Ross the other day – he finally agreed to

get us some help!

Hi Martin, Mar 11, 2017

We are back! Will you be able to spend some time with us in

April/May to help us with backlog management? We have started

to link project-level items to the program backlog as you suggested,

but we have a couple of problem projects that are not there yet. One

of the project managers is just very new and quite confused but the

coaching will help there – I am not worried. The problem child is

Ivan’s project. I think he is pissed off that the program manager job

went to Ross, and he is doing everything he can to make us not

succeed. It must be hurting his career too, but he seems not to care

as long as he can disrupt our ability to deliver. And he is so close

with the program architect who keeps supporting him. Please keep

this to yourself; I just want you to be aware of the situation. Can

you please send us your availability and a financial proposal?

Caroline

Hi Frank, Apr 15, 2017

Glad you like Martin, yes he is very knowledgeable.

(Text to Tommy) May 3, 2017

I promise not to be late again tonight!! You are an angel to stick

with me!

EuroPLoP '18, July 4–8, 2018, Irsee, Germany L. Hvatum et al.

Dixie, you are back!! Jun 1, 2017

How was your trip? We must meet soon and you can tell me all

about it!

Man, did I miss your support, it felt really scary not to have you

here. So we have made big changes to the program. With help from

Martin, even Ivan had to cave in and we now have all projects

linking their user stories to the program backlog. But it has cost a

lot of time and effort, and some fighting that left some scars. Martin

has been very helpful; this would not have worked without his

consulting. Still, I am not sure how much longer I am willing to

work on this. I am nearly at the end of my rope. Tommy has been a

great support, but he is getting really tired of my rants about the

program, and I have to be careful not to bother him about it all the

time.

On a happier note, I am going to the Agile conference this

year!! So we will meet there? Have you read the works of Johanna

Rothman, or attended her sessions on program management? I

have a feeling we could do much better managing the program and

the program backlog and metrics as well. I really want to attend

her sessions this year and see if she can provide some more

insights.

Caroline

Hi Dixie, Jun 4, 2017

I cannot believe you know Johanna! Do you really think I can ask

her for advice? I often see people talking to speakers after sessions,

but I have never had the nerve to do so. Maybe you can introduce

us?

Yours, Caroline

At this point in our story, each project in the Bluebird Program has

linked their individual backlog items to the appropriate program-

level backlog items. This allows for a more accurate reflection of

each project’s status and how it contributes to the program. It has

required a lot of convincing to get every project manager on board

with the idea as well as a commitment to using common ALM

tooling.

Pattern: Linked Product Backlogs

Your software development program consists of multiple projects

that work together to create parts of a larger product. All projects

are using the same ALM tooling, but each project maintains its own

project backlog that contributes to the overall program. The

software process details vary from project to project. Stakeholder

activities like planning (roadmaps, business priorities) and delivery

happen at the program level, meaning that there is a common plan

that all projects share and collaborate on. Product features often

require contributions from several projects, meaning that there is

close communication across project boundaries.

How do you organize and manage the program-level backlog

for a program consisting of a set of closely aligned projects

when each project has its own mature and extensive backlog

and these backlogs are structured differently?

Individual project backlogs have been built over time and they are

structured to suit the needs of each project. They probably existed

before the program was created, and were structured with no

consideration of collaborating outside the project team. Because of

their diversity, this means that moving to a single, unified backlog

format will require a lot of restructuring and changes for each

project. This will take time away from development and slow every

project down for a while.

The project backlogs are typically aligned with the working

process of each project team, and have been optimized over time to

the project’s style of collaboration. Any major changes to the

backlog structure and contents will be disruptive.

The program wants some level of traceability between the user

stories completed by the projects and the features (end-to-end

operational workflows) that are enabled on the program level, but

with each project operating with a separate backlog this is hard. The

program also wants to automate metrics, and for this to work

properly they need to know what work on the project level

contribute to implementing requirements in the program-level

backlog.

Therefore, create a program-level backlog and link project

backlog items to the program level backlog for traceability.

This approach lets the individual projects have their individual

backlogs structured to support their own way of working while still

being able to automate ANSWERS on product completeness and

outstanding issues. The typical backlog items to link from the

individual backlogs would be user stories to the respective features,

and test cases to test suites/test plans in the program-level backlog.

This will provide you with a clearer picture on how the work in the

project teams contribute to the overall product.

Technical items will likely also exist at the program-level. For

example, a product-wide requirement to support a common API for

micro-service monitoring might be a feature story in the program

backlog which would be linked to work items in separate project

backlogs. Or necessary refactoring to use a new time series based

logging, which will cut across many services, most definitely would

cause work items in each of the project backlogs, all linked to a

refactoring item in the program-level backlog.

Linking items across backlogs will be easier if all the backlogs

reside in the same collection in an ALM tool. But there are ways to

link even if this is not the case. Some ALM tools support links to

external items, although this will give a rather crude solution where

gathering metrics will be harder (not supported in a single ALM

tool instance so requiring manual work or writing some code to deal

with merging the information), But there are products that support

the integration of multiple ALM tools and allows for these items to

be synchronized across the tool/tool instances (for example

Tasktop’s Integration Factory [19].

A Program Backlog Story with Patterns EuroPLoP '18, July 4–8, 2018, Irsee, Germany

Figure 2: Appropriate Project Backlog items are linked to the Program Backlog

Creating links between project-level and program-level backlog

items may be a challenging task in the beginning. You may need to

migrate some projects’ backlogs to a newer version of the tool or

even convert them to use the common tooling. However, the real

challenge is more likely to be getting projects to learn how to better

collaborate. But as your overall program organization goes through

a few iterations of planning, implementing, and deploying features

together, the program team will gain experience that helps them

decide how to break down items in the program backlog to project-

level user stories, and how to deal with inter-dependencies between

projects. Additionally, projects may choose to temporarily assign

individuals to program-level feature teams to help deal with the

dependencies and ensure completion of items at the program level.

For example, this program-feature team may need to go beyond

implementing and verifying any user story working at the project

level to take on responsibility for the program-level feature being

verified and successfully deployed.

It should be noted that there are possible ways to link items between

different tools, as well as other synchronization solutions that are

available in the market. These synchronization approaches come

with added complexity but may be a plausible alternative if it is too

difficult to migrate to the same tool and directly use the tool’s

linking capabilities.

Caroline’s story – part III

 (Text to Tommy) Jul 19, 2017

Hi there, just to let you know I have arrived safely at my hotel. The

Agile conference starts tomorrow – I am so excited! Love you!

Hi Johanna, Jul 20, 2017

I really enjoyed your presentation. Thanks so much for answering

my questions. I really like your ideas for considering options: come

up with at least three options. We’ve already tried multiple ways to

get us useful data to help us with planning future iterations and

coordinating the work of dependent project teams. We started with

independent project backlogs. Then we tried linking individual

project backlogs to our program level backlog. Yet, we still have

the problem that some teams have trouble accurately tracking their

progress. What are your thoughts about moving to a single backlog

for our entire program?

Sincerely, Caroline

Hi, Jul 21, 2017

I like the idea of a single roadmap, which shows all the feature

sets as you think they might get delivered. Program managers

need to see the program as a whole. And, if you have

interconnected deliverables, you might need to see the feature sets

as they evolve. Will the platform payments be done in time for the

new banking experience? That kind of thing. I said I would send

you a link. Here it is.

https://www.jrothman.com/mpd/2017/09/alternatives-for-agile-

and-lean-roadmapping-part-7-summary/

Sometimes, several feature teams work on a single feature set.

In that case, yes, absolutely create one backlog for the several

teams. I’ve seen this work quite well for a small program of up to

six teams. I’m not sure how well that idea works for more teams.

The six teams sat very close to each other (not in one room, but in

two team rooms down the hall from each other. They felt squeezed,

but they were able to easily talk with each other. Each room had its

EuroPLoP '18, July 4–8, 2018, Irsee, Germany L. Hvatum et al.

own PO. The PO’s job was to keep talking with the teams, and

accept stories (or explain why the story didn’t work) every day. The

product manager met with the POs every week as a Product Value

Team. The product manager met with clients so he had the most

recent client info. Every couple of weeks, he brought one of the POs

to meet with local clients. Yes, the POs got out of the office.

Let me circle back to your question. Yes, I like a single, unified

view of the program’s possibilities and commitments. I think of a

backlog as the “what we are sure we will do sooner, rather than

later.” To me, the backlog is a relative commitment. We are pretty

sure we will do this work over the next few weeks, maybe month. I

think of the roadmap as the list of possibilities and when we might

start them. The roadmap helps people understand what we might

do in the future.

People working on programs need to see both, because our

decisions today affect our ability to consider later possibilities. The

roadmap allows us to decide later (not sure if “as late as possible”

is the right wording, but later works for me) so we don’t paint

ourselves into a corner. The backlog says, “Do this now, and think

about this next bit as you proceed.” That way, if we think we need

architectural spikes or other exploration, we can put that work in

the backlog. We aren’t surprised when we get to that part of the

program.

I don’t know if that helps your thinking. Let me know if I

confused you.

Johanna

Hi Ross, Jul 22, 2017

I got to talk with Johanna Rothman yesterday after her

presentation. She is the renowned expert on running agile

programs that I told you about, remember? I learned so much from

her talk, and then she listened to my problems and sent us personal

advice and pointers to where we can read more. I have lots of notes

and ideas to share when I am back. This can really help us!

Caroline

(Text to Tommy) Jul 24, 2017

On my way home with lots of new ideas! But I also got time to think

about what you said – we need to have more time together. I know

work has taken too much of my energy lately. See you tonight!

Dear Dixie, Aug 5, 2017

First off, it was great to spend the time with you at the Agile

conference. The insights about managing programs and the need

for better metrics that we can act on is keeping me busy and excited!

Well, that was the god news. It is harder than I thought to

engage my team in taking up new ideas. I guess they are tired of all

the changes we have already made. But we have made progress.

Some projects are now using the same structure as the program

backlog. Actually, a couple of teams have even ditched their own

backlogs now and only use the program-level one. For these, I can

easily automate the metrics (incorporating some of the new ideas I

got at the Agile conference). But Ivan, with the help of Jane, is

actively opposing every improvement I propose. Sometimes I think

they want us all to fail just so they can get it their way. But if we

fail, then Ivan’s project will also be in jeopardy – unless there is

something I do not know that they do. Ross as usual is not engaging,

or maybe he has other problems to deal with. I never really know

with him.

And I need to think about what I want to do, personally. I feel

that I am losing Tommy – we are drifting apart. I spend way too

much time and energy at work, and my personal life is going

nowhere. Maybe I should seriously think about another job??

Yours, Caroline

Hi Cindy, Aug 9, 2017

Thanks for your support in the workshop yesterday. It really helps

others to take the lead from the Bluebird project as it is the most

mature of them all. Hopefully we can convince all projects to

migrate to the program backlog as you did.

Caroline

Ross, Aug 9, 2017

The workshop yesterday was another example of the many

problems that hinder us working as a unified team across the

program. I think the idea of trying to form feature teams as well as

having a more flexible backlog structure will bring us a lot of value,

and these are proven practices in the software industry. But we

need all teams onboard, to make this work. Could you please speak

with Ivan and convince him to try this??

Frankly, I am running out of steam and I really need all project

managers to work with me and not against me. I need your support

on this. And not only that, I need you to engage more with us to all

to make this happen.

Thanks, Caroline

(Text to Tommy) Aug 12, 2017

I am seriously thinking I want to say yes!! Today was frustrating –

I have had it! Your idea sounds like heaven.

Dear Dixie, Aug 13, 2017

I am tired to the bone, and although we are making slow progress

I am not sure I am willing to go on like this. Half of the projects are

now using the program backlog only to manage their work and we

have automated the metrics and most of our planning and

monitoring processes are working fine. But we still have the

holdouts. Ivan. And Jane. And they do not even say hello when we

meet in the corridor anymore.

Tommy wants to travel to Australia for 3 months. And he wants

me to come too. Financially we are cool, but I would have to leave

work. But I feel it is either go on this trip or no more Tommy. And

I’ve always wanted to go Australia. What to do?!?

Hugs, Caroline

Dixie, Aug 14, 2017

I did it. I left. I am going to Australia!! Caroline

Hi Ross, Sep 30, 2017

Nice to hear from you! We are doing well and enjoying our

adventure. Yes, I can recommend a good BA. Her name is Dixie,

A Program Backlog Story with Patterns EuroPLoP '18, July 4–8, 2018, Irsee, Germany

and here is her contact info (…). Sorry to hear you are having some

issues, but I am sure she can help you out. She runs her own

company, so you would need to contract with her.

Caroline

Hi Dixie, Oct 10, 2017

So the roles are reversed now – I am the one on the outside. Just

make sure you stick to the condition that you get to decide how the

backlog is managed. And if they will not listen, well I am sure there

are other customers waiting.

Caroline

Hi again Dixie, Nov 11, 2017

I can’t believe it – so they are all using the one backlog now?

Amazing. Well, I suspect it will take a few features being delivered

before all the process quirks are ironed out. But that is great news!

So Ross has been asked to transform to a DevOps process and

deliver more frequently? This will be even more interesting!

Well, I am here and not there with you. But no regrets. I’m so

happy. Today we go pick blueberries on the O’Leary farm.

Best of luck and I will let you know as soon as we are back.

Your mate, Caroline

The program has evolved to use a single program backlog.

Individual program-level backlogs have been merged into one

common backlog. This took some effort and the project teams had

to agree upon consistent ways to manage their backlog items. At

the same time, the program continues to look for ways to improve

their process and allow teams using the common backlog to find

unobtrusive ways to adjust backlog items in support of their unique

ways of working.

Pattern: Linked Product Backlogs

You are part of a software development program with multiple

projects that all contribute to producing a solution. The overall

program is either in its initiation phase, or there are other reasons

why individual project backlogs are small or non-existent or

unimportant to preserve. Perhaps requirements are captured in

documents, and an ALM tool is not yet in use to manage the

backlog electronically. Or perhaps the use of such tool is in an early

phase with limited contents at this point in time. Alternatively, you

may have a number of existing project backlogs that are structured

in a very similar way and so are easy to adjust to a common unified

model. The reason that the development effort is organized into

multiple projects is mainly due to the overall size of the effort. Each

project is responsible for a functional area of the solution, but none

of these projects produce software that will be delivered as separate

products. The projects apply the same development process, and

this process is applied for overall program as well. For example, the

program applies a scaled Scrum process and each project applies

Scrum at the project level.

How do you organize and manage the backlog for a program

consisting of closely aligned projects when the projects have no

current backlogs or backlogs that are small and structurally

similar?

For the program, it is important to have a full view of the product

features to be delivered, as well as their current state as they move

through implementation and acceptance. This includes a view of

defects and tests and other work items in the backlog that all

contribute to the finished product.

At the same time, project teams typically want to easily find the

relevant items for their specific project without having to deal with

work items that belong to other projects, or get confused and

distracted by a large amount of content that obscures their project-

level view of the work.

All users need to easily navigate the backlog to find the

information they need.

Project backlogs should be structured to support the specific

development process applied by the project. For instance, if

applying Scrum they want to easily see the user stories assigned to

a sprint. The same is true at a program level.

No two projects are run exactly the same, even if they are part

of a program and ostensibly use the same development process.

There will always be some variation as individual project teams

have different preferences and work styles. Enforcing 100%

alignment is futile and will only alienate people to the process.

Allowing project-level solutions that do not interfere with the

overall program’s approach enables the program to try out potential

improvements. For example, individual projects may have different

ways to deal with technical backlog items (“software plumbing”

that must be done but do not provide explicit functionality), items

capturing quality requirements, and other items not representing

user functionality if these are unique to that specific project.

Extracting information for dashboards and reports requires the

backlog to be structured to support this, and for the contents to be

kept up to date so the extracted information conveys an accurate

representation of the projects and the program. This also requires

that core definitions are shared across all projects within a program,

for instance the “definition of done” for a user story.

Therefore, define a single, unified backlog shared by all the

projects within the program, but allow for projects to apply

attributes, tags, and filters that provide them their own

specialized project level view of the contents.

The FRAME and VIEWS are defined for the program, and all work

items exist within the overall scope of the program. We recommend

that program-level features be broken down to a level where they

can be fulfilled by a single project. So to deliver a new feature,

when the program team is analyzing and creating the associated

user stories, they need to take care to split the functionality into

parts that are granular enough to support this. This way the project

sprints can run without being derailed by cross-project

dependencies. Should the organization use a flexible model rather

than the more static project model, you would assemble a team or

EuroPLoP '18, July 4–8, 2018, Irsee, Germany L. Hvatum et al.

Figure 3: Appropriate Project Backlog items are linked to the Program Backlog

a squad [20] around each user story that takes it through to

deployment. Structuring the backlog is influenced by the way the

team and organization works. You want your backlog to support

the desired development process and not be an obstacle.

Typically the program backlog structure has a set of goals,

features, and user stories representing the user functionality. Goals

and features are most likely shared between all teams, and there is

no need to filter them at the project level. The items that you will

most likely want to view and work with specifically on a project

level are the user stories and the defects. So for these, you can use

attributes (for example the “area path on Microsoft VSTS) to

indicate either the project or team directly, or the domain that a

particular team is responsible for. A complete program view and a

filtered project view showing only the items that are the

responsibility of a project are shown in figure 3.

Test plans and test cases are other work items that you may

want to view at both a project and the program level. Most likely

you will create test plans for projects as well as for the program,

and the same test cases may be used by both.

A unified program-level backlog should cause less work and

have fewer items to keep up to date than either PRAGMATIC

PROGRAM BACKLOGS or a LINKED PROGRAM BACKLOGS

approach. This is because overall structures like the FRAME and

CONNECTIONS are defined once and reports are shared and can

easily be created automatically. A UNIFIED PRODUCT BACKLOG

requires all project teams to adhere to agreed backlog management

practices. Even though all team members work on the same

backlog, the potential for contents to deviate in style and granularity

increases, as does the risk for the backlog structure to deteriorate

over time. To mitigate these problems, we recommend that a single

person (or small team if the program is very large) oversee the

backlog and be the owner of the FRAME and the CONNECTIONS.

The business analyst role may be a good fit for this task,

performing periodic MAINTENANCE. This role also typically leads

the effort to groom the backlog contents and is familiar with the

overall contents and RULES. The Product Owner will also be

involved in this work, but for large products will normally not have

time to perform all the detailed work but instead concentrate on

defining the overall structure.

With a shared backlog, however, there is also a higher risk of

changes disrupting many projects if the structure change or contents

change. There is also less freedom for any project team to follow

their unique style of working with the backlog, although small

project level adaptations that do not interfere with the overall

approach are possible and even encouraged. It is better to allow

some variation than to alienate project teams by being too rigid with

the backlog structure.

By having a unified backlog, it is easier to focus the whole

program on the same goals (i.e. current work-in-progress selected

from the shared backlog) and follow the progress of work items

towards delivery. Defect tracking and reporting is also more

consistent and reports are likely to be more accurate.

6 Discussion

When multiple projects exist in the context of an overall program,

there is a need to coordinate and plan the effort of individual project

teams. You need to be able to follow the progress and health of

the overall product as well as plan and maintain a consistent

roadmap for delivery that you share with all stakeholders. Although

we document our backlog management patterns in the scope of a

program/project structure, similar issues exist for any development

effort where multiple teams work together to generate a product.

We feel that other kinds of teams can benefit from understanding

A Program Backlog Story with Patterns EuroPLoP '18, July 4–8, 2018, Irsee, Germany

and applying our program-level backlog patterns. These teams do

not need to be working on different projects, but can be feature

teams, squads, or whatever an organization uses to structure their

coordinated efforts.

Since the product backlog, whether implemented as a single

backlog or a combination of backlogs, serves as the system of

record for the work done by and planned by the overall product

development organization, a fundamental question is:

How do you organize and manage the product backlog for a

multi-team organization to best serve involved teams as well as

the overall program in planning, implementing and monitoring

the emerging solution?

We ask this question in the context of product development of large

systems that support complex operational processes, have hundreds

of detailed requirements and possible safety and security concerns,

and that may need to support external audits or prove that sufficient

testing was done before deployment.

We started on our journey with this tantalizing question: When

should you have one combined product backlog and when is it

better to have multiple backlogs? Hopefully, nuanced answers to

this question emerged throughout Caroline’s story, as well as in

details of the three patterns including forces, context, and

consequences. Our patterns reflect three distinct ways to organize

a product backlog for a program: a single backlog shared by all the

projects, UNIFIED PRODUCT BACKLOG; a program-level backlog

with links to individual project backlogs, LINKED PRODUCT

BACKLOGS; and a program-level backlog with individual project

backlogs that are not physically linked in the tool, PRAGMATIC

PROGRAM BACKLOGS. Possibly there is also a fourth solution –

that of only having project level backlogs and no shared backlog on

the product level at all. But this is not a pattern that we have written

because we have not seen it successfully applied for large, complex

programs.

Table 1 summarizes the three patterns with benefits and

resulting issues:

Table 1: Comparing Product Backlog Patterns for Program

Name Description Benefits Issues

Pragmatic

Program

Backlogs

How do you manage a program-level view of the work of

individual projects with highly different backlog

implementations, so that you can better coordinate their

work?

Therefore, construct a separate program-level backlog

which consists of a high-level view into the individual

project backlogs.

✓Existing project

backlogs can remain as

they are

✓The program level

backlog enables

planning and reporting

on the program level

 Disconnected backlogs

increase the risk of badly

aligned detailed

requirements and gaps in

functionality

 Reporting (insights) on the

state of the overall solution

is more complex

Linked

Program

Backlogs

How do you organize and manage the program-level

backlog for a program consisting of a set of closely

aligned projects when each project has its own mature

and extensive backlog and these backlogs are structured

differently?

Therefore, create a program-level backlog and link

project backlog items to the program level backlog for

traceability.

✓Existing project

backlogs can remain

with some changes

✓Linking work items

reduce risk of missing

functionality to fulfill a

feature

 Some refactoring of project

backlogs may be needed to

make it clear which user

story should be linked to a

requirement in the parent

backlog

 Reporting should be easier

that for independent

backlogs but may still be

somewhat challenging

Unified

Program

Backlog

How do you organize and manage the backlog for a

program consisting of closely aligned projects when the

projects have no current backlogs or backlogs that are

small and structurally similar?

Therefore, define a single, unified backlog shared by all

the projects within the program, but allow for projects to

apply attributes, tags, and filters that provide them their

own specialized project level view of the contents.

✓Planning within the

program will be easier

with a shared backlog

structure

✓Reporting will be vastly

simplified compared to

having individual

backlogs

 Significant rework may be

needed to merge the current

backlogs into one

 Maintaining the backlog

contents may need

dedicated resources to

ensure it follows a clear

strategy

EuroPLoP '18, July 4–8, 2018, Irsee, Germany L. Hvatum et al.

One thing we should note is that not all experts agree on approach

to managing program backlogs. From our experience, we have

found that there is not a single solution that is optimal for every

program. Which solution to choose depends on the context of the

program and the situation of the individual projects, as well as the

individuals involved and their forms of communication. The key to

choosing a particular approach is to understand the trade-offs and

forces involved, and to be able to select and adjust a solution to the

actual situation at hand. And while one approach may work in the

short term, it may be that as a program evolves, so does its backlog

approach. In the following sections we extract out the essentials to

help with this decision.

In Caroline’s story, her program first chose to let each of the

projects keep their own backlog and then manage the program

planning with a separate program backlog. As the projects got

better at joint planning and execution, the program then evolved to

linking work items from the project-level backlogs to the parent

program backlog. Eventually they decided they were ready for a

single backlog. This storyline helped us illustrate the differences

between the three solutions and the considerations and trade-offs

that are involved in the decisions, but we feel it is a realistic path

for a program that starts off by joining a number of more or less

mature projects. For a program that is up and fully running from its

inception, planning and monitoring the product development

progress would be easier starting with a single backlog that includes

all work items for the entire program.

When evaluating the approach for managing a program

backlog, the decision tree in figure 4 may be helpful. Note that we

have not created this with a path from one solution to another (like

in the story about Caroline), but rather suggest to start by re-asking

the first question if you are finding that your program’s context is

changing.

Figure 4: Decision Tree for Selecting among the Program Product Backlog Patterns

7 Summary

This paper is part of a larger work giving guidance to software

development teams in creating and managing product backlogs.

Earlier papers have covered patterns and pattern sequences on the

project level, while this paper focused on program-level backlogs.

In our previous writing we have experimented with different ways

of illustrating the patterns with a story. In this paper we tried a more

personal approach, following the story through the eyes of the

program Business Analyst, Caroline.

A future paper to be workshopped at PLoP 2018 covers the

remaining patterns we have identified but not yet documented

(REMODEL, RULES, DEFINITIONS).

Once we finish this collection of individual patterns we are then

considering to work all the backlog pattern papers into book form.

A Program Backlog Story with Patterns EuroPLoP '18, July 4–8, 2018, Irsee, Germany

ACKNOWLEDGEMENTS

We are very grateful to our shepherd, Allan Kelly who asked us

many deep and challenging questions. Allan forced us to deal with

the concepts and solutions more thoroughly and made the paper

much better. We would also like to thank our EuroPLoP 2018

workshop participants Michael Weiss, Michael Kopf, Frank Frey,

Andreas Fiesser, and Klaus Marquardt for their valuable feedback

– we have done a number of changes that should improve the clarity

of the writing and better explain the concepts.

To gain a better understanding of software requirements and the

processes around requirements engineering we have consumed a lot

of literature, and we especially appreciate Karl Wiegers’ writings

on Software Requirements [10], Jeff Patton’s work on Story

Mapping [21], the Scrum Guide [11] by Ken Schwaber and Jeff

Sutherland, and Ellen Gottesdiener’s and Mary Gorman’s

workshops and books [5, 6, 7]. As we embarked on covering the

program-level product backlog, we explored the various Scrum of

Scrum models and as well as the program management book [13]

and blogs [22] from Johanna Rothman that were extremely helpful

to us. Thanks again, Johanna, for agreeing to be part of Caroline’s

story, providing your expert opinion and making us think deeply

about having at least three options.

Appendix A The Backlog Patterns Collection

The Magic Backlog patterns collection are patterns that give

practical help on building a good quality product backlog for a

software project or program. The need to structure and manage the

backlog and the associated development workflows with some

degree of formality increases with project size. Note that the

specific context of the Magic Backlog collection of patterns is

backlogs for products of significant scope and complexity, with at

least a three-year time frame for gradually delivering the full

system. These projects have little choice but to use professional

tooling and dedicate time and resources in backlog management.

In two earlier papers [2, 3] we have documented twelve of the

patterns that are part of the Magic Backlog collection. These

patterns are fundamental in that they provide the needed basis for

backlog creation and management. As we explore additional

contexts our patterns collection is gradually growing more

complete. One area we wanted to get deeper into is the additional

demands on the backlog in the case of programs rather than

projects, which is the focus of this paper.

When developing a set of patterns, you realize that there are

patterns in other pattern collections that relate to/work

with/expand/overlap with the patterns in your own collection. This

is great, because it is all part of our body of knowledge, and finding

related patterns often strengthens the trust in your own patterns

being useful in a shared context. But you are also faced with some

challenges:

- The time and effort in finding related patterns and

understanding their interaction with your own. Although

there are some preliminary pattern catalogs, most patterns are

found by researching the contents of papers, books, and

online resources. This is very time consuming and hard to

achieve for pattern authors who are not academics.

- The trade-off between incorporating patterns from other

authors into your writings versus writing your own version of

those patterns. Patterns from other authors may differ in style

and context so although they are relevant they may not fit

well into your collection. They may need some tweaking to

be fully applicable for the type of problem you are

addressing. But rewriting a large number of patterns that are

already well documented is a bit of a waste and will make

your paper/writing bloated.

Table 2 presents the patterns currently identified as part of the

Magic Backlog Patterns collection in short form. For the full

documentation of the first twelve patterns please refer to our two

earlier papers [2, 3].

Table 2: Backlog Patterns Overview

Pattern name Description

FRAME

How do you organize the main structure of the backlog to best provide the benefits of a quality backlog to a

variety of users?

Choose a backlog structure that represents a functional breakdown of your system. Create a hierarchical structure

and link items in this structure in a way that best represents the product to the backlog users. A functional

structure is a model that most likely aligns the understanding for most roles on the development team.

VIEWS

How can the backlog provide representations of a product that is intuitive to a variety of user roles?

Create additional backlog structures to reflect alternate views of the product, for instance an architectural view

and a quality view. Lower level backlog items can be linked both to items in the functional product structure (the

Frame) and to items in the alternate structures. As an example, a User Story can be linked both to a main Feature

(in the Frame) and to a Subsystem (in the architectural view).

EuroPLoP '18, July 4–8, 2018, Irsee, Germany L. Hvatum et al.

Pattern name Description

PEOPLE

How can you represent the various aspects of your system’s users in a backlog?

Create backlog items for personas to cover the dimensions of user profiles, and associate the personas with the

appropriate functional backlog items. Their descriptions are then readily available for any team member with

access to the backlog. Either tag a user story with the name of the persona, or link the persona backlog item to

the functional item.

TALES

How can you improve the understanding of how users interact with the system and the impact on dependencies

between individual user stories?

Include narratives that give a free-form representation of product usage in your backlog. Most likely your

narrative will span multiple user stories, and the natural level to link it in is to the feature level. The actual text

for the narrative is captured in a document which is then uploaded as an attachment to the narrative backlog

item.

USAGE

MODELS

How can you improve the understanding of how individual user stories contribute to a business transaction or

user goal?

Enrich your backlog with models that provide a structured representation of product usage. Each usage model

represents a business transaction or a use of the system as a whole to accomplish a complex task. The purpose of

the model is to improve your understanding of how the system is used and provide a tool to prioritize, plan, and

verify your product deliveries. Possible models are Use Cases and Business Process Models.

PLACEHOLDERS

How can you represent partly unknown functionality in your backlog?

Create temporary backlog items as placeholders to be exchanged for detailed items later, when they have been

elaborated. When the detailed items are created, you will want to replace your placeholder backlog item with the

new detailed items. If you instead keep the placeholder item and link these details to it, you will increase the

levels in your backlog thereby making querying and backlog maintenance that much harder.

PLANS

How are the backlog items associated with your plans for delivery?

Associate the detailed requirements slotted for the next delivery to an entity representing this delivery. Tools

normally associate backlog items with iterations and releases by using a planning-related attribute on backlog

items. Backlog contents can then be filtered based on the values of this attribute to produce lists of items for a

specific release.

CONNECTIONS

How can you explore the diverse contents of your ALM system?

Create connections from other item types to the appropriate requirements backlog items. You want to establish

these connections systematically following a defined model, normally linking tests to requirements, defects to

both requirements and to the tests that detect and/or verify the defect resolution, and change sets to the

requirements they implement or defects that they resolve.

ANSWERS

How can your team gain insights about the product from the backlog?

Create shared queries and reports that can be reused by your team. The primary focus when extracting

information from the backlog should be on the direct development team needs, and not stakeholders. The goal is

for the core team to always know where they are and be able to prioritize their efforts on the most pressing work.

PIPELINE

How can you ensure that you always have some backlog items with sufficient maturity to enter the development

process?

Design a process that creates a steady stream of prepared backlog items. The process works as a pipeline that

steadily refills the backlog with items with enough detail to be meaningful to the developers.

A Program Backlog Story with Patterns EuroPLoP '18, July 4–8, 2018, Irsee, Germany

Pattern name Description

FUNNEL

How and when do you introduce new product ideas into your backlog?

Keep a list of future product ideas to explore that is separate from your Product Backlog. When an idea has been

accepted into the product scope and has matured enough to be represented by epics level items, then introduce

these into your Backlog. Expect that a good portion of product ideas will never be fully developed. Some may be

discarded early after limited investigation either because they cannot be supported by a business case, because

they are too costly to develop, or because they just do not fit into the portfolio.

MAINTENANCE

How do you keep your backlog as a reasonably accurate representation of the planned and implemented product?

Regularly and consistently maintain the backlog contents. Maintaining the backlog is more than adding details

and updating statuses. New contents need to be added as new requirements are elicited. Business priority

changes will adjust the user story sequence/iteration planning. A maturing understanding of the product may

require refactoring of the structure for the Frame and the alternate Views. Objects and attributes that the team

uses for its planning and metrics need to be updated as the items go through the Funnel and the Pipeline and then

through implementation/verification, making sure that structure and attribute changes caused by new material is

consistently applied across the full set of contents.

REMODEL Refactor the backlog to refocus the contents

RULES Who can do what and how in the backlog

DEFINITIONS Sharing definitions to align contents and states of work items

UNIFIED

PRODUCT

BACKLOG

How do you organize and manage the backlog for a program consisting of closely aligned projects when the

projects have no current backlogs or backlogs that are small and structurally similar?

Define a single, unified backlog shared by all the projects within the program, but allow for projects to apply

attributes, tags, and filters that provide them a specialized project level view of the contents. Typically the

program backlog structure has a set of goals, features, and user stories representing the user functionality. Goals

and features are most likely shared between all teams, and there is no need to filter them at the project level. The

items that you will want to view and work with specifically on a project level are the user stories and the defects.

LINKED

PRODUCT

BACKLOGS

How do you organize and manage the program-level backlog for a program consisting of a set of closely aligned

projects when each project has its own mature and extensive backlog and these backlogs are structured

differently?

Create a program-level backlog where you keep individual project backlogs, and link project backlog items to

the program level backlog for traceability. This approach lets the individual projects have their individual

backlogs structured to support their own way of working while still being able to automate ANSWERS on

product completeness and outstanding issues. The typical backlog items to link would be user stories and test

cases in the individual backlogs to the respective features and test suites/test plans in the product level backlog.

PRAGMATIC

PRODUCT

BACKLOGS

How do you manage a program-level view of the work of individual projects with highly different backlog

implementations, so that you can better coordinate their work?

Construct an additional backlog that has only the FRAME representation of the product solution to be built. The

user stories in this program-level backlog are normally on the epic level and will typically be implemented by

several project level user stories. These user stories will belong to multiple projects. Instead of tracking

individual product backlog items, this program-level backlog enables you to manage the work at a higher level,

focusing on major features and sets of related features.

EuroPLoP '18, July 4–8, 2018, Irsee, Germany L. Hvatum et al.

REFERENCES
[1] Lise Hvatum. 2014. “Requirements Elicitation using Business Process

Modeling” in Proceedings of the 21st Conference on Pattern

Languages of Programming (PLoP 2014), ACM Digital Library, New

York, NY.

[2] Lis Hvatum and Rebecca Wirfs-Brock 2015. “Patterns to Build the

Magic Backlog” in Proceedings of the 20th European Conference on

Pattern Languages of Programming (EuroPLoP 2015). ACM Digital

Library, New York, NY.

[3] Rebecca Wirfs-Brock and Lise Hvatum. 2016. “More Patterns for the

Magic Backlog” in Proceedings of the 23rd Conference on Pattern

Languages of Programming (PLoP 2016), ACM Digital Library, New

York, NY.

[4] Ian F. Alexander and Ljerka Beus-Dukic. 2006. Discovering

Requirements: How to Specify Products and Services. Wiley, West

Sussex, England.

[5] Ellen Gottesdiener. 2002. Requirements by Collaboration. Addison-

Wesley.

[6] Ellen Gottesdiener. 2009. The Software Requirements Memory

Jogger. GOAL/QPC.

[7] Ellen Gottesdiener and Mary Gorman. 2012. Discover to Deliver:

Agile Product Planning and Analysis. EBG Consulting.

[8] Rosemary Hasslenhopp and Kathleen B. Hass. 2008. Unearthing

Business Requirements: Elicitation Tools and Techniques.

Management Concepts.

[9] Karl Wiegers. 2009. Software Requirements 2nd Edition. Microsoft

Press.

[10] Karl Wiegers. 2006. More about Software Requirements. Microsoft

Press.

[11] Ken Schwaber and Jeff Sutherland. 2013. The Scrum Guide.

http://www.scrumguides.org/, captured October 31, 2018.

 [12] Scholastic. 2015. The Magic School Bus.

https://www.scholastic.com/magicschoolbus/books/index.htm,

captured October 31, 2018

[13] Johanna Rothman. 2016. Agile and Lean Program Management:

Scaling Collaboration Across the Organization. Practical Ink.

[14] Kurt Bittner, Patricia Kong, and Dave West. 2017. The Nexus

Framework for Scaling Scrum: Continuously Delivering an

Integrated Product with Multiple Scrum Teams. Addison-Wesley.

[15] Craig Larman and Bas Vodde. 2008. Scaling Lean & Agile

Development: Thinking and Organizational Tools for Large-Scale

Scrum. Addison-Wesley

[16] Craig Larman and Bas Vodde. 2016. Large-Scale Scrum: More with

LeSS. Addison-Wesley.

[17] Dean Leffingwell. 2018. SAFe 4.5 Reference Guide: Scaled Agile

Framework for Lean Enterprises (2nd Edition). Addison-Wesley.

[18] Tuckman, B.W. 1965, “Developmental Sequence in Small Groups”,

https://web.archive.org/web/20151129012409/http://openvce.net/sites

/default/files/Tuckman1965DevelopmentalSequence.pdf

[19] Tasktop, https://www.tasktop.com/, captured October 31, 2018.

[20] Henrik Kniberg and Anders Ivarsson. 2012. Scaling Agile @ Spotify

retrieved October 31, 2018 from https://blog.crisp.se/wp-

content/uploads/2012/11/SpotifyScaling.pdf

[21] Jeff Patton. 2014. User Story Mapping: Discover the Whole Story,

Build the Right Product. O’Reilly.

[22] Johanna Rothman, blog Managing Product Development,

https://www.jrothman.com/blog/mpd/, captured October 31, 2018.

http://www.scrumguides.org/

