Modern JavaScript: The Smalltalk
Influence

Talk, by Allen Wirfs-Brock
Mozilla Research Fellow
Project Editor, Ecma-262 (The JavaScript Standard)
@awbjs

Smalltalks 2014
November 7,2014

Cordoba, Argentina

Every Computing Era Has a
Dominant Application Platform

® Corporate Computing Era: IBM Mainframes
® Personal Computing Era: Microsoft/Intel PC

® Ambient Computing Era: The Web is the Platform? [

The Web Is the Platform

HTML

Each Computing Era has had
Canonical Programming Languages

® Corporate Computing Era — COBOL/Fortran

® Personal Computing Era — C/C++ family secma

® Ambient Computing Era — JavaScript ??

Why JavaScript!?
Because “VWorse is Better

The economics of ubiquity.
v' It’s already there
v Widest reach
v Lowest risk
v Write libraries and apps once

v" Single knowledge and skill set

s it even possible to replace it?

Not Just In Web Browsers

http://nodejs.org/

NodeBots Johnny-Five

Robots powered by JavaScript

http://nodebots.io/ https://github.com/rwaldron/johnny-five

Firefox OS

https://developer.mozilla.org/en-US/Firefox OS

- e JOAN '#’n &ﬂaelmfﬂaoa 6faooucrrbu Sy 4

€. .PRODUCED BY:EDWARD LEWIS * DIRECTED BY.JOHNFRANKENHEIMER. = =
__}\'_PABAMOUNT RELEASE P

JavaScript Influences

® Scheme
v First class closures
® Self
v" Obijects with individual behaviors
v" Prototypal Inheritance
® C (Java)
v" Syntax

v’ Corporate Strategy Tax

JavaScript Early history

May 1995, Created in ten days by Brendan Eich at Netscape: “Mocha”
September 1995, shipped in beta of Netscape Navigator 2.0: “LiveScript”
December 1995, Netscape 2.0b3: “JavaScript”

August 1996, JavaScript cloned in Microsoft IE 3.0: “|Script”

1996-1997, Standardization ECMA-262 Ed. |: "ECMAScript” aka ES|I

1999, ES3 — modern JS baseline

What is ECMAScript!

ECMAScript is the name of the
international standard that defines
JavaScript

Developed by Technical Committee 39
(TC-39) of Ecma International

Issued as a Ecma-262 and ISO/IEC 16262
Not part of W3C

ecma

zzzzzzzz

aaaaaaaaaaaaaaaa

Google Mozilla

Microsoft

V8 SpiderMonkey Chakra

Webkit
JSCore

JavaScript Implementations

The ECMAScript Standard Timeline

“Web 2.0” / AJAX

(14 ES 6)’

(2015)

ES.next/“Harmony”

Interoperability
is TC-39’s
highest priority

A detailed and highly
prescriptive algorithmic
specification

Large, non-normative test
suite for implementers

SO test262
http://test262.ecmascript.org/

8.7.2 PutValue (V, W)

1.
2.
3

6.

The following [[Put]] internal method is used by PutValue when Vis a property reference with a primitive base
value. It is called using base as its this value and with property P, value W, and Boolean flag Throw as

If Type(V) is not Reference, throw a ReferenceError exception.
Let basebe the result of calling GetBase(V).
If IsUnresolvableReference(V), then

a. If IsStrictReference(V) is true, then

i. Throw ReferenceError exception.
b. Call the [[Put]] internal method of the global object, passing GetReferencedName(V) for the
property name, W for the value, and false for the Throw flag.

Else if IsPropertyReference(V), then

a. If HasPrimitiveBase(V) is false, then let put be the [[Put]] internal method of base, otherwise let put

be the special [[Put]] internal method defined below.

b. Call the put internal method using baseas its this value, and passing GetReferencedName(V) for the

property name, W for the value, and IsStrictReference(V) for the Throw flag.
Else base must be a reference whose base is an environment record. So,

a. Call the SetMutableBinding (10.2.1) concrete method of basg passing GetReferencedName(V), W,

and IsStrictReference(V) as arguments.
Return.

arguments. The following steps are taken:

1.
2.

w

Let Obe ToObject(base).
If the result of calling the [[CanPut]] internal method of O with argument Pis false, then
a. If Throwis true, then throw a TypeError exception.
b. Else return.
Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
If IsDataDescriptor(ownDesc) is true, then
a. If Throwis true, then throw a TypeError exception.
b. Else return.
Let descbe the result of calling the [[GetProperty]] internal method of O with argument P. This may be
either an own or inherited accessor property descriptor or an inherited data property descriptor.
If IsAccessorDescriptor(desc) is true, then
a. Let setter be desc.[[Set]] (see 8.10) which cannot be undefined.
b. Call the [[Call]] internal method of setter providing base as the this value and an argument list
containing only W.
Else, this is a request to create an own property on the transient object O
a. If Throwis true, then throw a TypeError exception.

Things TC-39 focused on for ES 6

® Modularity

® Better Abstraction Capability
® Better functional programming support
® Better OO Support

® Expressiveness

® Things that nobody else can do

What Kind of Language Is
JavaScript!?

® Object-oriented? N ey

® Class-based?

® Functional?

® Prototype-based?
® Permissive?

® Secure!?

Photo by crazybarefootpoet @ flickr (CC BY-NC-SA 2.0)

Some ECMAScript 6 Enhancements

More concise and expressive syntax
Modules and Sanding-boxing

Class Declarations

Block scoped declarations

Control abstraction via iterators and generators
Promises

String interpolation/Internal DSL support
Subclassable built-ins

Binary Array Objects with Array methods
Built-in hash Maps and Sets + weak variants.
More built-in Math and String functions

Improved Unicode support
https://github.com/lukehoban/eséfeatures

ecma

ECMA-262

Draft
ECMAScript Language
Specification

ES 5.1: 250 pages
ES 6 draft: 651 pages

Classic Smalltalk Objects

- = - =

- ———>

Instance Objects

—)
-

-—
~—>

Class Objects

Method Dictionaries

Compiled
Methods

VSE Smalltalk Obijects

e — e - >
- - > - - =
‘ T
e — e - >
— — ~>
, o . Compiled
Instance Objects Method Dictionaries P

Methods Class Obijects

VSE Smalltalk Objects +
Per-instance methods

Compiled
Instance Objects Method Dictionaries Methods Class Objects

JavaScript Object Model

_______________ 5
A
Prototype Link
=z - ———-TT-TTTT >
~~~~~~~~~ >
Objects Methods

(Function Objects)



Creating a JavaScript object

var o = new Object;

o.counter = 0;

o.incr = function (n) {
this.o+=n;

%

o.toString = function() {
return

this.counter.toString();

5

var o = {

counter: 0,

incr: function (n) {
this.o+=n;

b

toString: function() {
return

this.counter.toString();

var o = {
counter: 0,
incr (n) {
this.o+=n;
b
toString () {
return
this.counter.toString();

Imperatively

Object Literal

Object Literal (ES6)



Or, Define a Factory

function CounterFactory (start) {
return {
counter: start,
incr: function (n) {
this.counter += n;
h
toString: function() {
return this.counter.toString();

}
}

5

var o = CounterFactor(0);



Each object created this way

has its own distinct methods

var ol=CounterFactory(0)

Y d

~

,‘II counter:
7

Y4

~

incr

Fi_—e
~

A

toString

Properties

var o2=CounterFactory(0)

Y d

,‘II counter:
7

Y4

~

incr

Fi_—e
~
~

A

toString

Properties




Or, Define a Factory plus a prototype

var counterPrototype = {
incr: function (n) {
this.counter += n;
b
toString: function() {
return this.counter.toString();

}
¢
function CounterFactory2 (start) {

var newObj = Object.create(counterPrototype);

newQObj.counter = start;

return newObj;

5




Instance objects share methods

via prototype

CounterPrototype

- - — = >

counter:

var ol=CounterFactory2(0)

Properties

< — — — = incr
~
~
~ \)
toString
Methods

- — — >

counter:

var o2=CounterFactory2(0)

Properties



The Constructor Pattern

function Counter(start) {
this.counter = start;

Counter.prototype.incr = function (n) {this.counter += n};

Counter.prototype. toString = function() {return this.counter.toString()};

var o = new Counter (0);



Instance objects share methods

via prototype

Counter
€ — = = - - e — - >
CounterPrototype ~
NS ~
\ .
\ . = INCr

N al : Constructor

toString Functions

Methods

—— == counter: - —==31 counter:

var ol=new Counter(0)

var o2=new Counter (0)

Properties Properties



Constructor Pattern with “subclassing”

//define Employee as a subclass of Person
function Employee(name,id) {

Person.call(this, name);

this.id = id;
}
Employee.prototype=Obiject.create(Person.prototype);
Employee.prototype,.constructor = Employee;
Employee. proto = Person;
Employee.withld= function(id) {...};
Employee.prototype.hire = function() {...};
Employee.prototype.fire = function () {...};



JavaScript “Constructor” Pattern

Methods

Instance Objects Prototype Objects (Function Objects) Constructor Functions



VSE Smalltalk Objects

e — e - >
- - =
‘ T
e — e - >
- =D
===
f
, o . Compiled
Instance Objects Method Dictionaries P

Methods Class Obijects



Classes in ES 6

//ES6:. define Employee as subclass of Person

class Employee extends Person {
constructor (name, id) {
super (name) ;
this.id = 1id;
¥
hire () {..}
fire () {..}
static withId(id) {..}



Classes Today vs ES 6

//ES5 define Employee as subclass of Person

function Employee(name,id) {
Person.call(name) ;
this.id = id;

}

Employee.prototype=0bject.create(Person.prototype);

Object.defineProperty(Employee.prototype, “constructor”,
{value:Employee,enumerable:false,configurable: true});

Employee. proto__ = Person;

Employee.withId = function (id) {..}

Employee.prototype.hire = function() {..};

Employee.prototype.fire = function () {..};

//ES6 define Employee as subclass of Person

class Employee extends Person {
constructor (name,id) {
super (name) ;
this.id = 1id;
}
hire () {..}
fire () {..}
static withId (id) {..}

Both create the same object structure




Arrow Functions

var self = this;
var pop = peeps.filter(function(person) {
return person.age>self.age});

Becomes:

var pop = peeps.filter(person => person.age>this.age);



But Arrow Functions Are Not
Quite Smalltalk Blocks

® Return returns from the arrow function rather than the
surrounding method.

® There was consider interest in: “block lambdas””:

peeps.filter ({|person|
if (person.age>100)return;
person.age>this.agey});

® But too many semantics pitfalls with break/continue/return
statements.



ES6 Modules

[[------ lib.js ------
export const sqrt = Math.sqrt;
export function square(x) {
return X * x;
}
export function diag(x, y) {
return sqrt(square(x) + square(y));

}
[[-=mm-- main.js ------ [[-=mm-- main.js ------
import { square, diag } from 'lib"; | o import * as lib from 'lib';
console.log(square(l1));// 121 console.log(lib.square(l1));// 121
console.log(diag(4, 3));// 5 console.log(lib.diag(4, 3));// 5




JavaScript Performance 2008

SunSpider (Vista SPI)

Time (ms) - Smaller is better

Milliseconds

0

B Chromebl [ Safari4.0 I Firefox 3.1 (no tracing) B Firefox 3.0.1
B safari3.12 B Opera 9.5.2 B Esb2 B E7

Sept. 2008 http://ejohn.org/blog/javascript-performance-rundown/




JavaScript Performance 2013

SunSpider 1.0.2

lower is better

200.0 186.2

176.6 178.0

180.0
160.0

140.0 Nk 131.4
Milliseconds 120.0
100.0
80.0
60.0
40.0
20.0
0.0

IE 11 Desktop IE 11 App Chrome 30 Firefox 24 Opera 17

http://www.7tutorials.com/browser-wars-does-internet-explorer-| | -deliver-browsing-performance




How did JavaScript get fast

® Smalltalk-inspired JIT technology

® Restarted the dynamic language VM innovation that stalled
when commercial Smalltalks became legacy

v" Dynamic specialization based on
v Runtime monitoring/tracing
v" Driving classic optimization algorithms

v" Multiple execution strategies

Large teams / multi-year development projects




A Modern JS Engine

Run
and
profile Bail Run
Run O /~\
O Baseline- lon- lon-
Parse Generate , compile | Baseline- | pyjid compile lon-
Characters [—» AST —— | Bytecode —— | compiled |——» MIR‘ compiled
~— code code

—

T—__  Odin-build

Mozilla SpiderMonkey circa 2014

https://blog.mozilla.org/luke/2014/01/14/asm-js-aot-compilation-and-startup-performance/




asm.js — C level Performance

Subset of JavaScript that
approximates a classic Von
Neumann computer

asm.js code executes
identically on any JavaScript
engine

But a JS engine may recognize
asm.js code and optimize for
it.

asmjs.org

https://wiki.mozilla.org/
|avascript:SpiderMonkey:OdinMonkey

asm.js
Working Draft — 17 March 2013

Latest version:

hitp.Yasmis.arg’speclaiest’

Edltors:
Dawvid Herman, Mazilla, <cherman@mozila.comrs
Lubos Wagnar, Mozila, <lukeSmozillacamss
Alor Zakai, Mozilla, <azakai@@mazilla.coms

Abstract

This specification cefires 88M.|8, a sirict subset of JavaScript that can be used as a low-evel, efficient target language for
campilars. This sublanguage effectively describes a sate virlual machine far memaonge-ursaie larguages Box Cor Ces A
camibinatian of stafic and dynamic valication allews JavaScript engines o employ an shead-cf-Sime (AOT) aptimizing
campilation stratogy for valid asm.js code.

Status

This specification is warking towards a cardidate draft for asm. s warsion 1. A protobype implementation of an cptimizing
backend for asm.js is in progress for Mazilla's SpiderMonkey engina.

Table of Contents
1 Iniroduction

2 Types

2.1 Value Types
2.1.1 woid
2.1.2 doutle
2.1.3 signed
2.1.4 ursigned
2.9.5 it
2.1.8 flomum
2.1.7 intish
2.1.8 doublish
2.1.5 urknown




C++ to JavaScript

C++ LLVM Better JEVENda] )
source Bitcode LLVM (asm.js)

code Bitcode sourcc "ﬂ JavaScript

code (asm.js)
source
code JavaScript
Engine
(asm.js aware)

Compiler Optimizer
Front-end

Development Time App Run Time



B clang 3.2
B firefox
B chrome
bullet ;

lua-scimark a

Run time normalized to clang 3.2 {lower is better)

people.moilla.org/~lwagner/gdc-pres/gdc-2014.html



Unity game engine heading to the browser

without plug-ins

WebGL and asm.js offer an alternative to the Web player.

by Peter Bright - Mar 18 2014, 11:15am PDT

Mozilla and Unity today announced that Unity 5, to be
released later this year, will include an early access
preview of a version of the 3D engine that supports
WebGL and asm.js, enabling plug-in-free access to the
Web.

The Unity game engine has found huge success among
game developers as it can target Windows, iOS,
Android, OS X, Linux, PlayStation 3, Xbox 360, and
more. Unity games can also be deployed on the Web,
but this function currently uses a browser plug-in, the
Unity Web Player. The early access will remove the
need for the plug-in. Initially, it will only support desktop
Firefox and desktop Chrome, due to their performance
and (in Firefox's case) explicit support for the high
performance asm.js subset.

Mozilla and Unity Bring Unity Game Engine o WebGL

;&> 14

00

A hiineh of Linitvy Aaameae riinnina in the hrawear with Wah|

6DC 2014 .

Gallery: The experimental controllers and
retro rarities of GDC 2014

Goat Simulator preview: Goat of the year

Steam Controller prototype version 2
impressions: Buttoned up

Project Morpheus impressions: Sony proves
it’s serious about virtual reality

Oculus Rift “DK2” eyes-on: Finally, VR without
the Ocu-latency

View all...

MAR

12+ Mozilla and Epic Preview
Unreal Engine 4 Running in
Firefox

w Mozilla | ]

Today, Epic Games and Mozilla are demonstrating how the Web is continuing to evolve as a
powerful platform for gaming by providing a sneak peek of Epic’s Soul and Swing Ninja demos,
running in Firefox at near-native speeds. This video is the first glimpse of Unreal Engine 4
running on the Web without plugins.

First Glimpse of Epic's Unreal Engine 4 Running...

Mozilla and Epic Games have showed the power of the Web as a platform for gaming by
porting Unreal Engine 3 to the Web and showcasing Epic Citadel, using asm.js, a supercharged
subset of JavaScript pioneered by Mozilla. In less than 12 months, optimizations have increased
the performance of Web applications using asm.js from 40% to within 67% of native, and we
expect it to get even faster. This performance opens up new opportunities for giving users an
astonishing and delightful experience, from within their choice of Web browser. Any modern
browser can run asm.js content, but specific optimizations currently present only in Firefox,
ensure the most consistent and smooth experience.



Why not a web bytecode engine!
asm.js code is just YAIR

(Yet Another Intermediate Representation)

R StrlenW@ [F@Q D @
_ . r,in
ptr = ptr|O; | int

}

var curr = 0; label loop
curr = ptr; index8 indx, hgap, curr
while (MEM8[cu
curr = (curr + @ ea:gi
UI’I"
return (curr - ptr)|0; Igacl;t; Lc;c:tp

sub tmp, curr, ptr
return sub



ECMAScript Resources

The Official ECMAScript 5.1 Specification (HTML)

http://www.ecma-international.org/ecma-262/5.1/

ES6 Specification Drafts

http://wiki.ecmascript.org/doku.php?id=harmony:specification drafts ecma

ES6 Feature Summary

https://github.com/lukehoban/es6features Dratt ECMA-262

ES6 translators and tools Vraff Ecmascript Langusge

https://github.com/addyosmani/esé-tools

The TC-39 ECMAScript Design Discussion Mail List

https://mail.mozilla.org/listinfo/es-discuss

Test262: The Offical ECMAScript Implementation Test Suite

http://test262.ecmascript.org/

Please report bugs

http://bugs.ecmascript.org







