
A Declarative Model of Smalltalk
Programs

Allen Wirfs-Brock
ParcPlace-Digitalk

allen@parcplace.com

Collaborators

● Co-authors
Brian Wilkerson
Juanita Ewing
Harold Williams

● Other Key Contributors
Steve Messick John Wiegand
Dale Henrichs Carl McConnell
Pat Caudill Tim O’Connor

What is Smalltalk?

● The system software of the “Interim
Dynabook”

● “The purpose of the Smalltalk project is
to provide computer support for the
creative spirit in everyone”

➈Ingalls, 1981
● “COBOL for the 90’s”?

Evolution of Smalltalk

● Smalltalk was originally:
❼A programming language
❼A development environment
❼A GUI environment
❼An operating system

● all rolled into one...

Smalltalk has changed and
evolved over 25 years
● lost control of hardware
● lost control of screen
● adapted to standard operating systems

and GUI environment
● learned to inter-operate with languages,

databases, and communications
protocols

Smalltalk Today

● A comprehensive object-oriented
programming language used to build
complex, mission critical, enterprise and
technical applications.

● The benchmark against which all other
object-orient programming languages
and development environments are
compared.

A Declarative Model of
Smalltalk Programs

How Smalltalk continues to evolved to “be
more normal while remaining special”

Smalltalk: Strengths

● Pure Object-oriented language
● Rich class library
● Incremental development
● High programmer productivity
● It’s a pleasure to work with

... and Weaknesses

● Size
● Performance (?)
● Application Delivery
● Maintenance

Review:The Smalltalk Image

Review:The Smalltalk Image

Objects

Review:The Smalltalk Image

Messages

Review:The Smalltalk Image

General Purpose
Classes

Review:The Smalltalk Image

Development Tools

Review:The Smalltalk Image

Review:The Smalltalk Image

Application

Application Delivery: Stripping

Application

Smalltalk Maintenance: Cloning

Cloning

Defining Smalltalk Programs

● Messages are sent whose side-effects are
the creation of new Program Elements
❼Classes
❼Methods
❼Global Variables
❼Pools and Pool Variables

Defining Smalltalk Programs

Creating Program Elements

● Interactive using browsers
● Batched using a file containing a

sequences to expressions to evaluate
❼“File-in” Format

Defining Classes

ApplicationModel
subclass: #UIPalette
instanceVariableNames:

‘activeSpecs toolName’
classVariableNames: ‘PaletteOffsets’
poolDictionaries: ‘‘ !

UIPalette class
instanceVariableNames: ‘selectIcon’!

Defining Methods

!UIPalette methods!

makeSticky
UIPainterController modelsSticky

ifFalse: [UIPainterController modelsSticky: true] !

toolName
^toolName ! !

Global Variables

● Definition:
Smalltalk at:#TaskTable put: nil !

● Reference:
TaskTable == nil

 ifTrue:[TaskTable :=Dictionary new] !

Defining Variable Pools

| p |
p := Dictionary new.
p at: ‘Red’ put: Color red.
p at: ‘Blue’ put: Color blue.
p at: ‘Green’ put: Color green.
Smalltalk at: #ColorConstants put: p !

Traditional Smalltalk uses an
imperative model of program
definition.
● An imperative model is a description of

an entity that consists of a set of
commands that when executed in
sequence will reproduce the entity.

An Imperative Definition of a
Geometric Figure

An Imperative Definition of a
Geometric Figure
● Move the pen 5 units to the right

An Imperative Definition of a
Geometric Figure
● Move the pen 5 units to the right
● Move the pen 5 units upwards

An Imperative Definition of a
Geometric Figure
● Move the pen 5 units to the right
● Move the pen 5 units upwards
● Move the pen 5 units to the left

An Imperative Definition of a
Geometric Figure
● Move the pen 5 units to the right
● Move the pen 5 units upwards
● Move the pen 5 units to the left
● Move the pen 5 units downward

An Imperative Definition of a
Geometric Figure
● Move the pen 5 units to the right
● Move the pen 5 units upwards
● Move the pen 5 units to the left
● Move the pen 5 units downward

Declarative Models

● A declarative model is a description of
an entity that consists of a set of
existential statements that enumerate the
distinguishing characteristics of the
entity.

A Declarative Definition of the
Geometric Figure
● A square with sides 5 units in length

with green lines 0.1 units thick.

Some Observations
● Imperative Models

❼Describes”how to build it”
❼Constrains the implementation
❼Have initial state dependencies
❼Difficult to analyze

Some Observations
● Declarative Models

❼Describes “what it is”
❼Implementation independent
❼No state dependencies
❼Direct analysis

Many issues arise from
Smalltalk’s imperative model of
program definition.

Issues: Software Engineering

● What is the program?
● Change management.
● Change merging.
● Initial state dependencies.
● Pre-load, post-load and unload actions.

Issues: Software Maintenance

● Can the program be re-generated?
● What is its initial state?
● Class libraries and development

environment version dependencies.

Issues: Standardization

● What is an integral part of the Smalltalk
language that all implementations must
support?

● In what ways are implementations
allowed to vary?

Pool implementation example

| p |
p := Dictionary new.
p at: ‘Red’ put: Color red.
p at: ‘Blue’ put: Color blue.
p at: ‘Green’ put: Color green.
Smalltalk at: #ColorConstants put: p !

Issues: Complexity

● Too many implementation artifacts are
“in the programmer’s face”
❼Metaclass hierarchy
❼CompiledMethods
❼Method Dictionaries
❼Pool Dictionaries
❼Symbols
❼Development Environment classes

Declarative Specification of
Programs
● “Normal” programming language use a

declarative model:
❼FORTRAN
❼Pascal
❼C
❼COBOL

● Could a declarative model be used for
Smalltalk programs?

Should a Declarative Model be
used for Smalltalk
“Unfortunately, to describe a system on

paper, a noninteractive linear mode of
presentation is needed. To this end, a
basic class template is provided...”

➈From “The Smalltalk-80 System”, The Xerox
Learning Research Group, Byte, August 1981:

The Smalltalk-80 Class Template

class name

instance variable names

methods

Point

x y

x: xCoordinate y: yCoordinate
x := xCoordinate.
y := yCoordinate

+ aPoint |sumX sumY|
sumX := x + aPoint x.
sumY := y + aPoint y.
^Point newX: sumX Y: sumY

Making Smalltalk Declarative

● Identify all language elements and
define syntax

● Define static and runtime semantics
● Map onto existing and future

implementations

Smalltalk Execution Environment

● Objects - state+behavior
❼Described by class definitions
❼Statically created

➈Literals
➈Class objects

❼Dynamically created
● Variables - store object references
● Thread(s) of execution

Smalltalk Language Elements

● A Smalltalk Program consists of
❼Class and method definitions
❼Global Variable Definitions
❼Pool Definitions
❼An initialization sequence

Abstract versus Concrete Syntax

● We choose to only define an abstract
syntax for Smalltalk program and to not
require single linear concrete syntax.

● The abstract syntax provides a means for
describing all elements of a Smalltalk
program.

Class Definition: Syntax

<class definition> ::=
<class name> [<superclass name>]

[<instance variables>]
[<class instance variables>]
[<class variables>]
[<imported pools>]
[<instance methods>]
[<class methods>]
[<class initializer>]

Class Definition:
Semantics

❼<class name> is defined as a global name
❼The execution time binding of <class name>

is to the class object
❼The binding of <class name> is fixed
❼The behavior of instances consists of the

instance behavior in the class definition
named <superclass name> augmented by
the <instance methods> ...

❼etc.

Class Definition:
Static Semantics

● Errors:
❼<class name> is duplicately defined
❼<superclass name> is not defined as a <class

name>
❼<superclass name> and <class name> are

the same name
❼<superclass name> is the name of a class

that inherits from this class
❼etc.

Class Definition:
Implementation Options

● Representation and location of methods
● Metaclasses?
● Inheritance (lookup or copy down?)
● Representation of message selectors
● etc.

Global and Pool Definitions

● <global definition> ::=
<global variable names>
[<variable initializer>]

● <pool definition> ::= <pool name>
<pool variable definition>*

<pool variable definition> ::=
< pool variable names>
[<variable initializer>]

Smalltalk Programs

● <Smalltalk program> ::= <program element>+
<program element> ::= <class definition> |

 <global definition> |
 <pool definition>

● Element ordering determines execution time
initialization order.

Unnecessary Implementation
Assumptions
● A “system dictionary” named Smalltalk

exists
● All class, global variables, and pools are

elements of the system dictionary
● Pools are implemented using class

Dictionary
● Global and pool variables are

implemented as instances of class
Association

More Unnecessary Assumptions

● Methods are objects
● Methods are stored in a method

dictionary
● An object’s behavior is implemented by

a class object
● Each class has an associated metaclass
● The definition of a program may

dynamically change through reflection

Smalltalk Standardization

● X3J20 - The “ANSI Smalltalk” committee
● Targeted Completion 1997
● Will use the “declarative model” of

Smalltalk programs

Program Interchange

● X3J20 is defined in terms of an abstract
declarative program syntax

● For interchange purposes it defines a
concrete, textual, interchange format

● The abstract syntax could also be the
basis for an implementation
independent, binary, interchange format

What about Reflection?

● Reflection - the ability of a program to
dynamically inspect (and modify?) its
own implementation.

● Smalltalk was reflective before before
any of us know what “reflection” was!

Reflection versus the Declarative
Model
● The imperative model of Smalltalk is

inherently reflective.
● Reflection occurs dynamically as a

program executes.
● The declarative model describes a

program staticly prior to execution.
● The declarative model neither requires

nor precludes reflection.

Reflection: No change required
● An implementation may continue to use

traditional object models to represent the
implementation artifacts of a Smalltalk
program
❼Metaclasses
❼Method Dictionaries
❼Variable Dictionaries
❼etc.

● They may be reflectively manipulated

Reflection: Doing Better

● Traditional Smalltalk reflection is
inherently implementation dependent
❼An object model of the implementation

artifacts
● Why not objectify the abstract

declarative description of a Smalltalk
program?

An Abstract Object Model for
Smalltalk Programs

ClassDefinition

PoolDefinition

ProgramDefinition

ProgramAggragate

InstanceVariable ClassVariable

PoolVariable GlobalVariable

VariableDefinition

InitializerDefinition

MethodDefinition

CodeDefinition

ProgramElement

ProgramEntity

Improving the Development
Environment
● The primary use of reflection in

Smalltalk has been the implementation
of the Smalltalk development
environment.

● What happens when we apply the
declarative program model for reflection
within the development environment.

Smalltalk Image Program Model

Runtime Program Model

Tradition Smalltalk Tools
Manipulate the Runtime Model

Runtime Program Model

collections
numbers
files

Array
Bag
Dictionary
OrderedCollection

initialization
accessing
enumerating
private

collect:
detect:
do:
select::

aMethod:: arg

self do something useful

Alternative Program Object Models

Abstract Program Model

Runtime Program Model

Better Smalltalk Tools
Manipulate the Abstract Model

Abstract Program Model

Runtime Program Model

collections
numbers
files

Array
Bag
Dictionary
OrderedCollection

initialization
accessing
enumerating
private

collect:
detect:
do:
select::

aMethod:: arg

self do something useful

Multiple Abstract Program
Models

Runtime Program Model

collections
numbers
files

Array
Bag
Dictionary
OrderedCollection

initialization
accessing
enumerating
private

collect:
detect:
do:
select::

aMethod:: arg

self do something useful

Another Abstract
Program Model

Abstract Program Model

collections
numbers
files

Array
Bag
Dictionary
OrderedCollection

initialization
accessing
enumerating
private

collect:
detect:
do:
select::

aMethod:: arg

self do something useful

Making It Executable

Runtime Program Model

collections
numbers
files

Array
Bag
Dictionary
OrderedCollection

initialization
accessing
enumerating
private

collect:
detect:
do:
select::

aMethod:: arg

self do something useful

Another Abstract
Program Model

Abstract Program Model

collections
numbers
files

Array
Bag
Dictionary
OrderedCollection

initialization
accessing
enumerating
private

collect:
detect:
do:
select::

aMethod:: arg

self do something useful
Another Runtime
Program Model

A New Architecture for Smalltalk
Development

Abstract
Program Model

collections
numbers
files

Array
Bag
Dictionary
OrderedCollection

initialization
accessing
enumerating
private

collect:
detect:
do:
select::

aMethod:: arg

self do something useful

Runtime
Program Model

Development Environment “Image”

Target Program “Image”

New Architecture Characteristics

● Users construct a declarative definition
of a Smalltalk program instead of editing
an image.
❼Programs are completely specified
❼Reproducible from source code
❼Non-loadable programs are editable
❼No “stripping” required for delivery

New Architecture Characteristics

● Target program class library is separate
and distinct from the class library used
to implement the development
environment.
❼Target program changes do not impact

development tools.
❼Development tool changes do not impact

target program
❼Release and/or vendor class library

decoupling

New Architecture Characteristics

● Simplified Class library - No tools or
runtime implementation classes visible
to application programmer.

● Traditional Smalltalk fully incremental,
interactive program creation, testing,
and debugging.

● Target program failure will not crash
development environment

Is the Architecture Feasible?

Is the Architecture Feasible?
● “Team/V” in production since 1993

❼Declarative program specification
❼Abstract Program Object Model

Abstract Program Model

Runtime Program Model

collections
numbers
files

Array
Bag
Dictionary
OrderedCollection

initialization
accessing
enumerating
private

collect:
detect:
do:
select::

aMethod:: arg

self do something useful

Abstract
Program Model

collections
numbers
files

Array
Bag
Dictionary
OrderedCollection

initialization
accessing
enumerating
private

collect:
detect:
do:
select::

aMethod:: arg

self do something useful

Runtime
Program Model

Development Environment “Image”

Target Program “Image”

Is the Architecture Feasible?
● “Firewall” prototype operational

❼Target program fully decoupled from
development tools

❼Target program executes in separate process.
❼Full incremental programming and

debugging

“Firewall” Accomplishments

● Very small application program images
❼“3+4” image < 10K
❼Utilities & applets 30K - 200k
❼Full GUI Applications 500k-2m

● “Digitalk” Smalltalk application edited
in a “ParcPlace” Smalltalk hosted
development environment

“Firewall” Accomplishments

● First complete regeneration of a “Xerox
Smalltalk” system from source code
since 1976?

Conclusions

● The adoption of the declarative model is
the latest example of Smalltalk’s ability
to evolve and adapt.

Conclusions

● Smalltalk will continue to be the
benchmark against which other object-
oriented programming language and
environments are measured.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

