
Don’t Break the Web: �
Scaling up JavaScript for the Next 30 Years�

�
�

Allen Wirfs-Brock�
Project Editor, ECMAScript 2015�

@awbjs

Details matter when evolving the �
world’s most widely used�

programming language

1995: Brendan Eich creates
JavaScript !

1995: Brendan Eich creates
JavaScript !

•  May 1995, Created in ten days by Brendan Eich at Netscape: “Mocha”

•  September 1995, shipped in beta of Netscape Navigator 2.0:
“LiveScript”

•  December 1995, Netscape 2.0b3: “JavaScript”

“The audience for this language, we
hoped, would consist of HTML
authors who had some programming
experience”

“I'd like to see it remain small, but
become ubiquitous on the web as the
favored way of gluing HTML elements
and actions on them together with
Java applets and other components.”

“So we saw a need for an
interpreted-from-source,
dynamically typed language with
which one could orchestrate the
interactions among HTML form
elements and links, Java applets,
plug-ins, and other components.”

“...make pages a little smarter and
more live -- for instance, make a
click on a link load a different URL
depending on the time of day”

Brendan Eich Interview, Early 1996

http://www.javaworld.com/article/2077132/learn-java/bending-over-backward-to-make-javascript-work-on-14-platforms.html

Things JavaScript 1.0 didn’t have
object literals

function expression

most string methods, array methods, etc.

regular expressions

try/catch exception handling

> [1]+[2]-[3]
9

•  May 1995, Created in ten days by Brendan Eich at Netscape: “Mocha”

•  September 1995, shipped in beta of Netscape Navigator 2.0:
“LiveScript”

•  December 1995, Netscape 2.0b3: “JavaScript”

•  August 1996, JavaScript cloned in Microsoft IE 3.0: “JScript”

Multiple independently created client browsers

All expected to meaningfully render the same content and work with all
web applications

Browser Interoperability

Crockford’s observation

On the web, the end-user chooses
the deployment compiler.

Browser Game Theory

New entrants must conform

Breaking changes (fixes) will drive away users

Innovation is wasteful, if only available in one
browser

“First browser to try something new may lose
market share, which will force it to go back to
the bad old ways”

•  May 1995, Created in ten days by Brendan Eich at Netscape: “Mocha”

•  September 1995, shipped in beta of Netscape Navigator 2.0:
“LiveScript”

•  December 1995, Netscape 2.0b3: “JavaScript”

•  August 1996, JavaScript cloned in Microsoft IE 3.0: “JScript”

•  1996-1997, Standardization ECMA-262 Ed. 1: ”ECMAScript” aka ES1

•  1999, ES3 − modern JS baseline

1997:It’s Time for a Standard !

What is ECMAScript?
•  ECMAScript is the name of the

international standard that defines the
JavaScript programming language

•  Developed by Technical Committee 39
(TC-39) of Ecma International

•  Issued as document ECMA-262

•  Not part of W3C
 Google Mozilla Microsoft Webkit �
 V8 SpiderMonkey Chakra JSCore

 JavaScript Implementations

Details really
matter in an

interoperability
specification

A detailed and highly prescriptive
algorithmic specification

Traditional under-specification
(“implementation dependent”) is
bad for interoperability

Large, non-normative test suite for
implementers

ES 2015�
“ES6”

ES 5.1�
(2011)

ES 5�
(2009)

ES 3�
(1999)

ES 2�
(1998)

ES 1 �
(1997)

The ECMAScript Standard Timeline

JS Performance �
Revolution

“ES4”
E4X�

“ES4”

“Web 2.0” / AJAX

ES 2016...

Rich Web Applications
Complex Frameworks
Escaping the Browser

TC-39 isn’t like either of these

Things TC-39 focused on for ES 2015
Modularity

Better Abstraction Capability

Better functional programming support

Better OO Support

Expressiveness and Clarity

Better Compilation Target

Things that nobody else can do

Taking a long term perspective

What Kind of Language Is JavaScript?

Functional?

Object-oriented?

Class-based?

Prototype-based?

Permissive?

Secure?

Photo by crazybarefootpoet @ flickr (CC BY-NC-SA 2.0)

http://www.worldwidewebsize.com/ https://w3techs.com/technologies/history_overview/client_side_language/all

Usage of client-side programming language for websitesNumber of web pages in Google’s index

The Web is Huge

Over 45 billion web pages Over 94% of web sites us JavaScript

Web developers do unexpected things

http://www.flickr.com/photos/benledbetter-architect/sets/72157594338948430/

A common meta-tweet

ES6 <insert some feature> is based

on <insert some other language>.

Brendan Eich 2016: Sun (represented by
Bill Joy) would not have accepted [in 1995]
classes, as in Java’s nominal OO types, in JS.
They wanted a sidekick language that did
not include too much from Java itself.
https://www.quora.com/Why-didnt-JavaScript-adopt-the-object-oriented-model-adopted-by-C++-Java-when-it-was-
designed/answer/Richard-Eng-1/comment/25744373#

What language had the most influence on the
design of ECMAScript class declarations?

a)  Java

b)  C++

c)  Ruby

d)  Dart

e)  Smalltalk

f)  Something else: _____________________JavaScript✓

JavaScript Class “Constructor” Pattern

Instance Objects Prototype Objects
Methods�

(Function Objects) Constructor Functions

DategetMonth()

2 Feb 2017

“Person”

“Employee”

Classes ES5 vs ES 2015
//ES5 define Employee as subclass of Person

function Employee(name,id) {
 Person.call(name);
 this.id = id;
}
Employee.prototype=Object.create(Person.prototype);
Object.defineProperty(Employee.prototype, “constructor”,
 {value:Employee,enumerable:false,configurable: true});
Employee.__proto__ = Person;
Employee.withId = function (id) {…}
Employee.prototype.hire = function() {…};
Employee.prototype.fire = function () {…};

…

Both create the same object structure

//ES2015 define Employee as subclass of Person

class Employee extends Person {
 constructor(name,id) {
 super(name);
 this.id = id;
 }
 hire () {…}
 fire () {…}
 static withId (id) {…}
 …
}

Interconnections

Interactions

http://johncarlosbaez.wordpress.com/2013/08/05/quantum-network-theory-part-1/

http://johncarlosbaez.wordpress.com/2013/08/05/quantum-network-theory-part-1/

http://johncarlosbaez.wordpress.com/2013/08/05/quantum-network-theory-part-1/

http://johncarlosbaez.wordpress.com/2013/08/05/quantum-network-theory-part-1/

The closure in loop problem

function f(x) {
 for (var p in x) {

 var v = doSomething(x, p);
 obj.addCallback(
 function(args){
 handle(v, p, args)}
);

 }
}
…
obj.runCallbacks();

Every callback uses the �
same value for v and p

var hoisting causes the problem

function f(x) {
 var p;
 var v;
 for (var p in x) {

 var v = doSomething(x, p);
 obj.setCallback(
 function(args){
 handle(v, p, args)}
);

 }
}
…
obj.runCallbacks();

ES2015 could not redefine the
scoping of var

function f(x) {
 for (var p in x) {

 var v = doSomething(x, p);
 if (v === somethingSpecial) break;
 }
 if (v === somethingSpecial) ...
}

Fixing closure in loop problem: �
Add a new block scoped declaration

function f(x) {
 for (var let p in x) {

 var let v = doSomething(x, p);
 obj.setCallback(
 function(args){
 handle(v, p, args)
)};

 }
}
…
obj.runCallbacks();

Every callback uses a�
distinct binding for v and p

Other local scoping WTFs

function f(x,x) {
 var x;
 for (var x in obj) {

 if (obj[x] === somethingSpecial) {
 var x = 0;
 ...
 }
 }
 function x() { doSomething()}
 x();
}

Want to avoid new let WTFs

//duplicate declarations
function f() {
 let x = 1;
 let x = 2;
}

//duplicate let and var
function g() {
 let x = 1;
 var x = 2;
}

//duplicate let and parameter
function h(x) {
 let x = 1;
}

//hoist var to/over let
function ff() {
 let x = 1;
 if (pred) {
 var x;
 }
}

//duplicate let and function
function h() {
 let x = 1;
 function x() {}
}

ECMAScript 2015: �
First Comprehensive Revision Since 1999

þ  More concise and expressive syntax

þ  Modules

þ  Class Declarations

þ  Block scoped declarations

þ  Control abstraction via iterators and generators

þ  Promises

þ  String interpolation/Internal DSL support

þ  Subclassable built-ins

þ  Binary Array Objects with Array methods

þ  Built-in hash Maps and Sets + weak variants

þ  More built-in Math and String functions

þ  Improved Unicode support, full Unicode RegExp

þ  Async function (2017)

ES 2015 (June 2015): 566 pages
ES 5 (Dec. 2009): 252 pages
ES 3 (Dec. 1999): 188 pages
ES 2 (Aug 1998): 117 pages
ES 1 (June 1997): 110 pages

2016’s most
popular

programming
language: JavaScript

Stack Overflow 2016 Developer Survey
http://stackoverflow.com/research/developer-survey-2016

1 JavaScript�
2 Java�
3 PHP�
4 Python�
5 C#�
5 C++�
5 Ruby�
8 CSS�
9 C�
10 Objective-C

RedMonk Top 10
Programming Languages
January 2016

http://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/

JavaScript is the Browser VM
“Transpilers”

Wikipedia: a type of compiler that takes the source code of a
program written in one programming language as its input and
produces the equivalent source code in another programming
language.

Babel, TypeScript, Dart, Flow, CoffeeScript, ... �

C++ to JavaScript

C++
source
code

Clang: C++
Compiler
Front-end

LLVM
Bitcode

LLVM
Optimizer

JavaScript
(asm.js)
source
code JavaScript

Engine�
(asm.js aware)

JavaScript
(asm.js)
source
code

Development Time App Run Time

Emscrpten

Better
LLVM

Bitcode

JavaScript on the Server

http://nodejs.org/

const http = require('http');

const hostname = '127.0.0.1';
const port = 3000;

const server = http.createServer((req, res) => {
 res.statusCode = 200;
 res.setHeader('Content-Type', 'text/plain');
 res.end('Hello World\n');
});

server.listen(port, hostname, () => {
 console.log(`Server running at http://${hostname}:${port}/`);
});

An asynchronous event driven JavaScript
runtime, node.js† is designed to build
scalable network applications.

“over 3.5 million users and an
annual growth rate of 100 percent”

“Average downloads per day
(2015): 266,472”

x

https://nodesource.com/assets/blog/node-by-numbers/node-by-numbers.pdf

Non-web Interactive Apps
WebViews/Hybrid Mobile Apps

NativeScript†, ReactNative

Electron†

http://appsonmob.com/hybrid-app-webview-performance-ios-android/

https://www.nativescript.org/showcases#mewatt
https://www.nylas.com/

James Web Space TelescopeJavaScript in Space

https://pdfs.semanticscholar.org/b8c1/d860a63593dec5c3f5364fa904e5bd8fae4f.pdf

http://tangiblejs.com/

JavaScript for Devices/
Embedded/Robotics

http://johnny-five.io/

Johnny-Five†

https://burningservos.com/2016/12/19/walking/

http://nodebots.io/

http://www.robert-drummond.com/2015/06/19/in-what-universe-is-javascript-the-new-c/

Corporate Computing
1950 1960 2000 2010 2020199019801970

So
ci

et
al

 Im
pa

ct

Personal Computing

Computers
empower/enhance
enterprise activities

Computers
empower/enhance

personal tasks Ambient �
Computing

Computers
empower/enhance
our environment

The Ambient Computing Era

Each Computing Era has had
Canonical Programming Languages

Corporate Computing Era – COBOL/Fortran

Personal Computing Era – C/C++ family

JavaScript: The Canonical Language �
of the Ambient Computing Era?

Allen Wirfs-Brock�
http://www.wirfs-brock.com/allen�
allen@wirfs-brock.com �
@awbjs

