
JavaScript: The First 20 Years

ALLEN WIRFS-BROCK,Wirfs-Brock Associates, Inc., USA
BRENDAN EICH, Brave Software, Inc., USA

Shepherds: Sukyoung Ryu, KAIST, South Korea
Richard Gabriel (poet, writer, computer scientist), California

How a sidekick scripting language for Java, created at Netscape in a ten-day hack, ships first as a de facto
Web standard and eventually becomes the world’s most widely used programming language. This paper tells
the story of the creation, design, evolution, and standardization of the JavaScript language over the period of
1995–2015. But the story is not only about the technical details of the language. It is also the story of how
people and organizations competed and collaborated to shape the JavaScript language which dominates the
Web of 2020.

CCS Concepts: •General and reference→Computing standards, RFCs and guidelines; • Information
systems → World Wide Web; • Social and professional topics → History of computing; History
of programming languages; • Software and its engineering → General programming languages;
Scripting languages.

Additional Key Words and Phrases: JavaScript, ECMAScript, Standards, Web browsers, Browser game theory,
History of programming languages

ACM Reference Format:
Allen Wirfs-Brock and Brendan Eich. 2020. JavaScript: The First 20 Years. Proc. ACM Program. Lang. 4, HOPL
(June 2020), 189 pages. https://doi.org/10.1145/3386327

Contents

Abstract 1
Contents 1
1 Introduction 2

Part 1: The Origins of JavaScript 6
2 Prehistory 6
3 JavaScript 1.0 and 1.1 9
4 Microsoft JScript 25
5 From Mocha to SpiderMonkey 27
6 Interlude: Critics 30

Part 2: Creating a Standard 30
7 Finding a Venue 30
8 The First TC39 Meeting 31

Authors’ addresses: Allen Wirfs-Brock, allen@wirfs-brock.com, Wirfs-Brock Associates, Inc., Sherwood, Oregon, USA;
Brendan Eich, brendan@brave.com, Brave Software, Inc., San Francisco, California, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2020 Copyright held by the authors.
This is the authors’ March 2021 corrected version, https://doi.org/10.8281/zenodo.4960086. The Version of Record was
published in Proceedings of the ACM on Programming Languages, https://doi.org/10.1145/3386327.

https://doi.org/10.1145/3386327
https://doi.org/10.8281/zenodo.4960086
https://doi.org/10.1145/3386327

2 Allen Wirfs-Brock and Brendan Eich

9 Crafting the Specification 34
10 Naming the Standard 38
11 ISO Fast-track 39
12 Defining ECMAScript 3 40
13 Interlude: JavaScript Doesn’t Need Java 48

Part 3: Failed Reformations 52
14 Dissatisfaction with Success 52
15 ES4, Take 1 53
16 Other Dead-Ends 57
17 Flash and ActionScript 58
18 ES4, Take 2 60
19 Interlude: Taking JavaScript Seriously 75

Part 4: Modernizing JavaScript 79
20 Developing ES3.1/ES5 79
21 From Harmony to ECMAScript 2015 97
22 Conclusion 127
Acknowledgments 128

Appendices 129
A Dramatis Personæ 129
B Dramatis Corporationes 131
C Glossary 132
D Abbreviations and Acronyms 135
E Timelines 136
F December 4, 1995 JavaScript Announcement 145
G Issues List from First TC39 Meeting 147
H Initial Proposed ECMAScript Version 2 New Feature List 148
I A Partial E3 Draft Status Report 149
J January 11, 1999 Consensus on Modularity Futures 150
K ES4 Reference Implementation Announcement 151
L ES4-2 Approved Proposals September 2007 152
M ECMAScript Harmony Announcement 155
N Harmony Strawman Proposals May 2011 158
O Harmony Proposals Wiki Page Following May 2011 Triage 161
P TC39 Post ES6 Process Definition 163
Q The Evolution of ECMAScript Pseudocode 165
References 168

1 INTRODUCTION
In 2020, the World Wide Web is ubiquitous with over a billion websites accessible from billions of
Web-connected devices. Each of those devices runs a Web browser or similar program which is able
to process and display pages from those sites. The majority of those pages embed or load source
code written in the JavaScript programming language. In 2020, JavaScript is arguably the world’s
most broadly deployed programming language. According to a Stack Overflow [2018] survey it is

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 3

used by 71.5% of professional developers making it the world’s most widely used programming
language.
This paper primarily tells the story of the creation, design, and evolution of the JavaScript

language over the period of 1995–2015. But the story is not only about the technical details of the
language. It is also the story of how people and organizations competed and collaborated to shape
the JavaScript language which dominates the Web of 2020.
This is a long and complicated story. To make it more approachable, this paper is divided into

four major parts—each of which covers a major phase of JavaScript’s development and evolution.
Between each of the parts there is a short interlude that provides context on how software developers
were reacting to and using JavaScript.

In 1995, theWeb andWeb browsers were new technologies bursting onto the world, and Netscape
Communications Corporation was leading Web browser development. JavaScript was initially
designed and implemented in May 1995 at Netscape by Brendan Eich, one of the authors of this
paper. It was intended to be a simple, easy to use, dynamic languageg that enabled snippets of code
to be included in the definitions of Web pages. The code snippets were interpreted by a browser as
it rendered the page, enabling the page to dynamically customize its presentation and respond to
user interactions.
Part 1, The Origins of JavaScript, is about the creation and early evolution of JavaScript. It

examines the motivations and trade-offs that went into the development of the first version of
the JavaScript language at Netscape. Because of its name, JavaScript is often confused with the
Javag programming language. Part 1 explains the process of naming the language, the envisioned
relationship between the two languages, and what happened instead. It includes an overview of the
original features of the language and the design decisions that motivated them. Part 1 also traces
the early evolution of the language through its first few years at Netscape and other companies.

A cornerstone of the Web is that it is based upon non-proprietary open technologies.1 Anybody
should be able to create a Web page that can be hosted by a variety of Web servers from different
vendors and accessed by a variety of browsers. A common specification facilitates interoperability
among independent implementations. From its earliest days it was understood that JavaScript
would need some form of standard specification. Within its first year Web developers were encoun-
tering interoperability issues between Netscape’s JavaScript and Microsoft’s reverse-engineered
implementation. In 1996, the standardization process for JavaScript was begun under the auspices
of the Ecma International standards organization. The first official standard specification for the
language was issued in 1997 under the name “ECMAScript.” Two additional revised and enhanced
editions, largely based upon Netscape’s evolution of the language, were issued by the end of 1999.
Part 2, Creating a Standard, examines how the JavaScript standardization effort was initiated,

how the specifications were created, who contributed to the effort, and how decisions were made.
By the year 2000, JavaScript was widely used on the Web but Netscape was in rapid decline and

Eich had moved on to other projects. Who would lead the evolution of JavaScript into the future?
In the absence of either a corporate or individual “Benevolent Dictator for Life,”2 the responsibility
for evolving JavaScript fell upon the ECMAScript standards committee. This transfer of design
responsibility did not go smoothly. There was a decade-long period of false starts, standardization
hiatuses, and misdirected efforts as the committee tried to find its own path forward evolving the
language. All the while, usage of JavaScript rapidly grew, often using implementation-specific

1The specifications of Web technologies are not developed and controlled by a single company and any company or
organization may create and distribute implementations of the technologies that interoperate with other implementations.
2A technology evolution approach where a single person or organization is recognized as the permanent sole authority able
to make decisions to modify or extend a technology. Some projects (particularly open source ones) grant this authority to
the individual who started the project or first developed the technology. [Meyer 2014]

Authors’ Corrections: March 2021

4 Allen Wirfs-Brock and Brendan Eich

extensions. This created a huge legacy of unmaintained JavaScript-dependent Web pages and
revealed new interoperability issues. Web developers began to create complex client-side JavaScript
Web applications and were asking for standardized language enhancements to support them.

Part 3, Failed Reformations, examines the unsuccessful attempts to revise the language, the
resulting turmoil within the standards committee, and how that turmoil was ultimately resolved.
In 2008 the standards committee restored harmonious operations and was able to create a

modestly enhanced edition of the standard that was published in 2009. With that success, the
standards committee was finally ready to successfully undertake the task of compatibly modernizing
the language. Over the course of seven years the committee developed major enhancements to
the language and its specification. The result, known as ECMAScript 2015, is the foundation for
the ongoing evolution of JavaScript. After completion of the 2015 release, the committee again
modified its processes to enable faster incremental releases and now regularly completes revisions
on a yearly schedule.

Part 4, Modernizing JavaScript, is the story of the people and processes that were used to create
both the 2009 and 2015 editions of the ECMAScript standard. It covers the goals for each edition and
how they addressed evolving needs of the JavaScript development community. This part examines
the significant foundational changes made to the language in each edition and important new
features that were added to the language.

Wherever possible, the source materials for this paper are contemporaneous primary documents.
Fortunately, these exist in abundance. The authors have ensured that nearly all of the primary
documents are freely and easily accessible on the Web from reliable archives using URLs included
in the references. The primary document sources were supplemented with interviews and personal
communications with some of the people who were directly involved in the story. Both authors
were significant participants in many events covered by this paper. Their recollections are treated
similarly to those of the third-party informants.

The complete twenty-year story of JavaScript is long and so is this paper. It involves hundreds of
distinct events and dozens of individuals and organizations. Appendices A through E are provided
to help the reader navigate these details. Appendices A and B provide annotated lists of the people
and organizations that appear in the story. Appendix C is a glossary that includes terms which are
unique to JavaScript or used with meanings that may be different from common usage within the
computing community in 2020 or whose meaning might change or become unfamiliar for future
readers. The first use within this paper of a glossary term is usually italicized and marked with
a “g” superscript like this: “termg.” Appendix D defines abbreviations that a reader will encounter.
Appendix E contains four detailed timelines of events, one for each of the four parts of the paper.

1.1 Names, Numbers, and Abbreviations
The world of JavaScript can be a confusing place with multiple names for what is seemingly
the same thing. This is exacerbated when simultaneously entering the world of standard-setting
organizations, which often use two and three letter abbreviations and numbers to identify their
organizational units and work products. In order to minimize this confusion we will start by defining
some of these names and abbreviations and set some conventions that are used throughout the rest
of this paper.
“JavaScript” is the common name of the programming language that was originally developed

by Netscape Communications Corporation for use in Web pages. Its uses, both on the Web and in
other environments, have grown far beyond that and every day millions of programmers think and
talk about this language using that name. The JavaScript programming language is distinct and
technically very different from the Java programming language but the similarity of their names is
a frequent source of confusion.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 5

Abbreviation Edition Date Project Editors Pages
ES1 1st June 1997 Guy Steele 95
ES2 2nd August 1998 Mike Cowlishaw 101
ES3 3rd December 1999 Mike Cowlishaw 172
ES3.1 5th Internal working name for 5th edition
ES41 and ES42 4th Abandoned, never completed
ES5 5th December 2009 Pratap Lakshman

Allen Wirfs-Brock
245

ES5.1 5.1 June 2011 Allen Wirfs-Brock 245
ES6 or ES2015 6th June 2015 Allen Wirfs-Brock 545
ES2016 7th June 2016 Brian Terlson 546

Fig. 1. ECMA-262 Editions, 1997–2016

JavaScript® is also a registered trademark. The trademark was originally registered by Sun
Microsystems, and as of the date of this paper the registration is owned by Oracle Corporation.
The trademark was licensed by Sun to Netscape and later to the Mozilla Foundation. Netscape and
Mozilla have used names such as “JavaScript 1.4” to describe specific versions of their implementa-
tions of the language. Some implementors of the language have used other names in order to avoid
possible trademark issues. Because of the multiple names, the trademark issues, and the confusion
with Java many contemporary users, book authors, and tool implementors simply call the language
“JS” and “js” is commonly used as a file extension for JavaScript source code. Within this paper, we
use the unqualified term “JavaScript” when we are generically talking about the language and its
usage outside the context of a specific version, host environment, or implementation.

The word “JavaScript” was avoided when the standard specification was created for the language;
instead, that specification uses the name “ECMAScript.” The names “JavaScript” and “ECMAScript”
are essentially different names for the same thing. In this paper when we use the term “ECMAScript”
we are specifically talking about the language as defined by the standard.

The “ECMA” part of ECMAScript is derived from Ecma International, the Swiss-based standards
organization under whose auspices the ECMAScript standards are developed. “ECMA” was origi-
nally an acronym for “European Computer Manufacturers Association,” the original name of the
organization that evolved into Ecma International. That organization no longer considers “Ecma”
to be an acronym. Ecma International currently capitalizes only the “E” in “Ecma” but at various
times in the past they have used all capital letters. That was the case when ECMAScript was first
developed and the reason that the language name starts with five capital letters. In this paper, we
will usually use the word “Ecma” when referring to the Ecma International standards organization.

Ecma develops many computing-related standards. The actual work of developing standards
occurs within Ecma Technical Committees, abbreviated as “TC.” When a new Ecma TC is created,
it is assigned a serial number to uniquely identify it. TC39 is the TC that was created to standardize
JavaScript. Some Ecma TCs are subdivided into Task Groups, abbreviated as “TG,” with specific
responsibilities. From 2000 through 2007, TC39’s responsibility was expanded to include other
programming languages in addition to JavaScript. During that period, responsibility for ECMAScript
was assigned to TC39-TG1. In this paper, we use “TG1” as the abbreviation for TC39-TG1.

Ecma assigns a number to each distinct standard authored by its TCs and uses those numbers
prefixed with “ECMA-” as a designators The ECMAScript standard is designated “ECMA-262.”When
a standard is revised, a new edition is issued using the same number suffixed with an edition number.
For example, the third version of the ECMAScript standard was officially known as “ECMA-262,

Authors’ Corrections: March 2021

6 Allen Wirfs-Brock and Brendan Eich

3rd Edition.” Informally within TC39, and ultimately within the broader JavaScript community
the convention emerged of using an abbreviation like “ES3” as a shorthand for the official edition
designation, the “ES” standing for “ECMAScript.” Figure 1 lists the editions of ECMA-262g along
with the abbreviations used in this paper.

The attempt to define a 4th edition spanned nearly ten years and consisted of two largely
independent design efforts. In this paper, the terms “ES41” and “ES42” are used to refer specifically
to one or the other of those efforts.3 “ES4” is used to refer to the overall effort to create a 4th edition.
Starting with publication of the 6th edition, TC39 adopted the convention of using the year

of publication as the abbreviation. So both “ES6” and “ES2015” are informal abbreviations for
“ECMA-262, 6th Edition” but “ES2015” is preferred. However, “ES6” was the most commonly used
abbreviation during the development of the 6th edition. TC39 members also used “Harmonyg” and
“ES.nextg” as code-names to refer to the 6th edition development project.

This paper uses numerous in-line code snippets to illustrate JavaScript concepts. Some of the
snippets are valid only for specific versions or editions of JavaScript/ECMAScript. Other snippets
illustrate proposed features that never became part of the language. Throughout the paper, snippets
which are not valid for all versions of JavaScript/ECMAScript are appropriately labeled.

Part 1: The Origins of JavaScript

2 PREHISTORY
The concept and foundation technologies of the World Wide Web were developed during 1989–1991
by Tim Berners-Lee [2003] at CERN. Berners-Lee’s Web technologies circulated within the high-
energy physics community for a couple of years. However, they did not receive much attention
outside that community until Marc Andreessen, an undergraduate student, and Eric Bina, working
at the University of Illinois at Urbana-Champaign National Center for Supercomputing Applications
(NCSA), developed Mosaicg in 1992–1993.

NCSA Mosaic was an easy to install, easy to use Web client with a graphic user interface. It
essentially defined the software category “Web browser” and popularized the concept of the World
Wide Web outside of the physics community. Mosaic was widely distributed and by early 1994
commercial interests were scrambling to get on the browser bandwagon by either licensing the
NCSA Mosaic code or by building Mosaic-inspired browsers from scratch. Jim Clark, the founder
of Silicon Graphics Inc., obtained venture capital funding and recruited Marc Andreessen and
Eric Bina. In April 1994 they co-founded the company that would eventually be named Netscape
Communications Corporation. Netscape set as its goal replacing NCSA Mosaic as the world’s most
popular browser. It developed from scratch an enhanced next generation Mosaic-like browser that
it started widely distributing in October 1994. By early 1995 Netscape Navigatorg had achieved its
initial goal and was rapidly displacing Mosaic.
Tim Berners-Lee’s Web technology was centered around using the declarativeg HTML markup

language to describe documents for presentation as Web pages. In contrast there was considerable
industry interest in using scripting languagesg [Ousterhout 1997] to enable end users to orchestrate
the operation of their applications. Languages such as Visual Basic in Microsoft Office and Apple-
Script [Cook 2007] are not intended for implementing the complex data structures and algorithmic
components that exist at the core of major applications. Instead, they provide a way for users to
glue together such application components in novel ways. As Netscape expanded the audience for
the World Wide Web, an important question was if and how scripting should integrate into Web
pages.
3TC39 and the members of the two ES4 design efforts did not use the “ES41” or “ES42” nomenclature. They simply referred
to their then-current work as “ES4.”

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 7

2.1 Brendan Eich Joins Netscape
Brendan Eich,4 in 1985, completed his masters degree at the University of Illinois Urbana-Champaign
and immediately went to work for Silicon Graphics, Inc. He worked primarily on the Unix kernel
and networking layers. In 1992 he left SGI to join MicroUnity, a well-funded startup developing
video media processors. At both companies he implemented small special-purpose languages that
supported kernel and networking programming tasks. At MicroUnity he also did some work on
the GCC compilerg.
In early 1995, Brendan Eich was recruited to Netscape with the bait of “come and do Scheme

in the browser.”5 But when Eich joined Netscape on April 3, 1995, he found a complex product
marketing and programming language situation. Netscape had rebuffed a low-priced acquisition
offer from Microsoft in late 1994, after which Netscape management expected a direct attack via
Microsoft’s “Embrace, Extend, Extinguish” strategy [Wikipedia 2019]. Microsoft, under Bill Gates’
direct leadership, had quickly realized that its forthcoming proprietary walled-garden information
utility, Project Blackbird [Anderson 2007], would be irrelevant with the rise of theWeb as a cross-OS
platform. Gates’ “Internet Tidal Wave” memo [Gates 1995] rebooted Microsoft from Blackbird to
Internet Explorerg and a full suite of server products, as Netscape rushed to stake claims in the same
markets.

The candidates for a Web page scripting language included research languages such as Scheme;
practical Unix-based languages such as Perl, Python, and Tcl; and proprietary languages such as
Microsoft’s Visual Basic. Brendan Eich was expecting to implement Scheme in the browser. But
in early 1995 Sun Microsystems had started a guerrilla marketing campaign [Byous 1998] for its
still unreleased6 Java language. Sun and Netscape quickly engaged with each other to strike a deal
whereby Java would be integrated into Netscape 2. Eich recalls that the rallying cry articulated
by Marc Andreessen at Netscape meetings was “Netscape plus Java kills Windows.” On May 23,
1995, at Sun’s public announcement of Java, Netscape announced its intent to license Sun’s Java
technology [Netscape 1995a] for use in the browser.

Rapid strategizing inside Netscape to choose a scripting language severely handicapped Scheme,
Perl, Python, Tcl, and Visual Basic as not viable due to business interests and/or time to market
considerations. The only approach considered viable by senior managers at Netscape and Sun,
notably Marc Andreessen and Sun’s Bill Joy, was to design and implement a “little language”7 to
complement Java.

Doubters, dominant at Sun and a majority at Netscape, questioned the need for a simpler scripting
language: wasn’t Java suitable for scripting; would it be possible to explain why two languages
were better than one; and did Netscape have the necessary expertise to create a new language.

The first objection was easily countered. Java in spring 1995 was not a suitable language for
beginners. One had to wrap a main program’s code body in a static methodg named main in a classg
declaration in a package. One had to declare static typesg for all parameters, return values, and
variables. Based on experience with Visual BASIC complementing Visual C++, and many Unix
languages complementing native-code-based components, it was clear Java was not simple enough
for the “glue” scripters.

The second objection was overcome by citing Microsoft’s products. For professional Windows ap-
plication programmers, Microsoft sold Visual C++. For amateurs, part-time programmers, designers,
accountants, and others, Microsoft provided Visual Basic as the scripting language by which those
4The book Coders At Work [Seibel 2009, chapter 4] includes a more detailed look at Eich’s early career.
5Referring to the Scheme programming language [Sussman and Steele Jr 1975].
6The stealth alpha release of Java was in March/April 1995.
7Jon Bentley [1986] introduced the term “little language” to characterize a small easy-to-learn language that is “specialized
to a particular problem domain and does not include many features found in conventional languages.”

Authors’ Corrections: March 2021

8 Allen Wirfs-Brock and Brendan Eich

less-experienced, part-time programmers could “glue” together and customize components built
using Visual C++. A version of Visual Basic called “Visual Basic for Applications” was integrated
into the Microsoft Office applications to support user extension and scripting of those applications.
Having overcome the first two objections, Marc Andreessen proposed the code-name “Mocha”

for the browser scripting language with, according to Eich, the hope that the language would be
renamed “JavaScript” in due course. This companion language to Java would have to “look like
Java” while remaining easy to use and “object-based” rather than class-based, like Java.

That still left a final remaining objection: did Netscape have the expertise to create an effective
scripting language and have it ready for the Netscape 2 beta in September 1995. Brendan Eich’s
assignment was to prove that it did by creating Mocha.

2.2 The Story of Mocha
With the Java announcements imminent, Brendan Eich saw time as of the essence and a bird in the
hand worth many hypotheticals in bushes; and so he prototyped the first Mochag implementation
in ten contiguous days in May, 1995.8 This work was rushed to meet a feasibility demonstration
deadline. The demo consisted of the bare minimum language implemented and minimally integrated
into the Netscape 2 pre-alpha browser.

Eich’s prototype was developed on a Silicon Graphics Indy Unix workstation [Netfreak 2019]. The
prototype used a hand-written lexer and recursive-descent parser. The parser emitted bytecoded
instructions rather than a parse tree. The bytecode interpreterg was simple and slow.9
Bytecode was a requirement of Netscape’s LiveWire server10 whose developers were counting

on embedding Mocha even before it was prototyped. The team’s ex-Borland management and
engineering staff were big believers in dynamic scripting languages but wanted bytecodes, rather
than source parsing, for faster server application loading.
Marc Andreessen stressed that Mocha should be so easy to use that anyone could write a few

lines directly within an HTML document. Upper management at Sun and Netscape reiterated the
requirement that Mocha “look like Java,” explicitly ruling out anything like BASIC. But the Java-like
appearance created an expectation of Java-like behavior that impacted both the design of the objectg
model and the semantics of “primitive types” such as boolean, int, double, and string.
Other than looking like Java, Brendan Eich was free to select most language design details.

After joining Netscape, he had explored “easy to use” or “pedagogical” languages, including Hy-
perTalk [Apple Computer 1988], Logo [Papert 1980], and Self [Ungar and Smith 1987]. Everyone
agreed that Mocha would be “object-based,” but without classes, because supporting classes would
take too long and risk competing with Java. Out of admiration of Self, Eich chose to start with a
dynamic object model using delegationg with a single prototype link. He believed that would save
implementation time, although in the end he lacked sufficient time to expose that mechanism in
the Mocha prototype.
Objects are created by applying the new operator to a constructor functiong. A default object

constructor function named Object is built into the environment along with other built-in objects.
Each object is composed of zero or more properties. Each propertyg has a name (also called a
property keyg) and a value which can be either a functiong, an object, or a value of one of several
other built-in data types. Properties are created by assigning a value to an unused property key.
There are no visibility or assignment restrictions for properties. A constructor function may provide

8There is no known record of the specific dates but Brendan Eich believes it was May 6–15.
9It used a large discriminated uniong to represent the different types of data valuesg and used reference counting for memory
management.
10Brendan Eich had spent his first month at Netscape officially working in the server group.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 9

an initial set of properties; additional properties can be added to an object after its creation. This
very dynamic approach was especially favored by the LiveWire team.

Although the lure of Scheme was gone, Brendan Eich still found Lisp-like first-classg functions
attractive. Without classes to contain methods, first-class functions provided a toolkit for Scheme-
inspired idioms: top-level procedures, passing functions as arguments, methods on objects, and
event handlers. The time constraints required deferral of function expressions (also called lambda
expressionsg, or just lambdas) but they were reserved in the grammar. Event handlers and object
methods were unified by borrowing the this keyword from Java (after C++) in any function to
denote the contextual object on which that function was invoked as a method.

Motivated by informal discussions with Marc Andreessen and a few early Netscape engineers11
the prototype supported an eval function that could parse and execute a string containing a
program. The intuition was that this kind of dynamic string-to-program programming would
be important for some applications on Web browsers and servers.12 But the decision to support
eval had immediate consequences. Some uses required functions to provide their source code
as a string, via a Java-like toString method. Eich chose to implement a bytecode decompiler in
his ten-day sprint13, because source code primary storage or recovery from secondary storage
seemed too costly for some required target architectures. This was especially the case for Windows
3.1 personal computers that were constrained by the Intel 8086 16-bit segmented memory model,
requiring overlays and manually managed multi-segment memory for unbounded or large in-
memory structures.
At the end of the ten days, the prototype was demonstrated (Figure 2) at a meeting of the full

Netscape engineering staff. It was a success, which led to excessive optimism about shipping a
more complete and fully integrated version for the Netscape 2 release whose first beta release was
scheduled for September. Brendan Eich’s primary focus for the summer was to more fully integrate
Mocha into the browser. This would require designing and implementing the APIs that enabled
Mocha programs to interact with Web pages. At the same time he had to turn the language’s
prototype implementation into shippable software and respond to early internal users’ bug reports,
change suggestions, and feature requests.

More details of the 10-day creation of Mocha are in Brendan Eich’s retellings of this story [Eich
2008c, 2011d; JavaScript Jabber 2014; Walker 2018]. The source code of the production version of
Mocha is available via the Internet Archive [Netscape 1997b]. Jamie Zawinski’s [1999] “the netscape
dorm” is a contemporaneous account of the experience of working for Netscape as a software
developer during this period.

3 JAVASCRIPT 1.0 AND 1.1
Netscape Communications Corporation and Sun Microsystems announced JavaScript on Decem-
ber 4, 1995, in a joint press release [Netscape and Sun 1995; Appendix F]. The press release describes
JavaScript as “an object scripting language” that would be used to write scripts that dynamically
“modify the properties and behaviors of Java objects.” It would serve as a “complement to Java for
easy online application development.” The companies were attempting to forge a strong brand
linkage between the Java and JavaScript languages even though their technical designs were only
superficially similar. The name similarity and its implication that the languages are closely related
has been a continuing source of confusion.

11Including John Giannandrea who had worked for General Magic where two programming languages were built that could
be used both client- and server-side.
12For example, to enable a form of partial evaluation or to support server execution of client-provided code, similar to
Telescript [General Magic 1995] agents.
13Developers in 1995 would not have used the term “sprint.” However it is a good characterization of Eich’s effort.

Authors’ Corrections: March 2021

10 Allen Wirfs-Brock and Brendan Eich

Fig. 2. The Mocha Console. Brendan Eich’s initial demo of Mocha featured a “Mocha Console” running in a
pre-alpha version of Netscape 2 on a SGI Unix workstation. The same Mocha Console shipped, essentially
unchanged except for its name, as part of the production release of Netscape 2. This is a screen capture of
Netscape 2.02 running on Windows 95. The Mocha console was activated by typing mocha: into the browser
address bar—for production Netscape 2 this was changed to javascript: but mocha: still worked. Activating
the console caused a two-frame page to open in the browser. Mocha expressions typed into the text box of
the lower frame were evaluated for effect in the context of the upper frame. This example shows the built-in
alert function being called to display a popup containing the computed value of an expression. The original
demo version would have displayed “Mocha Alert” in the popup instead of “JavaScript Alert.”

JavaScript, under the name “LiveScript,” was initially exposed to the public in September 1995 as
part of the first beta release [Netscape 1995b] of Netscape Navigator 2.0. That release was followed
by four more beta releases leading up to the March 1996 production release of Navigator 2.0, which
supported JavaScript 1.0. Netscape Enterprise Server 2.0 also shipped in March [Netscape 1996f]
and incorporated JavaScript 1.0 within its LiveWire server-side scripting component.

JavaScript was only one relatively minor feature of Netscape Navigator. As such, its development
was constrained by the overall Navigator 2.0 schedule that required a feature freeze in August 1995.
The JavaScript 1.0 feature set was essentially a triage of what was working or near working in
the Mocha implementation that August. The feature set was incomplete relative to the envisioned
language design and exhibited various problematic bugs and edge case behaviors even though Eich
continued to fix bugs in the initial Mocha implementation throughout the Navigator 2.0 release
process. Interviewed [Shah 1996] shortly before the 1.0 release, Brendan Eich echoed the official
positioning of JavaScript as an adjunct to Java and the rushed nature of the initial release:

BE[Brendan Eich]: I hope it [JavaScript] will be implemented by other vendors,
based on the spec that Bill Joy and I are working on. I’d like to see it remain small,
but become ubiquitous on the web as the favored way of gluing HTML elements
and actions on them together with Java applets and other components.
BE: . . . For all I know, the most common use is to make pages a little smarter and
more live—for instance, make a click on a link load a different URLg depending
on the time of day.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 11

. . .
BE: There is light at the end of the tunnel, although because JavaScript was too
much of a one-man show, [Netscape] 2.0 will contain numerous annoying little
bugs. My hope is that all big bugs have workarounds, and I’ve spent a lot of time
working with developers to find bugs and workarounds.

I’m following through for 2.1 by fixing bugs, adding features, and trying to
make JavaScript consistent across all our platforms. I don’t know when 2.1 will
ship, but would wager it’ll be out well before next fall—we move fast here.

JavaScript 1.0 [Netscape 1996d] was a simple dynamically typedg language supporting numeric,
string, and Boolean values; first-class functions; and, an object data type. Syntactically, JavaScript,
like Java, was in the C family with control flow statements borrowed from C and an expression
syntax that included most of the C numeric operators. JavaScript 1.0 had a small library of built-in
functions. JavaScript 1.0 source code was usually directly embedded in HTML files, but the built-in
library included an eval function that could parse and evaluate JavaScript source code encoded as
a JavaScript string value. JavaScript 1.0 was a very lean language. Figure 3 is a summary of some of
the absent features whose omission is likely surprising to modern JavaScript programmers.

In early 1996, work on began on “Atlas” [Netscape 1996g], the code name for what would ship as
Netscape Navigator 3.0 in August 1996. Brendan Eich was able to resume work on features that
were incomplete or missing at the August 1995 2.0 feature freeze. It was only with the release
of JavaScript 1.1 [Netscape 1996a,e] in Navigator 3.0 that the initial definition and development
of JavaScript was completed. The following sections present an overview of the design of the
JavaScript 1.0/1.1 language.

3.1 JavaScript Syntax
The syntax of JavaScript 1.0 was directly modeled after the statement syntax of the C programming
language [ANSI X3 1989] with some AWKg [Aho et al. 1988] inspired embellishments. A script is
a sequence of statements and declarations. Unlike C, JavaScript statements are not restricted to
occurring within the body of a function. In JavaScript 1.0, source code for a script is embedded
within HTML documents surrounded by a <script></script> tag.

The C-inspired statements in JavaScript 1.0 are the expression statement; the if conditional
statement; the for and while iteration statements; the break, continue, and return statements
for non-sequential flow control; and the statement block which enables a {}-delimited sequence
of statements to be used as if it were a single statement. The if, for, and while statements are
compound statements.14 JavaScript 1.0 did not include C’s do-while statement, switch statement,
statement labels, or goto statement.

To the basic suite of C statements, JavaScript 1.0 added two compound statements for accessing
the properties of its object data type. The AWK inspired for-in statement iterates over the property
keysg of an object. Within the body of a with statement15 the properties of a designated object
can be accessed as if their names were declared variables. Because properties may be dynamically
added (and in later versions of the language deleted) the visible variable bindingsg may change as
execution progresses within a with statement’s body.

JavaScript declarations do not follow the style of C or Java declarations. JavaScript is dynamically
typed; moreover, it does not have language-level type names to serve as syntactic prefixes for

14A compound statement contains nested statements as part of its syntactic structure. Typically a statement block is used as
a nested statement. Most kinds of compound statements have a single nested statement. In that case, the nested statement is
the “body” of the compound statement.
15The with statement was added after the ten-day Mocha sprint at the request of the Netscape LiveWire team.

Authors’ Corrections: March 2021

12 Allen Wirfs-Brock and Brendan Eich

A distinct Array object type Array literals
Regular expressions Object literals
A global binding for undefined === operator
typeof, void, delete operators in, instanceof operators
do-while statement switch statement
try-catch-finally statement break/continue to label
Nested function declarations Function expressions
Function call and apply methods prototype property of functions
Prototype-based inheritance Access to built-in prototype objects
Cyclic garbage collectiong HTML <script> tag src attribute

Fig. 3. Commonly used JavaScript features (circa 2010) not present in JavaScript 1.0

recognizing declarations. Instead, JavaScript declarations are keyword prefixed. JavaScript 1.0 has
two forms of declarations: function declarations and var declarations. The syntax of function
declarations16 was directly borrowed from AWK. A function declaration defines the name, formal
parameters, and statement body of a single callable function. A var declaration introduces one
or more variable bindings and optionally assigns values to the variables. All var declarations are
treated as statements and may occur in any statement context, including within block statements.
In JavaScript 1.0/1.1 function declarations may occur only at the top level of a script and may not
contain nested function declarations. A var declaration may occur within a function body and
the variables defined by such declarations are local to the function.

Unlike C, JavaScript 1.0 statement blocks do not introduce declaration scopes. Within a function
body, var declarationswithin a block are locally visible to the entire function body. A var declaration
within a block outside of a function has global scopeg. Assignment to a variable name that does not
have an in-scope function or var declaration implicitly creates a global variable with that name.
This behavior has proven to be a significant source of errors as mistyping the name of a declared
variable silently creates a new variable with the mistyped name.

One major departure from traditional C syntax is JavaScript’s treatment of semicolons at the end
of statements. While C treats semicolons as a mandatory statement terminator, JavaScript allows
statement-terminating semicolons to be left out when they are the last significant character on
a line. The exact rules for this behavior were not included in the JavaScript 1.0 documentation.
The Netscape 2.0 Handbook does not show semicolons when describing the various JavaScript
statement forms. It simply says: “A single statement may span multiple lines. Multiple statements
may occur on a single line if each statement is separated by a semi-colon [Netscape 1996d].” A
semicolon-free coding style was the norm used in the Handbook’s JavaScript code examples such
as the following:

var a, x, y
var r=10
with (Math) {

a = PI * r * r
x = r * cos(PI)
y = r * sin(PI/2)

}

The ability to write JavaScript code without using semicolons is known as Automatic Semicolon
Insertion (ASI). ASI remains controversial among JavaScript programmers; a significant fraction

16Including the syntax and semantics of the return statement.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 13

of programmers still prefer to write code in a semicolon-free style and others would prefer that
nobody ever used ASI.

3.2 Data Types and Expressions
JavaScript 1.0/1.1 is a dynamically typed language with five fundamental data types: number, string,
Boolean, object, and function. By “dynamically typed” we mean that runtime type information is
associated with each datum rather than value containers such as variables. Runtime type checks
ensure that operations are applied only to data values which are supported by each operation.

Booleans, strings, and numbers are immutable values. The Boolean type has two values, named
true and false. String values consist of immutable sequences of 8-bit character codes. There is no
support for Unicode. The number type consists of all possible IEEE 754 [IEEE 2008] double-precision
binary 64-bit floating-point values with the exception that only a single canonical NaN value is
exposed. Some operations give special treatment to number values that correspond to unsigned
32-bit integers and signed 32-bit 2’s complement integers. Mocha internally used an alternative
representation for such integer values but officially there was only a single numeric data type.

JavaScript 1.0 has two special values that represent the absence of a useful data value. Uninitialized
variables are set to the special value undefined.17 This is also the value returned when a program
attempts to access the value of a non-existent property of an object. In JavaScript 1.0 the value
undefined may be accessible by declaring and accessing an uninitialized variable. The value null is
intended to represent “no object” in contexts where an object value is expected. It is modeled after
Java’s null value and it facilitates integration of JavaScript with objects implemented using Java.
Throughout its entire history the existence of these two similar but observably different values has
caused confusion among JavaScript programmers many of whom are uncertain about when they
should use one of them instead of the other.
JavaScript 1.0’s expression syntax is copied from C with generally the same set of operators

and precedence rules. The major omissions are C’s pointer and type-related operators and the
unary + operator. The binary + operator is overloaded to perform both numeric addition and string
concatenation. The shift and bit-wise logical operators operate upon the bit level encoding of
signed 32-bit 2’s complement integers. If necessary, operands are truncated to integers and modulo
reduced to 32-bit values. The >> operator performs a sign-extending arithmetic right shift of a
32-bit integer value. JavaScript adds the >>> operator, borrowed from Java, which performs an
unsigned right shift.

JavaScript 1.1 adds the delete, typeof, and void operators. In JavaScript 1.1 the delete operator
simply sets its variable or object-property operand to the value null. The typeof operator returns
a string identifying the primitive type of its operand. Its possible string values are "undefined",
"object", "function", "boolean", "string", "number", or an implementation-defined string
value that identifies a kind of host-defined object. Surprisingly, typeof null returns the string
value "object" rather than "null". This is arguably consistent with Java where all values are
objects and null is essentially the “no object” object. However, Java lacks an equivalent to the
typeof operator and uses null as the default value of uninitialized variables. Brendan Eich’s
recollection is that the value of typeof null was the result of a leaky abstractiong in the original
Mocha implementation. The runtime value of null was encoded with the same internal tag value
used for object values and hence the implementation of the typeof operator returned "object"
without needing any extra special-case logic. This choice has proven to be a great annoyance to
JavaScript programmers who typically want to test if a value is actually an object before attempting
to use the value as the base for accessing a property. But testing that typeof a value is "object"

17We italicize “undefined” in this section because JavaScript 1.0 did not provide a name for directly accessing this value.

Authors’ Corrections: March 2021

14 Allen Wirfs-Brock and Brendan Eich

To type
function object number boolean string

undefined error null error false "undefined"

function N/C Function
object

valueOf/error valueOf/true decompile

object N/C
(not null) Function object valueOf/error valueOf/true toString/valueOf1
(null) error 0 false "null"

number N/C
(zero) error null false "0"
(nonzero) error Number true default*
(NaN) error Number false2 "NaN"
(+Infinity) error Number true "+Infinity"

Fr
om

ty
pe

(-Infinity) error Number true "-Infinity"

boolean Boolean N/C
(false) error 0 "false"
(true) error 1 "true"

string String N/C
(empty) error error[3] false
(non-empty) error number/error true

Key:
When two results separated by a slash, JavaScript tries the first, and if unsuccessful, uses the second.
N/C: No Conversion Necessary.
decompile: A string containing the function’s canonical source.
toString: The result of calling the toString method.
valueOf: The result of calling the valueOf method, if it returns a value of the To type.
number: Numeric value if string is a valid integer or floating-point literal.
1 If valueOf does not return a string, the default object-to-string conversion is used.
2 JavaScript 1.1 as implemented in Navigator 3.0 converts NaN to true.
3 JavaScript 1.1 as implemented in Navigator 3.0 converts the empty string to 0.

Fig. 4. JavaScript 1.1 Type Coercions as presented by Eich and McKinney [1996, page 23] in their preliminary
JavaScript 1.1 specification. The type coercions rules that were eventually standardized are slightly different.
This is a facsimile of the original table with minor typographical differences. Footnote 3 did not appear in the
original.

is an insufficient guard for a property access because attempting to access a property of null
produces a runtime error.
The void operator simply evaluates its operand and then returns undefined. An idiom for

accessing undefined is void 0. The void operator was introduced as an aid in defining HTML
hyperlinks that execute JavaScript code when clicked, for example:

Click to do something useful

The value of an href attributeg should be a URL and javascript: is a special URL protocol that
is recognized by browsers. It means evaluate what follows as JavaScript code and use the result,
converted to a string, as if it was the response-document fetched using a normal href URL. The
<a> element will attempt to process that response document unless it is undefined. Usually a Web
developer wants the JavaScript expression to be evaluated only for its effects when the link is
clicked. Prefixing an expression with void permits it to be used in that manner and avoids further
processing by the <a> element.

The most significant difference between C and JavaScript expressions is that JavaScript operators
automatically coerce their operands to data types in the domain of the operators. JavaScript 1.1

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 15

// using Object constructor

var pt = new Object;

pt.x=0;

pt.y=0;

//using custom constructor

function Point(x,y) {

this.x = x;

this.y = y;

}

var pt = new Point (0,0);

Fig. 5. JavaScript 1.0 Object Creation Alternatives. Properties can be added to an object after it is created by
the Object or added during creation by using a custom constructor function.

added a configurable mechanism for coercing arbitrary objects to number or string values. Figure 4
summarizes the JavaScript 1.1 coercion rules.

3.3 Objects
JavaScript 1.0 objects are associative arrays whose elements are called “properties.” Each property
has a string key and a value, which may be any JavaScript data type. Properties may be dynamically
added. JavaScript 1.0/1.1 does not provide any way to remove a property from an object.

Properties whose key strings conform to the syntax rules for identifiers may be accessed using a
dot notation, for example obj.prop0. All properties, including those whose keys are not identifiers
may be accessed using a bracket notation where the brackets surround an expression that is
evaluated and converted to a string that is used as the property key. For example obj["prop"+n]
is equivalent to obj.prop0 when the value of n is 0. Assigning to a non-existent property creates a
new property. Accessing the value of a non-existent property usually returns the value undefined.
However, in JavaScript 1.0/1.1 the value null is returned if a non-existent property value is accessed
using bracket notation and the property key is the string representation of a non-negative integer.
Properties may be used both as data stores and to associate behavior with objects. A property

whose value is a function may be invoked as a method of the object. Functions invoked as methods
of an object have access to the object via the dynamic binding of the keyword this (§3.7.4).

Objects are created by applying the new operator to a built-in or user-defined function. A function
that is intended to be used in this manner is called a “constructor.” Constructors typically add
properties to the new object. The properties may be either data stores or methods. The built-in
constructor Object may be used to create a new object that initially has no properties. Figure 5
shows how either the Object constructor or a user-defined constructor function can be used to
create new objects.
JavaScript 1.0 also has a built-in Array constructor but the only observable difference between

an object created using the Object constructor and the Array constructor is the debug string
displayed for the object. Objects created by the JavaScript 1.0 Array constructor do not have a
length property.

Array-like indexing behavior can be achieved for any object by creating properties using integer
values as the property keys. Such an object may also have properties with non-integer keys:

var a = new Object; //or new Array
a[0] = "zero";
a[1] = "one";
a[2] = "two";
a.length = 3;

Authors’ Corrections: March 2021

16 Allen Wirfs-Brock and Brendan Eich

// define functions to be used as methods

function ptSum(pt2) {return new Point(this.x+pt2.x, this.y+pt2.y)}

function ptDistance(pt2) {

return Math.sqrt(Math.pow(pt2.x - this.x, 2) + Math.pow(pt2.y - this.y,2));

}

// define Point constructor

function Point(x,y) {

// create and initialize a new object 's data properties

this.x = x;

this.y = y;

//add methods to each instance object

this.sum = ptSum;

this.distance = ptDistance;

}

var origin = new Point (0,0); // create a Point object

Fig. 6. Defining a Point abstraction using JavaScript 1.0. Each instance object has its own method properties.

JavaScript 1.0 has no concept of object inheritanceg. Programs must individually add all properties
to each new object. This is typically done by defining a constructor function for each “class” of
object used by the program. Figure 6 shows the definition of a simple Point abstraction written
using JavaScript 1.0. The important things to note in this example are as follows:
• Each method must be defined as a globally visible function. Such functions must be given
names which are unlikely to conflict with the names used to define the method functions of
other class-like abstractions (ptSum, ptDistance).
• When an object is constructed, an object property must be created for each method with its
value initialized to the corresponding global function.
• Methods are invoked using their property name (origin.distance) rather than their de-
clared global name (ptDistance).

JavaScript 1.1 eliminates the need to create method properties directly on each new instance. It
associates a prototypeg object with each constructor function via a property, named prototype, of
the function object. The 1.1 JavaScript Guide [Netscape 1996e] describes prototype as “a property
that is shared by all objects of the specified type.” This is a vague description that might have been
better stated as: an object whose properties are shared with all objects created by a constructor.
The sharing mechanism is not further described but it is possible to observe the following

characteristics of prototype objects:
• Accessing a property of an object whose property name is defined on the prototype associated
with the object’s constructor returns the value of the prototype object’s property.
• Adding or modifying a property of a prototype object is immediately visible to already
existing objects created by the constructor associated with the prototype.
• Assignment of a property value to an object shadowsg18 the value of an identically named
property defined on the prototype associated with the object’s constructor function.

Each property of the built-in Object.prototype object is visible via property access on any
object unless the property has been shadowed by the object or its prototype.

18Creates a new property that over-rides access to the prototype’s property.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 17

// define functions to be used as methods

function ptSum(pt2) {return new Point(this.x+pt2.x, this.y+pt2.y)}

function ptDistance(pt2) {

return Math.sqrt(Math.pow(pt2.x - this.x, 2) + Math.pow(pt2.y - this.y,2));

}

// define Point constructor

function Point(x,y) {

// create/initialize a new object 's data properties

this.x = x;

this.y = y;

}

//add methods to shared prototype object

Point.prototype.sum = ptSum;

Point.prototype.distance = ptDistance;

var origin = new Point (0,0); // create a Point object

Fig. 7. Defining a Point abstraction using JavaScript 1.1. Instance objects inherit method properties from the
Point.prototype object rather than defining method properties on each instance.

Figure 7 shows the JavaScript 1.1 the definition of the simple Point abstraction from Figure 6. It
differs in that the methods are installed only once on the prototype object rather than repeatedly
during construction of each instance object. A property provided to an object by a prototype
property is called an inherited propertyg. A property defined directly on an object is called an own
propertyg. An own property shadows an identically-named–own property.

The properties of a prototype object are usually methods. In that case, the prototype provided by
a constructor is serving the same role as a C++ vtable or Smalltalk MethodDictionary—it associates
common behaviors with a set of objects. The constructor is essentially serving the role of a class
object and its prototype is the container of the methods which are shared by instances of the class.
This is a reasonable interpretation of JavaScript 1.1’s object model but not the only one.

The naming of the constructor prototype property is a clear hint that Brendan Eich had another
object model in mind. That model was inspired by the Self programming language [Ungar and
Smith 1987]. In Self, a new object is created by partially cloning the prototypical object of some
category of objects. Each clone has a parent link back to the prototype so that the prototype can
provide the features intended to be common to all of its clones. The JavaScript 1.1 object model
can be viewed as a variant of the Self model where the prototype objects are accessed indirectly
via constructor functions and the new operator clones new instances from the prototype. The
cloned instances inheritg the properties of the prototype objects as common shared features. Some
JavaScript programmers call this mechanism “prototypal inheritanceg.” It is a form of delegation.
Some JavaScript programmers also use the double entendre “classical inheritanceg” to refer to the
style of inheritance used in Java and many other object-oriented languages.

The JavaScript 1.1 documentation [Netscape 1996e] does not fully describe either of these object
models. It maintained a marketing story consistent with the December 1995 Netscape/Sun press
release. JavaScript was positioned as a language for scripting object interactions while the actual
definition of object abstractions (class definitions) were to be written in Java. Native JavaScript
object abstraction capabilities were limited to secondary features that drew minimal attention and
were largely undocumented.

Authors’ Corrections: March 2021

18 Allen Wirfs-Brock and Brendan Eich

3.4 Function Objects
In JavaScript 1.0/1.1, a function definition creates and names a callable function. JavaScript functions
are first-class object values. The name provided in a function declaration defines a global variable,
similar to a var declaration in top-level code. Its value is the function object and may be assigned to
variables, set as property values, passed as arguments in function calls, and returned as values from
functions. Because functions are objects they may have properties defined on them. The following
examples shows how a property can be added to a function object:

function countedHello () {
alert("Hello , World!");
countedHello.callCount ++; // increment this function 's callCount property

}
countedHello.callCount = 0; // associate counter with function and initialize
for (var i=0; i<5; i++) countedHello ();
alert(countedHello.callCount); // displays: 5

Functions are declared with a formal parameter list, but the size of the parameter list does not
limit the number of arguments that can be passed when calling the function. If a function is called
with fewer arguments than its declared number of parameters, the extra parameters are set to
undefined. If a function is called with more arguments than the number of formal parameters, the
extra arguments are evaluated but their values are not available via parameter names. However, an
array-like arguments object is available as the value of the function object’s arguments property
during execution of the body of the function. All of the actual arguments passed in a call to the
function are available as integer-keyed properties of the arguments object. This enables a function
to be written that can process a variable length arguments list.

3.5 Built-in Library
JavaScript 1.0 comes with a library of built-in functions, objects, and constructors. The library
defines a small number of general-purpose objects19 and functions along with a larger set of host-
specific objects and functions. For Netscape Navigator, host objectsg provided a model of portions
of the current HTML document. These APIs ultimately became known as the Document Object
Model (DOM) level 0 [Koch 2003; Netscape 1996b]. For Netscape Enterprise Server, host objects
supported client/server communications, managing the state of client and server sessions, and file
and database access. That design for server host objects did not achieve adoption beyond Netscape
server products.
The early design of JavaScript was largely driven by the needs of the browser platform. The

Netscape documentation for the early JavaScript versions did not explicitly distinguish between
library elements that were intended to be host environment independent or host dependent.
However, the design, evolution, and standardization of the DOM and other browser platform APIs
constitute its own significant story deserving its own history. The current paper mentions browser
related issues only when they are relevant to the overall design of JavaScript.

JavaScript 1.0 has only two general-purpose object Classes: String and Date. In addition, there
is a singleton global object Math, whose properties are commonly used mathematical constants
and functions. The constructors for several inactive or incompletely implemented Classes are also
observable to JavaScript 1.0 programs that know how to access them. JavaScript 1.1 completes
19Lack of a formally named object abstraction mechanism makes it difficult to talk about specific kinds of objects supported
by the JavaScript library. JavaScript documentation has used various terms including “type,” “object,” “constructor,” and
“class” to talk about such abstractions. In the remainder of this paper we use the capitalized word “Class” when we need to
talk about the definition of a set of JavaScript objects that share a common representation and methods, regardless of the
actual form of the definition.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 19

Base Objects Properties Properties
1.0 1.1 1.0 Added in 1.1

<global functions> eval, isNaN,1 parseFloat,2 parseInt2
Array3 Array join, reverse, sort, toString
Boolean3 Boolean toString
Date getDate, getDay, getHours,

getMinutes, getMonth, getSeconds,
GetTime, getTimezoneOffset,
getYear, setDate, setHours,
setMinutes, setMonth, setSeconds,
setTime, setYear, toGMTString,
toLocaleString, Date.parse, Date.UTC

toString

<function objects> arguments, length, caller
Function3 Function prototype, toString
Math E, LN2, LN10, LOG2E, LOG10E, PI,

SQRT1_2, SQRT2, abs, acos, asin,
atan, ceil, cos, exp, floor, log, max,
min, pow, random,1 round, sin, sqrt,
tan

Object constructor, eval, toString, valueOf
Number3 Number toString, Number.NaN,

Number.MAX_VALUE,
Number.MIN_VALUE,
Number. NEGATIVE_INFINITY,
Number.POSITIVE_INFINITY

<string values> length
String charAt,4 indexOf, lastIndexOf, split3,

substring, toLowerCase, toUpperCase,
(plus 13 HTML wrapper methods)

split, toString, valueOf

1 In 1.0 available only on Unix platforms.
2 In 1.0 behavior differs depending upon host operating system.
3 Exists in 1.0 but is not operational or buggy.
4 In 1.0 these methods appear to be properties of string values. In 1.1 they are properties of String.prototype.

Fig. 8. JavaScript 1.0/1.1 Host-Independent Built-In Library

the implementation of these features and documents their existence. Figure 8 summarizes the
host-independent Classes defined in JavaScript 1.0 and 1.1.

The String Class provides the length property and six general-purpose methods that operate
upon immutable string values and, when appropriate, return new string values. The JavaScript 1.0
String Class also includes thirteen methods for wrapping a string value with various HTML tags.
This is an example of the fluid boundary between host-dependent and general-purpose functionality
in JavaScript 1.0/1.1. JavaScript 1.0 does not provide a global String constructor function. All string
values are created using string literals or by operators and built-in functions. JavaScript 1.1 adds
the global String constructor and the split method.
The Date Class is used to represent calendar dates and time. JavaScript 1.0 Date was a direct

transliteration, bugs and all, of the java.util.Date class of Java 1.0 [Gosling et al. 1996]. This
includes encoding details such as using a millisecond resolution time value centered on 00:00:00
GMT on January 1, 1970, externally numbering months from 0–11, and Year 2000 ambiguities
that were present in the Java design. This design choice was motivated by Java interoperability

Authors’ Corrections: March 2021

20 Allen Wirfs-Brock and Brendan Eich

requirements. The only Java methods excluded were equals, before, and after which were not
needed because JavaScript’s automatic coercions permitted its numeric relational operators to be
directly used with Date objects.

Other than Object, Date is the only usable built-in constructor function in JavaScript 1.0. Date
is also the only Class that exposed methods on the constructor object in addition to methods for
Class instances. None of the browser-specific Classes exposed a constructor function.

Some properties of built-in library objects and host-provided objects have characteristics which
are not available for properties defined by JavaScript programmers. For example, their method
properties are not enumerated by the for-in statement. Some of their properties are ignored by
the delete operator or have read-only values. Accessing or modifying some of their properties
trigger special behaviors with observable side effects.

JavaScript 1.1 adds a usable Array Class. The Array constructor creates objects intended for use
as integer-index, zero-origin vectors of heterogeneous values. The array elements are presented as
object properties whose keys are the string representation of their integer indices. Array objects
also have a length property whose value is initially set by the constructor. The length property’s
value is updated whenever an element index that is greater or equal to the current length value is
accessed. Thus the number of elements of an Array object may dynamically grow.

3.6 Execution Model
In Netscape 2 and subsequent browsers, an HTML Web page may contain multiple <script>
elements. When a page is loaded, a fresh JavaScript execution environment and global context is
created for the HTML document. The global context includes its global object, which is an object
whose property keys are the names of the built-in functions and variables provided by JavaScript
and the host environment plus the global variables and functions defined by the scripts.
In Netscape 2, the JavaScript code for each <script> element is parsed and evaluated in the

order they occur within the page’s HTML file. In later browsers <script> elements may be tagged
for deferred evaluation which lets the browser continue processing HTML while it waits for the
JavaScript code to be retrieved from the network. In either case the browser evaluates one script at
a time. Scripts normally share the same global object. Global variables and functions created by a
script are visible to all subsequent scripts. Each script is run to completion without preëmption or
interruption. This characteristic of early browsers became a fundamental principle of JavaScript.
Scripts are atomic units of execution and once started each one runs until it is completed. Within a
script it is not necessary to worry about interference from concurrent execution of other scripts
because it cannot occur.
Netscape 2 also introduced the concept of Web page frames.20 A frame is a region of a Web

page into which a separate HTML document may be loaded. All of the frames on a page share
the same JavaScript execution environment but each frame has a separate global context within
that environment. Scripts loaded in different frames see a different global object, different built-
ins, and different global variables and functions. But a global context is not an address space. A
JavaScript execution environment has a single address space of objects that is shared among all of
the frames within that environment. Because of this single address space of objects, it is possible for
object references to be passed among the JavaScript code in different frames intermingling objects
from different global contexts. This can lead to surprising behavior. Consider the JavaScript 1.1
example in Figure 9. Each frame has its own distinct Object constructor and Object.prototype
that provide properties inherited by all objects created by that constructor. Adding a property to

20The original HTML <frame> tag is considered obsolete and has been superseded by the <iframe> tag. The semantics
described in this section are common to both kinds of elements.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 21

//The variable alien references an object created within a different frame

//by evaluating: new Object ()

var alien = createNewObjectInADifferentFrame ();

var native = new Object (); // create an object in the current frame

Object.prototype.sharedProperty = "each frame has distinct built -ins";

alert(native.sharedProperty); // displays: each frame has distinct built -ins

alert(alien.sharedProperty); // displays: undefined

Fig. 9. JavaScript 1.1 example showing that code in different HTML frames can interchange objects even
though they have distinct built-in objects.

a frame’s Object.prototype does not make the property visible to objects created by another
frame’s Object constructor.

Interactive JavaScript Web pages are event-driven applications where the event loop is provided
by the browser. HyperCard [Apple Computer 1988] inspired Brendan Eich to use the concept of
events in the original Netscape 2 DOM [Netscape 1996c] design. Originally events were triggered
primarily by user interactions, but in modern browsers there are many kinds of events, only some
of which are user originated.

When all the scripts defined by a Web page have been executed, the JavaScript environment for
the page remains active waiting for an event to occur. Event handlers can be associated with objects
provided by the browser, including many DOM objects. An event handler is simply a JavaScript
function that is called in response to the occurrence of an event. Assigning a function to certain
properties of browser objects makes that function the handler for the event associated with the
property. For example, objects that correspond to clickable pointing devices have an onclick
property that can be set. A JavaScript event handler can also be defined directly in an HTML
element using a snippet of JavaScript code, for example:

<button onclick="doSomethingWhenClicked()">Click me</button>

When the HTML element is processed the browser creates a JavaScript function and assigns it as
the value of the onclick property of the button object. The onclick code snippet is used as the
function body. When an event with a JavaScript event handler occurs it is placed into a pool of
pending events. When no JavaScript code is executing, the browser takes a pending event from the
event pool and calls the associated function. Like scripts, event handler functions run to completion.

3.7 Oddities and Bugs
JavaScript has several unusual or unexpected features. Some were intentional and others were
artifacts of quick design decisions made during the original Mocha 10-day sprint. JavaScript 1.0
also had bugs and incompletely implemented features.

3.7.1 Redundant Declarations. JavaScript tolerates multiple declarations of the same name within
a scope. All declarations of a name within a function correspond to a single binding that is visible
throughout the entire body of the function. For example, the following is a valid function definition:

function f(x, x) { // x names the second parameter , ignores 1st x
var x; // same binding as second parameter
for (var x in obj) { // same binding as second parameter

var x=1, x=2; // same bindings as second parameter
}
var x=3; // same binding as second parameter

}

Authors’ Corrections: March 2021

22 Allen Wirfs-Brock and Brendan Eich

All of the var declarations within the function f refer to the same variable binding which is also
the binding of the second parameter of the function. The same name can occur more than once in a
function’s formal parameter list. Prior to executing the function body, all variables defined by var
declarations are initialized to undefined except for var variables whose names are also parameter
names. In that case, the initial value is the same as the argument passed for the identically named
parameter. The initializers of var declarations, including redundant declarations, have the same
semantics as an assignment to the initialized variable. They are executed when reached in the
normal sequence of execution within the function body.

There may be multiple function declarations with the same name in a script. When this occurs
it is the last function declaration for the name that is hoisted to the top of the script and used to
initialize the global variable with that name. Any other function declarations for that name are
ignored. If there are both global function declarations and global var declarations for the same
name they all refer to the same variable and any var declarations with an initializer will overwrite
the function value if and when the initializer is encountered during the sequence of execution.

3.7.2 Automatic Coercions and the == Operator. Automatic coercions were intended to lower the
entry barrier for the initial adoption of JavaScript as a simple scripting language. However, as
JavaScript evolved into a general purpose language the coercions have proven to be a significant
source of confusion and coding bugs. This is particularly true for the == operator. Some of the
problematic coercions added to Mocha after the initial ten-day sprint were in response to alpha user
requests to ease the integration of JavaScript and HTTP/HTML. For example, internal Netscape
users requested that HTTP status codes containing the string value "404" should compare equal to
the number 404 using == comparison. They also requested automatic coercion of empty strings to 0
in numeric contexts, providing a default value for empty fields of HTML forms. These coercions
introduced surprises such as: 1 == '1' and 1 == '1.0' but '1' != '1.0'.
JavaScript 1.0 treats the = operator as == within the predicate of an if statement, for example:

if (a = 0) alert("true"); //these two statements are equivalent
if (a == 0) alert("true");

JavaScript 1.0–1.2

3.7.3 32-Bit Arithmetic. JavaScript’s bitwise logical operators operate on 32-bit values encoded
within an IEEE double. The bitwise operators first integer truncate and then do a modulo conversion
of their operands to 32-bit 2’s complement values before performing the bitwise operation. So,
a Number value, x, can be forced to a 32-bit value by the expression x|0 where | is the bitwise
logical or operator. Using this idiom 32-bit signed addition can be performed as follows:

function int32bitAdd(x, y) {
return ((x|0) + (y|0))|0 // addition with result truncated to 32-bits

}

Unsigned 32-bit arithmetic can be performed using a similar pattern but using the unsigned right
shift operator >>>0 instead of |0.

3.7.4 The this keyword. Every function has an implicit this parameter. When a function is called
as a method, the this parameter is set to the object that was used to access the method. This is
the same meaning that is given to this (or alternatively self) in most object-oriented languages.
However, JavaScript’s use of a single form of definition for both object-associated methods and
standalone functions has made this a source of confusion and bugs for many programmers.

When a function is directly called, without being qualified with an object, this is implicitly set
to the global object. The properties of the global object include all of a program’s global variables,

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 23

so this qualified property references in a directly called function are equivalent to global variable
references. Because the treatment of this depends upon how a function is called, the same this
reference can have different meanings during different calls, for example:

function setX(value) {this.x=value}
var obj = new Object;
obj.setX = setX; // install setX as a method of obj

obj.setX (42); //calls setX as a method
alert(obj.x); // displays: 42

setX (84); // directly call setX
alert(x); // accesses global variable x; displays 84
alert(obj.x); // displays: 42

Further confusion about this arises because some HTML constructs implicitly turn JavaScript
code fragments into functions that are invoked as methods, for example in:

<button name="B" onclick="alert(this.name + " clicked")>Click me</button>

when the event handler is executed, it invokes the onclick method of the button; this refers to
the button object and this.name retrieves the value of its name attribute.

3.7.5 Arguments Objects. A function’s arguments object is joined to its formal parameters—there
is a dynamic mapping between the arguments object’s numerically indexed properties and the
function’s formal parameters. A change to an arguments object property also changes the value of
the corresponding formal parameter, and a change to a formal parameter is observable as a change
to the corresponding arguments object property:

f(1,2);
function f(argA , argB) {

alert(argA); // displays: 1
alert(f.arguments [0]); // displays: 1
f.arguments [0] = "one";
alert(argA); // displays: one
argB = "two";
alert(f.arguments [1]); // displays: two
alert(f.arguments.argB);// displays: two

}

JavaScript 1.0–1.1

As shown in the last line of the above example, the formal parameters can also be accessed by using
their names as property keys of the arguments object.

Conceptually, when a function is called, a new arguments object is created for the new activation
of the function and the value of the function object’s arguments property is set to that new
arguments object. But in JavaScript 1.0/1.1 the function object and the arguments object are the
same objects:

function f(a,b) {
if (f==f.arguments) alert("f and f.arguments are the same object")

}
if (f.arguments ==null) alert("but only while a call to f is active")

JavaScript 1.0–1.1

Ideally, a function’s arguments object should be accessible only within its body. This is partially
enforced by automatically setting a function’s arguments property to null when the function

Authors’ Corrections: March 2021

24 Allen Wirfs-Brock and Brendan Eich

returns from a call. But assume there are two functions, f1 and f2. If f1 calls f2 then f2 can access
the arguments of f1 by evaluating f1.arguments.
An arguments object also has a property named caller. The value of the caller property is

the function object that invoked the current activation of the function or null if it is the outermost
function activation. By using caller and arguments, any function can inspect the functions and
their arguments on the current call stack and even modify the formal parameter values of functions
on the call stack. A caller property with the same meaning is also directly accessible via a function
object without going through its arguments object.

3.7.6 Special Treatment of Numeric Property Keys. In JavaScript 1.0 the bracket notation has an
unusual semantics when used with integer keys. In some cases, a bracketed integer key will access
an object’s properties in their creation order. A property order access occurs with an integer if a
property with that key does not already exist on the object and the value, n, of the integer is less
than the total number of object properties. In that case, the nth property (zero-origined) that was
created on that object is accessed, for example:

var a = new Object; //or new Array
a[0] = "zero";
a[1] = "one";
a.p1 = "two";

alert(a[2]); // displays: two
a[2] = "2";
alert(a.p1); // displays: 2

JavaScript 1.0

JavaScript 1.1 removed this special treatment of bracket notation.

3.7.7 Properties of Primitive Values. In JavaScript 1.0 numbers and Boolean values do not have
properties, and attempting to access or assign a property to them produces an error message. String
values behave as if they are objects with properties but they all share the same set of properties
and values except for their read-only length property, for example:

"xyz".prop = 42; // Set the value of property prop to 42 for all strings
alert("xyz".prop); // displays: 42
alert("abc".prop); // displays: 42

JavaScript 1.0

In JavaScript 1.1 property access or assignments to a number, Boolean, or string value causes a
“wrapper object” to be implicitly created using the built-in Number, Boolean, or String constructors.
The property access is performed upon the wrapper and typically accesses an inherited property
from its built-in prototype. Coercions performed by automatically invoking valueOf and toString
methods permit wrappers to be used as if they were primitive values in most situations. It is
possible to create a new property on a wrapper object by assignment, but implicitly created
wrappers typically become inaccessible immediately after the assignment, for example:

"xyz".prop = 42; // Set the value of a String wrapper property to 42
alert("xyz".prop); // Implicitly creates another wrapper , displays: undefined
var abc = new String("abc"); // Explicitly create a wrapper object
alert(abc+"xyz"); // Implicitly converts wrapper to string , displays: abcxyz
abc.prop = 42; // create a property on a wrapper objects
alert(abc.prop); // display: 42

JavaScript 1.1

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 25

3.7.8 HTML Comments inside JavaScript. A potential interoperability problem with JavaScript in
Netscape 2 was caused by what Netscape 1 and Mosaic browsers did when they encountered an
HTML <script> element. Those older, but still widely used browsers, would display the <script>
body—the actual JavaScript source code—as text when they displayed a Web page. This could be
prevented in those browsers by enclosing the script body with an HTML comment,21 for example:

<script >
<!-- This is an HTML comment surrounding a script body

alert("this is a message from JavaScript"); //not visible to old browsers
//the following line ends the HTML comment

-->
</script >

Mosaic and Netscape 1

Using this coding pattern, the HTML parsers in Netscape 1 and Mosaic would recognize the
entire script body as an HTML comment and not display it. But, as originally implemented in Mocha
this would prevent the browser from parsing (and executing) the script body as JavaScript because
the HTML comment delimiters were not syntactically valid in JavaScript code. To circumvent
that problem, Brendan Eich made JavaScript 1.0 accept <!-- as the start of a single line comment,
equivalent to //. He did not make --> a recognized JavaScript comment deliminator because
putting a // in front of it would suffice for this pattern. A backward interoperable script could then
be written as follows:

<script >
<!-- This is an HTML comment in old browsers and a JS single line comment
alert("this is a message from JavaScript"); //not visible to old browsers
//the following line ends the HTML comment and is a JS single line comment
// -->

</script >

Mosaic, Netscape 1, and Netscape 2 with JavaScript 1.0

Even though <!-- comments were not documented as official JavaScript syntax, they were used
by Web developers and supported by other browser JavaScript implementations. The result, was
that <!-- became part of the de facto Web Realityg. It took twenty years, but in 2015 they were
added to the ECMAScript standard—eventually Web Reality always wins.

4 MICROSOFT JSCRIPT22

The same week Netscape and Sun publicly announced JavaScript, Microsoft announced that it
intended to make Visual Basic “a standard for creating World Wide Web-based applications using
Visual Basic Script” [Wingfield 1995]. Microsoft formally announced support for JavaScript in its
May 29, 1996, Internet Explorer 3.0 Beta Press Release [Microsoft 1996]:

ActiveX Script.With native support for Visual Basic® Script and JavaScript, Microsoft
Internet Explorer 3.0 provides the most comprehensive and language-independent
script capabilities. Microsoft Internet Explorer can be extended to support additional
scripting languages such as REXX, CGI and PERL. Web page designers can plug any
scripting language into their HTML code to create interactive pages that link together
ActiveX controls, Java Applets and other software components.

21As long as the script body does not contain any > or -- operators, which are illegal in HTML comments.
22Most of the material in this section is based upon a recorded interview Allen Wirfs-Brock conducted on March 22, 2018,
with Robert Welland, Shon Katzenberger, and Peter Kukol [Welland et al. 2018].

Authors’ Corrections: March 2021

26 Allen Wirfs-Brock and Brendan Eich

Work on what became JScript started in October 1995 when Robert Welland joined Microsoft’s
Internet Explorer (IE) team. Welland had previously worked for Apple on the Newton handheld
computers and the NewtonScript language [Smith 1995]. NewtonScript was a prototype-based
object-oriented language whose design was influenced by the Self language. Welland had worked
closely with Walter Smith who was the principal designer of NewtonScript and with David Ungar
who had been a consultant to the project so Welland was very familiar with Self and Ungar’s ideas
about prototype-based languages. After Apple Welland had been thinking about how scripting
could be added to browsers. This led to him being hired to put scripting into Internet Explorer.

When Robert Welland got to Microsoft he was told he should put Visual Basic into IE but when
he talked to the Visual Basic team in Microsoft’s Developer Tools Division (DevDivg) they said
it would take two years. So he and Sam McKelvie quickly did the work to get Visual Basic for
Applications23 running within IE 2 but found it was too complicated to integrate with the browser’s
object model. Welland observed LiveScript/JavaScript in the Netscape 2 public betas and started
experimenting with a simple bytecode interpreter for JavaScript which McKelvie then improved.
Welland discovered that Peter Kukol in DevDiv had written a JavaScript parser24 that could generate
bytecodes. Welland and McKelvie connected their interpreter with Kukol’s parser and a garbage
collector written by Patrick Dussud to form the foundation of JScript.
Microsoft’s DevDiv was responsible for the development of all of Microsoft’s programming

languages and developer tools so the involvement of RobertWelland and SamMcKelvie, whoworked
for the IE team in the Windows division, in the development of a new language implementation
was politically sensitive. There was also internal controversy about whether IE should support
JavaScript. DevDiv wanted to focus its attention on Visual Basic for scripting and on Java for
applications but the IE team’s goal was for IE 3 to be compatible with Netscape 3 and that required
including JavaScript support. Microsoft was not happy about having to support JavaScript but it
was too late to ignore it. The compromise was that IE and Microsoft as a whole would support
both JavaScript and Visual Basic for scripting and that responsibility for scripting languages would
belong to DevDiv. The IE/Windows team would be responsible for integrating scripting into the
browser and other products.

In January 1996, Sam McKelvie transferred into DevDiv while Robert Welland remained on the
IE team. Also in January, Shon Katzenberger transferred into DevDiv from the Microsoft Word
team to work on scripting. Katzenberger took over responsibility for the interpreter and, with help
from the Visual Basic team, got a scripting subset of Visual Basic running on the same interpreter.
This became known as Visual Basic Script or VBS.

Welland and McKelvie packaged the scripting system, including support for both JScript and VBS,
as an embeddable component that became known as Active Scripting. This component shipped in
1996 as part of both IE3 and Microsoft’s Web server product, IIS, where it provided the server-side
scripting technology for Active Server Pages. Active Scripting subsequently became a standard
component of Microsoft Windows and as of 2019 was still available to support legacy applications.

The IE team was very focused on competing with Netscape. They hoped that the script debugger
that was part of Active Scripting would attract JavaScript Web developers to IE because Netscape
did not have a JavaScript debugger. But they also understood that website interoperability with
Netscape was going to be essential to the adoption of IE. Shon Katzenberger and others ran
developmental versions of IE 3 against thousands of websites that used JavaScript and compared
the results with Netscape 2 and Netscape 3. Whenever they found a difference, Katzenberger had

23Visual Basic for Applications is a variant of Visual Basic 6 that is embedded within Microsoft Office applications.
24When interviewed in 2018, Kukol recounted that he had recently visited the JavaScript team at Microsoft and discovered
that his original parser was still used (with extensions) by Microsoft’s then-current JavaScript implementation.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 27

to reverse engineer the Netscape JavaScript behavior to understand what it was doing differently.
Some of the behaviors they found came as great surprises. They were particularly shocked when
they discovered that in Netscape’s implementation HTML frames shared a common object address
space and could freely interchange objects. IE had implemented frames as isolated environments
and it took significant reëngineering to enable objects to be passed among them.

Throughout the entire JScript development process, the lack of a proper language specification
was a constant problem. Welland recalled that during its development Thomas Reardon, who led
the overall IE3 development effort, took every opportunity he had to chide his counterparts at
Netscape about the lack of a JavaScript language specification.

5 FROMMOCHA TO SPIDERMONKEY
For all of 1995 and most of 1996 Brendan Eich was the the only Netscape developer working full-
time on the JavaScript engineg.25 JavaScript 1.1 in the August 1996 production release of Netscape
3.0 still consisted primarily of code from the 10-day May 1995 prototype. After this release, Eich
felt it was time to pay down the technical debt26 of the engineg and work at making JavaScript “a
cleaner language.” Netscape management wanted him to work on a language specification. They
were sensitive to criticism from Microsoft about the lack of a specification and were anticipating
that the imminent start of standardization activities would require a specification as input. Eich
resisted. He wanted to start by reimplementing Mocha. To write a specification he would have
to carefully review the Mocha implementation. He thought it would be most efficient to rewrite
Mocha as he reviewed it. That would also enable him to correct original design mistakes before
enshrining them in a specification.
Frustrated with this debate, Brendan Eich left the office and worked from home for two weeks

during which he redesigned and reimplemented the core of the JavaScript engine. The result was
a faster, more reliable, and more flexible execution engine. He discarded representing JavaScript
values as discriminated unionsg and used tagged pointers containing immediate primitive values
instead. He implemented features such as nested functions, function expressions, and a switch
statement that never made it into the original engine. The reference counting memory manager
was replaced with a mark/sweep garbage collector.

When Eich returned to the office, the new engine replaced Mocha. Chris Houck, one of the
original Netscape developers, joined Eich as the second full-time member of the JavaScript team.
Houck named the new engine “SpiderMonkeyg”27 based upon a lewd line from the movie Beavis
and Butt-Head Do America [Judge et al. 1996]. Clayton Lewis joined the team as manager and
hired Norris Boyd. Rand McKinny, a technical writer, was assigned to assist Eich in writing a
specification.

Brendan Eich continued to enhance the language as JavaScript 1.2, for release as part of Netscape
4.0. Its first beta release was in December 1996. Regular expressions were added in the April 1997
beta. Production releases of Netscape 4 for various platforms started in June and were spread over
the second half of 1997.
The JavaScript 1.2 language and built-in library implemented by SpiderMonkey were signifi-

cantly enhanced relative to JavaScript 1.0/1.1. Figure 10 lists the major new features in JavaScript

25In the JavaScript community, the term “engine” refers to a JavaScript language implementation. A JavaScript engine typi-
cally consists of parser, a virtual machine or similar runtime support, a garbage collector, a standard library implementation,
and other components.
26This is Brendan Eich’s retrospective description. “Technical debt” is not a term he would have used in 1996 to describe the
need to catch up with deferred maintenance.
27SpiderMonkey became the name of the JavaScript subsystem of subsequent Netscape and Mozilla browsers. As of 2020,
Mozilla still uses that name even though the actual implementation technology has changed multiple times.

Authors’ Corrections: March 2021

28 Allen Wirfs-Brock and Brendan Eich

• do statement
• statement labels and break/continue to label
• switch statement
• Nested function declarations (lexical scoping)
• Function expressions (lambda expressions)
• Eliminate automatic coercions previously performed by == operator
• Property delete operator actually deletes properties
• Object literals
• Array literals
• Regular Expression literals
• RegExp objects with methods to do regular expression matching
• __proto__ pseudo property of all objects
• New Array methods: push, pop, shift, unshift, splice, concat, slice
• New String methods: charCodeAt,
• fromCharCode (ISO latin-1), match, replace, search, substr, split using RegExp
• function arity property
• A function and its arguments object are distinct objects
• A function’s formal parameters and local declarations are accessible as named properties of its
arguments object
• arguments.callee
• watch/unwatch functions
• import/export statements and signed scripts

Fig. 10. New Feature In JavaScript 1.2

1.2 [Netscape 1997c]. Most of the library additions were inspired by features available in other
popular languages. The Array concat and slice methods were inspired by Python’s sequence op-
erations. The Array push, pop, shift, unshift, and splice were directly modeled on like-named
Perl array functions. Python also inspired the String concat, slice, and search methods while
String match, replace, and substr came from Perl. Java inspired charCodeAt. The syntax and
semantics of regular expression string matching was borrowed from Perl.
The statement-level additions provide previously missing statements that programmers famil-

iar with C-family languages would expect. The do statement directly replicates the syntax and
analogous semantics of the C do statement that was left out of JavaScript 1.0. Labeled statements
and break or continue naming a label is directly modeled after the same feature in Java. They
enable multilevel early escapes from nested iteration and switch statements and early escapes
from non-iterative code blocks. JavaScript 1.2’s switch statement includes compile-time evaluation
of case selector expressions [Eich et al. 1998, jsemit.c lines 757–776] as in C and Java.
In JavaScript 1.0/1.1 functions could be defined only by global declarations at the top level of

scripts. JavaScript 1.2 permits functions to be defined using local declarations within another
enclosing function. Such inner function definitions can be nested to an arbitrary level. Inner
functions are lexically scoped and their local declarations shadow identically named declarations
in outer scopes. In JavaScript 1.0/1.1 forward referencing of variables and functions was possible
because the language logically “hoisted” top-level var and function declarations to the beginning
of their script and function local var declarations to the beginning of the function body. In JavaScript
1.2 nested function declarations are also hoisted to the beginning of the enclosing function body.
If there is more than one function declaration with the same name, the one that occurs last in the
source code of the enclosing function body is bound to the name.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 29

JavaScript 1.2 also provides lambda expressions by allowing function definitions to occur as
expression primaries. They are called “function expressions” and are syntactically identical to
function declarations except that the function name is optional. If the name is present, the
function expression is treated as a hoisted function declaration for binding purposes. A function
expression without a function name defines an anonymous function. In either case, each runtime
evaluation of the function expression creates a new closure. The addition of the callee property
to the arguments object permits such closures to recursively reference themselves.
Array literals and object literals28 were inspired by similar features in the Python language.

Array literals provide a concise syntax for creating and initializing the elements of an Array object.
Array literals enable a JavaScript programmer to write the following:

var p2 = [1,2,4,8,16,32,64];

JavaScript 1.2

instead of the following:
var p2 = new Array();
p2[0] = 1;
p2[1] = 2;
p2[2] = 4;
// etc.

JavaScript 1.1

Similarly, object literals provide a concise syntax for creating an object and associating properties
with it. Using an object literal, a programmer can write the following:

var origin = {x: 0, y: 0};

JavaScript 1.2

instead of the following:
var origin = new Object;
origin.x = 0;
origin.y = 0;

JavaScript 1.0

The combination of object literals and function expressions make it easy to define classless
objects that include methods, such as the following:

function Point(x, y) {
return {

x: x,
y: y,
distance: function (another) {

return Math.sqrt(Math.pow(this.x - another.x, 2)
+Math.pow(this.y - another.y, 2));

}
}
var origin = new Point(0, 0);
alert(origin.distance(new Point(5, 5));

JavaScript 1.2

28The JavaScript 1.2 documentation and the ES3 specification called these “array initializers” and “object initializers.” But
the “literal” terminology is more common among JavaScript programmers and in articles and books.

Authors’ Corrections: March 2021

30 Allen Wirfs-Brock and Brendan Eich

Combining object literals and function expressions also provides a more convenient way to define
prototype objects. Also added is the __proto__ pseudo-property that enables a JavaScript program
to dynamically access and modify the internal reference each object uses to access inherited
properties.29 Using __proto__ a program can dynamically construct arbitrarily deep property
inheritance hierarchies and dynamically change whence an object obtains inherited properties.

Some JavaScript 1.2 changes ultimately proved to be missteps. The import and export statements
were intended for use with a Java-compatible script signing mechanism [Netscape 1997a] provided
in Netscape 4. Globals defined in a signed script were private to that script except for functions
that were explicitly exported using the export statement. This features was never adopted by
non-Netscape browsers.
Even though user requests had motivated the JavaScript 1.0/1.1 == operator’s coercion rules,

some users were finding that behavior surprising and confusing. Brendan Eich decided to fix ==
in JavaScript 1.2 by eliminating most of its automatic coercions [Netscape 1997d; Rein 1997]. If
both operands are not of the same primitive type (number, string, Boolean, object) == would return
false.

The hope with JavaScript 1.2 was that use of the <script> version attribute would be sufficient
to deal with the changes to JavaScript 1.0 and 1.1 semantics. But by the time of the JavaScript
1.2 production release this form of versioning was already becoming difficult for Web developers
to manage [Rein 1997]—particularly for Web pages that needed to also work with non-Netscape
browsers with their own implementations of JavaScript.

6 INTERLUDE: CRITICS
From its earliest days, JavaScript has been the target of intense criticism. Some of the criticism has
been directed at fundamental design decisions such as its use of dynamic typing or design details
such as its coercion rules. Other critics have fundamental disagreement with how it integrated
with HTML or concerns about its exposure of browser security vulnerabilities [Fair 1998]. Robert
Cailliau [Wikinews 2007] called JavaScript “the most horrible kluge in the history of computing”
and said, “I know only one programming language worse than C and that is Javascript [sic].” Bret
Bos [2005], at a W3C workshop, characterized JavaScript as “the worst invention ever.”
For many novice programmers, JavaScript in browsers is their first exposure to common pro-

gramming issues, such as the challenges of floating point arithmetic. They typically assume that
those problems are unique to JavaScript. Many experienced programmers compare JavaScript to
familiar programming languages (or to Java, because of the name confusion) and find it lacking.
Articles [Cardy 2011] that catalog JavaScript’s quirks and websites such as wtfjs.com [Leroux
2010] became a Web staple.

Part 2: Creating a Standard

7 FINDING A VENUE
When theMocha project began in 1995 it was already clear that standards would be needed to ensure
the interoperability of Web pages across different Web browsers. This was formally recognized in
the Netscape and Sun [1995] JavaScript announcement:

Netscape and Sun plan to propose JavaScript to the W3 Consortium (W3C) and the
Internet Engineering Task Force (IETF) as an open Internet scripting language standard.

However, neither the W3C nor the IETF were a suitable venue for creating a vendor-independent
JavaScript specification. The IETF focus was on Internet protocols and data formats, rather than
29The __proto__ pseudo-property is similar to a Self parent slot.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 31

programming languages. The W3C was a new organization, and its technical leadership was
not interested in adding an imperative programming language to the Web technology suite. As
Berners-Lee’s collaborator Robert Cailliau recounted in an interview [Wikinews 2007]:

For example, I was convinced that we needed to build-in [sic] a programming language,
but the developers, Tim [Berners-Lee] first, were very much opposed. It had to remain
completely declarative.

In early 1996 the evolution of browser technologies was racing on “Internet time”30 [Iansiti
and MacCormack 1997] yet language standardization had a reputation for being a slow and often
contentious process. With Microsoft taking browser competition seriously, Netscape and Sun feared
that Microsoft might try to dominate development of Web scripting standards and attempt to
refocus it on a Visual Basic-based language. In the spring of 1996, Netscape and Sun needed to
find a recognized standards development organization under whose umbrella a JavaScript stan-
dard could be quickly drafted with Microsoft participation but not Microsoft domination. Carl
Cargill, a standards expert working for Netscape, knew the Secretary-General of Ecma Interna-
tional, Jan van den Beld, and steered JavaScript standardization toward it. Ecma positions itself
as a business-focused standards organization that minimizes bureaucratic processes in order to
minimize standards development time. The International Standards Organization recognizes Ecma
International, and Ecma standards can use a fast-track process to become ISO standards. In addition
to Cargill’s connections, Sun was already an Ecma member and considered Ecma to have proven its
independence by publishing a Windows API standard over Microsoft’s objection [LaMonica 1995].
Informal contacts and discussions involving Netscape, Sun, and Jan van den Beld, took place

over the spring and summer of 1996. In September, the Ecma Co-ordinating31 Committee [1996b]
considered a Netscape request to start a JavaScript standardization activity and authorized a start-up
meeting targeted for November 4–5, 1996, in Silicon Valley. Netscape formally applied [Sampath
1996] for Ecma membership as an Associate Member.32 On October 30, an open invitation [Ecma
International 1996a] for a “start-up meeting on a project on JavaScript” was published. A new Ecma
Technical Committee would be organized for the activity if there was sufficient interest. Ecma
uses numeric designators for its technical committees and the next available number was 39. In
December 1996, at its semi-annual meeting the Ecma General Assembly approved the creation of
TC39 and a Statement of Work. At the same time, Microsoft joined Ecma as an Ordinary Member.

8 THE FIRST TC39 MEETING
The TC39 organizing meeting took place November 21–22, 1996, at the Netscape offices in Mountain
View, California. The minutes [TC39 1996] record that there were thirty attendees (Figure 11). The
meeting opened with welcomes from Jan van den Beld on behalf of Ecma and David Stryker, the
Netscape VP of Core Technologies. Stryker expressed his wish that the committee would create a
specification with minimal deviations from the then-current implementations and that language
extensions beyond that should be deferred to the future.

Thomas Reardon, the leader of the Microsoft Internet Explorer development team, recommended
that the committee “avoid duplication” by not working on the built-in library for an HTML object
model and instead leave that to the W3C. This recommendation was accepted by the committee
and was essential to the early success of the committee as Netscape’s and Microsoft’s core language

30A term coined to describe the short development cycles and frequent product release of Netscape and other early Web
technology developers.
31During this period, Ecma spelled “coördinating” using an explicit hyphen.
32Ecma Associate Members participate in one Technical Committee. Ecma calls its highest membership level “Ordinary
Members.” Ordinary Members are full voting members of the Ecma General Assembly and may participate in all TCs.

Authors’ Corrections: March 2021

32 Allen Wirfs-Brock and Brendan Eich

Acting
Chairman: Mr. J. van den Beld
Secretary: Mr. J. van den Beld (SG ECMA)
Attending: Mr. Cargill (Netscape), Ms. Converse (Netscape), Mr. Eich (Netscape), Mr. Fisher

(NIST), Mr. Gardner (Borland), Mr. Krull (Borland), Mr. Ksar (HP), Mr. Lenkov
(HP), Mr. Lie (W3C), Mr. Luu (Mainsoft), Mr. Mathis (Pithecanthropus, JTC1/SC22),
Mr. Matzke (Apple), Mr. Murarka (Spyglass), Ms. Nguyen (Netscape), Mr. Noorda
(Nombas), Mr. Palay (Silicon Graphics), Mr. Reardon (Microsoft), Mr. Robinson
(Sun), Mr. Singer (IBM), Mr. Smilonich (Unysis), Mr. Smith (Digital), Mr. Stryker
(Netscape), Ms. Thompson (Unisys), Mr. Urquhart (Sun), Mr. Veale (Borland), Mr.
Welland (Microsoft), Mr. White (AAC Group, Microsoft), Mr. Willingmyre (GTW
Associates, Microsoft), Mr. Wiltamuth (Microsoft).

Excused: Mr. Huffadine (Callscan)

Fig. 11. Attendees at the first meeting of TC39—as recorded in the meeting minutes [TC39 1996]

features were very similar but their HTML APIs were very different. The decision that TC39 would
develop only platform/host-environment independent standards became and continues to be one
of TC39’s core operating principles. Reardon discussed the difficulties Microsoft had experienced
in trying to make JScript fully compatible with Netscape and stressed the need for formalization
of a language specification. But he also cautioned that the specification should leave room for
competing implementations to add value.
The proposed agenda had included technical presentations from Netscape, Sun, Microsoft, and

Nombas Inc. as well as the actual organizational activities needed to set up a new Ecma technical
committee and start work on drafting a standard language specification. But at the meeting Sun
said that it did not need to present anything and a Borland International presentation was added to
the agenda.
Both Netscape and Borland had handed out draft technical specifications at the beginning of

the meeting. Microsoft did not. During Thomas Reardon’s presentation he said that Microsoft had
developed its own preliminary specification and held up a document. Reardon claimed that they
had not had time to get it copied yet but would have copies available the next day so the Microsoft
technical presentation was moved to the second day of the meeting.
Brendan Eich attended, but the Netscape technical presentation was made by Anh Nguyen. It

introduced the preliminary draft of JavaScript Language Specification for JavaScript 1.1 authored
by Eich and C. Rand McKinny [1996]. Netscape contributed this document to Ecma to serve as
one of the base documents for the standardization effort. Nguyen explained that JavaScript 1.1 in
Netscape Navigator 3 had a few deviations from the initial JavaScript version in Netscape 2. The
Netscape specification described the language syntax using a BNF notation similar to that used in
the ANSI C language standard [ANSI X3 1989]. It used informal prose to define most semantics and
a table formulation to describe the language’s coercion rules.
Borland had created a server implementation of JavaScript and a JavaScript IDE [Lazar 1997].

Their presentation focused on several language extensions they had already made or intended
to make in their implementation [Borland International 1996]. The major extensions were class
definitions, try/catch/finally exception handling, a C-like switch statement, code-blocks as first-
class values, array literals, a C-like preprocessor, and a number of additions to the built-in library
including some I/O functionality. Borland also noted the difficulties they had in trying to achieve
compatibility with Netscape’s implementation and said that a more formal specification was needed
in order to ensure interoperable implementations.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 33

Brent Noorda of Nombas Inc. presented Nombas’ experience with its Cmm (“C minus minus”)
product that was marketed as a scripting language. The surface syntax and some of the seman-
tics of Cmm were quite similar to JavaScript 1.0 and Nombas subsequently evolved its Cmm
implementation into an ECMAScript implementation for embedded applications [Noorda 2012].
As soon as the first day of the meeting adjourned, Microsoft’s Robert Welland had work to

do [Welland et al. 2018, at +8:30]. Thomas Reardon’s claim of not having time to make copies was a
stalling tactic to give Welland more time to work on Microsoft’s specification. The task of creating
a specification document for the meeting had been assigned to a Microsoft technical writer and
when Welland received it, just before traveling to attend the meeting, he found that the document
was inadequate as even a preliminary language specification. He did not want to give it to the
committee. But when he saw the Netscape document before the start of the meeting he felt is was
also inadequate and did not want it to become the sole base document for developing a standard.
Welland and Reardon decided they would stall for a day with the intent of having a better document
ready at the start of the second day of the meeting.

After the meeting, RobertWelland went to the home of his former NewtonScript colleague,Walter
Smith, who was also working for Microsoft but was still located in the Bay Area. They worked
through the night turning the Microsoft document into a plausible preliminary specification of the
core JavaScript language. Their specification also borrowed much of the grammar from the ANSI C
standard and used a table for coercion rules. But Welland wanted the rest of the semantics to be
more formally specified. He recalled [Welland et al. 2018, at +10:10] that the LISP 1.5 Programmer’s
Manual [McCarthy and Levin 1965] had described the semantics of the Lisp interpreter using a style
where a syntactic formwas immediately followed by a precise description of how that syntax should
be evaluated. In some cases, the semantics were presented using pseudocode.33 Welland decided
to use a similar style of pseudocode with numbered steps to describe the evaluation semantics of
JavaScript.
Welland and Smith added semantics to the document based upon the then-current JScript im-

plementation. Where there were things they were uncertain about they fell back to their Self and
NewtonScript experience and described what made sense from that perspective. The document
includes an object diagram of an Array that looks very Self-like in how it models property inheri-
tance. By the next morning they had a document that they felt was good enough to hand out as a
starting point. They made copies and Welland distributed them at the start of the second day of the
meeting. That document was The JScript Language Specification, Version 0.1 [Welland et al. 1996]
and became Microsoft’s base document contribution to the Ecma effort.
When Robert Welland made his presentation he was pleasantly surprised that the meeting

attendees generally liked his document and agreed that a more formal specification was needed
in order to ensure interoperable implementations. However, the consensus was to not wait for
another as yet unidentified formal specification technique but instead to create the initial draft
of a standard by integrating the Netscape, Microsoft, and Borland specification contributions and
then working to make the resulting draft more complete and precise. As a first step the committee
created an issues list [Appendix G] of items that needed to be resolved or clarified for the first
version of the standard. Because there were two proposed base document submissions, one of them
had to be selected as the document to start editing upon. Netscape’s document was authored using
FrameMaker and the Microsoft document was authored using Word. The Ecma representatives
explained that their internal editorial processes use Word so, to Welland’s surprise, the committee
agreed that they would use the Microsoft contribution as the base document.

33Welland may have been thinking of McCarthy’s Appendix B’s description of the PROG feature.

Authors’ Corrections: March 2021

34 Allen Wirfs-Brock and Brendan Eich

Chairman: Mr. G. Robinson (Sun)
Vice-Chairman: Mr. C. Cargill (Netscape)
Vice-Chairman: Mr. S. Wiltamuth (Microsoft)
Principal editor: Mr. M. Gardner (Borland) (to be confirmed)
Assistant editor: Mr. A. Murarka (Spyglass) (to be confirmed)

Fig. 12. Officers Elected at First TC39 Meeting [TC39 1996]

The committee selected an initial slate of officers (Figure 12) and set very aggressive goals of
having a first draft ready for the next meeting in January 1997, a final draft in April 1997, and
targeting approval of the standard by the Ecma General Assembly in June 1997. They scheduled
subsequent meetings at approximately six-week intervals and initiated actions to set up a private
mailing list and ftp server.34

The second meeting of TC39 [1997e] was on January 14–15, 1997. There were twenty-two atten-
dees including five guests who were not affiliated with Ecma members. Jan van den Beld announced
that the establishment of TC39 had been confirmed by the Ecma General Assembly. He stressed
that as soon as possible TC39 needed to start following the Ecma rules concerning membership
and participation. Contributors to the development of Ecma standards must be representatives of
organizations which are Ecma members.

The main technical content of the meeting was a review and discussion of the first draft [TC39
1997c] of the standard. Borland’s Michael Gardner and Randy Solton had created the document by
merging and integrating the contributions from Netscape, Microsoft, and Borland. Spyglass did not
join Ecma so Anup Murarka did not participate in developing the first draft. Features that were
exactly the same in all three implementations were considered uncontroversial, and places where
features differed were identified for reconciliation.
Features that were unique to a given implementation were listed in a “Proposed Extensions”

appendix. The committee discussed how to handle extensions and agreed to prioritize the core fea-
tures common to all then-current implementations over any extensions. There was also agreement
that the specification should avoid changes that would require modifying existing applications.
This ultimately became an important design guideline for all future revisions of the standard.

In order to meet the tight schedule, the committee established an ad hoc technical working group
that was authorized to work with the editor to fill in missing material and resolve outstanding
technical issues within the specification. The group was to communicate electronically and to meet
weekly alternating between face-to-face meetings and teleconferences. Scott Wiltamuth was to
serve as rapporteur. The TC39 meeting adjourned at 10:30 AM on January 15 and the rest of the
day was used for a meeting of the ad hoc technical working group.

After the meeting, Borland decided to not join Ecma so Michael Gardner could not continue as
the editor. Sun made Guy Steele available and he served as editor starting in late January 1997 and
continuing through publication of the standard’s first edition in September 1997.

9 CRAFTING THE SPECIFICATION
Michael Gardner and Randy Solton started work on the first draft specification immediately after
the November meeting and remarkable progress was made over the next six weeks. In addition to
Gardner and Solton, the first draft lists the following technical contributors: Brendan Eich (Netscape),
C. Rand McKinney (Netscape), Donna Converse (Netscape), Shon Katzenberger (Microsoft), and
Robert Welland (Microsoft).

34We have not located any archives of these channels.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 35

January 10, 1997 Draft ECMA-262, First Edition
Scope
Conformance
Reference
Overview

Notational Conventions Notational Conventions
Source Text Source Text
Lexical Conventions Lexical Conventions
Types Types
Type Conversion Type Conversion
Variables Execution Contexts
Expressions Expressions
Statements Statements
Function Definition Function Definition
Program Program
Native ECMAScript Objects Native ECMAScript Objects

Errors

Fig. 13. Organization of the ECMAScript Specification

Robert Welland had returned to Redmond and handed off his JScript 0.1 specification to Shon
Katzenberger to continue developing the language semantics [Welland et al. 2018, at +12:02].
Katzenberger, a Mathematics PhD, was comfortable with formal notations and found the pseudocode
concept (Appendix Q) worked well for describing the JavaScript semantics. It provided a level
of detail that he thought would be sufficient for ensuring interoperability. Katzenberger became
Microsoft’s primary technical contributor to the development of the standard. He expanded upon
Welland’s and Smith’s late-night work by checking it against the running implementations and
writing additional pseudocode algorithms for parts of the language they had not covered. He then
passed his new and revised material on to the Borland editors to incorporate into the official draft.
Katzenberger, when interviewed in 2018 [Welland et al. 2018, at +21:16], recalled being unhappy
that editorial changes sometimes unintentionally broke his algorithms. He was very pleased when
Guy Steele became available to serve as editor.

The January 10 draft [TC39 1997c] established the basic structure of the specification (Figure 13)
and defined many of the basic techniques, conventions, and verbiage used to define the language.
Many of these were still in use twenty years later in editions of the ECMAScript standard.

The description of the grammar conventions was largely taken from the Netscape specification
but the structure of the expression and statement level grammars and the production names largely
follows what was used in Microsoft’s specification. The expression grammar is different from both
contributed specifications in subtle details such as the precedence of function call, object creation
(new operator), and object property access expression elements.

The draft attempts to precisely specify the rules of automatic semicolon (ASI) insertion as a
parsing error-correction procedure. The statement grammar includes explicit semicolons that
terminate all non-compound statements. Without ASI, missing semicolons would produce parse
errors. The ASI specification defines when a JavaScript parser must try to correct such parse errors
by assuming the presence of a semicolon and reparsing. The ASI rules in the first draft were
incomplete and were refined in subsequent drafts and editions of the ECMAScript specification.
The January 10 draft includes Shon Katzenberger’s pseudocode algorithms, such as the one in

Figure 14, to define the semantics of various language constructs. The algorithms consisted of
sequential numbered steps and simple conditional control flows among the steps. Each step consists

Authors’ Corrections: March 2021

36 Allen Wirfs-Brock and Brendan Eich

4.7.4 GetValue(V)
1. If Type(V) is not a Reference, return V.
2. Call GetBase(V)
3. If Result(2) is null, generate a runtime error.
4. Call the [[Get]] method of Result(2), passing GetProperty(V) for the property name and

GetAccess(V) for the access mode.
5. Return Result(4).

Fig. 14. A Named Pseudocode Algorithm from the Jamuary 10, 2007, draft ECMAScript specification [TC39
1997c, § 4.7.4]. A period at the end of step 2 is missing in the original document.

of an imperativeg prose statement. The prose of a step is written in English incorporating a basic
vocabulary defined by the specification for commonly occurring actions. Algorithms may be named
and “called” from other algorithms within the specification.
This draft also defines the data types used within the algorithms: Number, Boolean, String,

Object, Undefined, and Null are the types of values visible to an ECMAScript program. Reference,
Completion, and List type values are used to define language semantics and are not directly
observable to ECMAScript programs.
The specification of the Object type introduces the concept of a property attributeg that con-

trol how individual properties may be accessed or modified. It defines seven different attributes:
ReadOnly ErrorOnWrite, DontEnum, NotImplicit, NotExplicit, Permanent, and Internal. Ultimately
ErrorOnWrite, NotImplicit, and NotExplicit were eliminated and Permanent was renamed as Dont-
Delete. Properties with the Internal attribute hold internal state that is associated with objects but
is not directly visible to an ECMAScript program. Such internal propertiesg are used to hold state
needed to implement the object semantics or unique behaviors of built-in and host objects.

Also introduced is the concept of internal methodsg, which are algorithms that define the essential
behaviors of objects. Different kinds of objects (for example, Array objects) may be specified
using alternative definitions for some internal methods thus providing them with behavioral
variations. The internal method interfaces are essentially the specification of a simple metaobject
protocolg [Kiczales et al. 1991].
Within the specification, internal methods and internal properties have names enclosed in

double brackets such as [[Foo]]. The January 10 draft defined the internal methods [[Get]], [[Put]],
[[HasProperty]], [[Construct]], [[Call]], and the internal property [[Prototype]]. Those internal
methods were used in the first formalization of the semantics of object property access, prototype
inheritance, and function invocation. By the time ES1 was completed [[CanPut]] and [[Delete]]
internal methods were added.
The first draft’s table of contents includes sections for native (built-in) ECMAScript objects

and for objects provided by browser and Web server hosting environments. But these sections
were empty in the January 10 draft. There were twenty items explicitly tagged “Issue” within the
draft. These are in addition to a number of possible language extensions which are described in an
appendix.
The January 10 draft was the basis for discussion at the first technical working group meeting

on January 15, 1997. Several important decisions were made [Wiltamuth 1997a], including the
following:

• The initial standard would not include specifications for host-specific library objects and
functions such as provided by browser and Web server hosts.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 37

Scott Wiltamuth (note taker) Microsoft
Brendan Eich Netscape
Shon Katzenberger Microsoft
Michael Gardner (1st draft co-editor) Borland
Randy Solton (1st draft co-editor) Borland
Clayton Lewis Netscape
Guy Steele (editor) Sun

Fig. 15. ES1 Specification Working Group Regular Participants

• Extensions to the then-current language would be considered only after a complete draft
specification was available.
• The comma and ? operators do not propagate Reference values hence they cannot be used
on the left hand side of assignment and do not provide a this value to function calls.
• Non-ASCII Unicode characters would not be allowed in identifiers.
• NUL (U+0000) characters are allowed in string values.
• Global function and variable declarations create properties which are enumerable and
deletable. Specification defined properties of built-in objects default to non-enumerable
and deletable.

Open issues that were not resolved at that first working group meeting included order of evaluation
of multiple assignments, the semantics of assignment to an inherited read-only property, and how
to accommodate date values prior to 1970.

The working group (Figure 15) met regularly through mid-April 1997. The group worked through
a list of major and minor issues and reviewed working draft text as it was prepared by the editor.
Notes exist for nine working meetings [Wiltamuth 1997a,b,c,d,e,f,g,h,i]. Richard Gabriel, who
attended some of the working group meetings, recalled in a personal communication a not uncom-
mon interaction during these meetings. Guy Steele would ask a question about some edge-case
feature behavior. Sometimes Brendan Eich would say “I don’t know,” and sometimes Eich and Shon
Katzenberger would be unsure or disagreed; in such cases they would each turn to their respective
implementation and try a test case. If they got the same answer, that became the specified behavior.
If there was a difference they would discuss the issue until they reached an agreement.
Following the first Gardner/Solton specification draft, seven additional drafts were released to

the full committee by Guy Steele between February 27 and May 2, 1997, with additional working
drafts circulated within the working group. Except for the final draft [TC39 1997b] for the Ecma
General Assembly, each draft contained a detailed issue resolution log [TC39 1997d].
Some issues had a long-term impact upon the language and its usage. For example, one issue

of continuing discussion was whether the short-circuiting Boolean operators && and ||, when
presented with Boolean-coercible operands, evaluated to the actual value of one of the operands
(“Perl-style”) or a Boolean true or false value (“Java-style”). Brendan Eich had originally imple-
mented them mostly with the “Perl-style” semantics but with “Java-style” behavior in a few cases.
Microsoft and Borland had implemented the full “Java-style” semantics. The ultimate decision was
to consistently apply the “Perl-style.”
That decision directly enabled what a few years later became a widely used JavaScript idiom.

Values null and undefined are coerced to false by Boolean operators and all Object references
coerce to true. This led to the idiom shown in Figure 16 for providing a default value for object
properties and optional function parameter.

Authors’ Corrections: March 2021

38 Allen Wirfs-Brock and Brendan Eich

function f(options) {

options = options || getDefaultOptionsObject ();

// if an options object was passed , use it.

// otherwise use the default set of options

...

}

ES1

Fig. 16. ECMAScript 1 enabled idiom for providing a default value for a function parameter.

Brendan Eich recalls that he hoped to include his JavaScript 1.2 changes to the == operator
semantics that eliminated its type coercions. Shon Katzenberger successfully argued that it was
too late to make such a change given the large number of existing Web pages it would break. Eich
reverted to the original semantics in the JavaScript 1.3 release of SpiderMonkey.
The third meeting of TC39 was March 18–19, 1997. This was the last scheduled formal TC39

meeting prior to the June Ecma General Assembly where, it was hoped, the first edition of the
standard would be accepted and approved. In order to meet that schedule TC39 would need to vote
at its third meeting to refer the standard to the GA.
On the March 12, draft version 0.12 [TC39 1997a] was distributed to the full committee and

discussed [TC39 1997f] at a working group meeting on March 14. This draft was nearing technical
completion except that the complex definition of Date object was still simply a set of section
headings. Shon Katzenberger had a complete specification-quality proposal which after discussion
and review could be incorporated into the specification. The document had grown from forty-one
substantive pages to ninety-six pages in the two months since completion of the January 10 draft.
Draft 0.12 had eight internal “Issue” tags and six significant entries in its issue-tracking appendix
in addition to the missing Date specification. About a dozen other issues were discussed at the
working group meeting and would need to be addressed in the specification.

Based upon Scott Wiltamuth’s assurance that no contentious issues remained and that a complete
draft could be finished by the end of March, TC39 unanimously agreed to forward a draft to the
Ecma General Assembly for a June approval vote. The Specification working group was given the
responsibility to finish the specification and work with the Ecma Secretariat staff to produce a final
draft that met their schedule and formatting requirements. Completing the draft took a month
longer than Wiltamuth projected. Three more intermediate drafts were internally distributed before
the final draft [TC39 1997b] was finished on May 2, 1997. It was distributed to the General Assembly
members on May 5. The final draft conformed to Ecma’s document conventions and included a
non-normativeg overview of the language written by Richard Gabriel. At its June 1997 meeting, the
General Assembly agreed to a publish the draft as Ecma Standard ECMA-262, 1st Edition after some
minor editorial changes, and to submit it into the ISO fast track process. The editorial changes were
completed and distributed to TC39 on September 10, 1997. ECMA-262, 1st Edition was released for
publication [Steele 1997] at the September 16–17 TC39 [1997h] meeting.

10 NAMING THE STANDARD
From the start of the standardization process, it was understood that the name of the language was
going to be problematic. Netscape’s initial name, “LiveScript,” had been replaced by “JavaScript” as
part of its strategic partnership with Sun. Sun trademarked “JavaScript” and licensed the trademark
to Netscape. While Sun was supportive of the standardization effort for Netscape’s scripting

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 39

language they were also aggressively protecting their Java-related trademarks. It seemed unlikely
that Sun would relinquish control of the “JavaScript” trademark to a standards organization.
At the first TC39 meeting the attendees invited Sun to contribute the name “JavaScript” and

agreed to use “ECMAScript” as a placeholder name until a more suitable name could be found. Scott
Wiltamuth was assigned the task of collecting name suggestions and checking their availability.

Wiltamuth [1997j] presented a list of sixteen potentially viable names and fourteen names that
were thought to be nonviable because of existing trademarks or conflicting usages. A straw poll
identified the top candidate names: LiveScript, ScriptJ, EZScript, Xpresso/Expresso/Espresso. The
Netscape and Sun delegates were asked to investigate the availability of LiveScript and JavaScript.
In the interim, the “ECMAScript” continued to be used in the specification drafts.
Sun confirmed [TC39 1997f] that it would not license “JavaScript” to Ecma. Netscape stated

it had no legal objection35 to the use of the name LiveScript for the standard. Based upon that
feedback, TC39 agreed to work with Netscape to secure the rights to LiveScript and that Ecma would
investigate trademark registration. However, ECMAScript would still be used in the specification
drafts until written confirmation was received from Netscape.
The draft standard that was submitted to the Ecma General Assembly still used ECMAScript

as the name of the language. At the GA meeting [Ecma International 1997] there were concerns
about the appropriateness of using a trademarked name in the title of a standard as the intent of
a standard is to place all companies implementing the standard on equal footing. This precluded
the use of LiveScript as the name of the language as Netscape had decided that it was not willing
to formally transfer the name to Ecma. The general assembly approved the standard with the
placeholder “ECMAScript” name and instructed TC39 to resolve the naming issue by September.

Naming was discussed at the July TC39 [1997g] meeting. Scott Wiltamuth proposed “RDScript”36
and Carl Cargill proposed adopting “ECMAScript” as the permanent name. There was discussion
whether any name was actually necessary. Perhaps “ECMA-262,” the Ecma document number for
the specification would suffice as a name. Ultimately, nothing was resolved at the July meeting but
in September TC39 [1997h] agreed on publishing the standard using “ECMAScript” as the language
name.

A few months later ANSI, the American national standards body, in casting its vote on approval
of ECMA-262 as an ISO standard made this comment [TC39 1998e]: “it is unlikely that any im-
plementation of the language will be called ECMAScript. This has and will result in confusion
for users as to what the standard means and what Language engines support the standard.” This
prediction has proven to be largely correct. The world at large has continued to use the name
“JavaScript” to identify the language that is implemented by browsers and that name is enshrined in
the specification of the HTML <script> element. Brendan Eich [2006b] later expressed his opinion
of the naming issue: “ECMAScript was always an unwanted trade name that sounds like a skin
disease.”

11 ISO FAST-TRACK
The final step in the initial standardization of JavaScript was to get the Ecma specification accepted
as an International Standards Organization (ISO) standard. In September 1997, the first edition of
ECMA-262was submitted into the ISO/IEC fast-track process [TC39 1997h]. Guy Steele subsequently
resigned as Project Editor and was replaced by Mike Cowlishaw of IBM.

35Brendan Eich believes that Netscape was never serious about allowing Ecma to use the name LiveScript.
36Rapid Development Scripting language

Authors’ Corrections: March 2021

40 Allen Wirfs-Brock and Brendan Eich

An ISO/IEC ballot produced twenty-seven pages of comments [TC39 1998e] from the national
standards bodies of Denmark, France, Japan, Netherlands, and the USA. Also included were com-
ments that TC39 [1998b] submitted listing errors it had found. The majority of the comments
identified minor editorial issues that had been missed during the rapid creation of ECMA-262. There
were also a few, more significant, technical issues reported relating to the Date object’s year 2000
transition support and with the integration of Unicode into the language.

Mike Cowlishaw, with TC39 input, prepared a Disposition of Comments Report that was reviewed
and accepted at a ballot resolution meeting [TC39 1998a]. In July 1998, the camera-ready revised
specification was released to ISO/IEC and a postal ballot was sent to Ecma ordinary members who
approved the revised specification as ECMA-262, 2nd Edition [Cowlishaw 1998].

12 DEFINING ECMASCRIPT 3
At the first TC39 meeting a number of extensions to the JavaScript 1.0/1.1 language were proposed
and some were incorporated into the first draft of the language specification. But the TC39 technical
working group had agreed to defer consideration of any new features until specification of the base
language was complete. For most of the development of the first edition, possible extensions were
relegated to an appendix of the draft specification [TC39 1997a, Appendix B].
By the July 1997 TC39 [1997g] meeting, work on the first edition was nearly complete. The

committee’s focus shifted to considering what new features should be incorporated into the next
edition of the specification. Netscape had already indicated its direction with the shipment of
Netscape 4.0, incorporating the SpiderMonkey engine with the JavaScript 1.2 extensions. Scott
Wiltamuth presented Mircosoft’s [1997] initial proposal for “ECMAScript 2.0” that included a
switch statement, a do while statement, and labeled statements with labeled break and continue.
Also included were the === and !== operators and adding the caller property to the arguments
object. Andrew Clinick [1997] of Microsoft presented a separate proposal for adding conditional
compilation support. The starting point for “Version 2” solidified in October when Microsoft
shipped JScript 3.0 as a component of Internet Explorer 4.0. Figure 17 lists the major extensions to
ECMAScript 1st Edition implemented by the Netscape [1997c] and Microsoft [2009b] browsers as
of the end of 1997.
The formal TC39 meetings had become management and strategy sessions attended by group

and program managers representing the member companies. Most of the technical work of the
committee occurred in informal technical working groups. At the July meeting TC39 agreed on a
set of steps for developing Version 2. It also agreed that it was the responsibility of the technical
working groups to define the work items, feature proposals, and acceptance criteria. Version 2 would
be allotted more time than had been available for the first edition to allow the draft to mature and
receive external feedback. The target date for a first draft of the Version 2 specificationwas December
1997. At the September meeting [TC39 1997h] it was further agreed the Version 2 specification
must be backward compatible with programs that comply with the 1st edition specification.
At the times these decisions were made, the ISO fast-track process had not yet started and it

was not anticipated that the resulting changes would require a new edition of ECMA-262 to align
with the ISO edition. By early 1998, there were two working groups with overlapping membership
working on two separate specification drafts. It became apparent that “Edition 2” and “Version 2”
were not going to be the same publication. However, TC39 delegates continued to call the next
round of feature work “Version 2” or “V2” even after it was known that it would likely be published
as the “3rd Edition.” This was not the last time where TC39’s internal version naming would end
up clashing with its ultimate publication nomenclature.
At the end of 1997, there were major participation changes in the technical working groups.

Figure 18 lists individuals appearing in the meeting notes for at least two working group meetings

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 41

Feature JavaScript
1.2

JScript
3.0

ECMA-262
3rd Edition

do statement ✓ ✓ ✓
break/continue to label ✓ ✓ ✓
switch statement ✓ ✓ ✓
Nested functions ✓ ✓ ✓
Functions in expressions ✓ ✓ ✓
Object literals ✓ ✓ ✓
Array literals ✓ ✓ ✓
=== and !== ✓ ✓
Regular Expression literals ✓ ✓ ✓
delete operator ✓ ✓ ✓
__proto__ pseudo property of all objects ✓
Array methods: concat, slice ✓ ✓ ✓
Array methods: push, pop, shift, splice, unshift ✓ ✓
Sparse arrays with inherited elements ✓ ✓
String methods: fromCharCode, match, replace,
search, substr, split using regular expressions

✓ ✓ ✓

String method: charCodeAt ✓ ✓
RegExp methods: compile, exec , test ✓ ✓ ✓
RegExp properties: $1. . .$9, input ✓ ✓
RegExp global properties: lastMatch, lastParen, ✓
leftContext, rightContext ✓
arguments object has local declaration properties ✓ ✓
arguments.callee ✓ ✓
arguments.caller ✓ ✓
watch/unwatch functions ✓
import/export statements and signed scripts ✓
Conditional compilation ✓
debugger keyword ✓

Fig. 17. Extensions to ECMA-262 1st Edition that shipped in major Web browsers in 1997. Most of these were
ultimately included in ECMA-262 3rd Edition.

over the course of 1998. Of the regular participants in the working group that developed the first
edition, only Clayton Lewis remained active. Brendan Eich attended one meeting in February 1998
and then became a co-founder of the Mozilla Project [Mozilla Organization 1998], the effort to
open source the code of the Netscape browser. Waldemar Horwat assumed the role as Netscape’s
language design lead for TC39. Similarly, Microsoft’s Katzenberger took a sabbatical and then
moved on to other projects. Herman Venter and Rok Yu assumed his TC39 responsibilities for
Microsoft.

In October 1997, the technical working group produced lists (Appendix H) of features that were
candidates for inclusion in Version 2. The features listed as having agreement for inclusion were
largely the union of the Netscape JavaScript 1.2 and Microsoft JScript 3.0 features with a few
exclusions. It also included toSource. This corresponded to an object serialization/persistence
scheme that Brendan Eich had developed for JavaScript 1.3.37 Other speculative features that lacked

37The serialization scheme included an extensible set of toSource methods for serializing individual objects as JavaScript
source code and “sharp variables” for representing circular references. The global function uneval would serialize an object
graph starting with a root object. The resulting source code string could be deserialized using eval. Brendan Eich borrowed
the sharp variable syntax #n= and #n# from Common Lisp[Steele 1990, pages 578–579].

Authors’ Corrections: March 2021

42 Allen Wirfs-Brock and Brendan Eich

Norris Boyd Netscape Drew Lytle Microsoft
Andrew Clinick Microsoft Karl Matzke SunSoft
Mike Cowlishaw IBM Mike McCabe Netscape
Jeff Dyer Nombas Dave Ragget HP/W3C
Bill Gibbons Netscape Herman Venter Microsoft
Waldemar Horwat Netscape Rok Yu Microsoft
Mike Ksar HP Chris Weight Microsoft
Clayton Lewis Netscape

Fig. 18. Regular Participants, 1998 TC39 Technical Working Group

consensus for inclusion were listed separately. As with Edition 1, much of the working group’s
attention would be focused on precisely specifying already implemented features and resolving any
differences that existed between the implementations. But the agreed feature list also included an
exception handling mechanism, an instanceof operator, and other features that were not yet part
of any implementation. These would require a form of design work that had not been necessary for
the first edition. Figure 19 lists features that were not in pre-1998 browsers which were ultimately
included in ES3.
The technical working group established a rhythm of monthly face-to-face meetings. Mike

Cowlishaw [1999b; Appendix I], the project editor, maintained a document that tracked the current
status of sections of the specification. The status indicators were as follows: “unchanged since V1,”
“not ready,” “discussion needed,” “function accepted,” and “content agreed.” The status “function
accepted” meant that the committee was in agreement about the functionality to be defined in
the specification and the status “content agreed” meant that the actual specification text had been
reviewed and accepted.
Bill Gibbons was editor of the working draft of the new specification. Each meeting had an

agenda of presentations and discussions of proposals and open issues. Proposals typically were
presented in the form of new or revised algorithmic specification text. Meetings also had a general
status review where attendees discussed issues that they had identified since the last meeting.
When there was agreement on a proposal or issue resolution, Gibbons would incorporate it into
the working draft. The first complete draft for V2 [Cowlishaw et al. 1998] was released in April
1998 and was based upon the ECMA-262 Edition 1. It did not include any of the changes being
concurrently developed for ECMA-262 Edition 2, the ISO edition. The working draft’s title page
states that it contains proposed changes submitted by Netscape and Microsoft. In September, after
completion of the ISO edition, Gibbons merged the ES2 changes into the current V2 working draft.
Unicode was still a new technology and language designers were still exploring alternative

approaches to integrating it into programming languages. One particular concern was how to deal
with Unicode’s various normalization forms which allow alternative encodings of behaviorally
equivalent sequences of characters. ES1 had veryminimal support for Unicode. After TomMcFarland
of Hewlett-Packard attended the May 1998 meeting, he submitted a memo [McFarland 1998]
identifying what he considered to be a number of issues relating to internationalizationg (I18N) and
better integration of Unicode into ECMAScript. In November 1998, following discussions at several
meetings, TC39 established an “I18N Working Group” chaired by Richard Gillam [1998] of IBM.
The I18N group quickly decided to focus on a small number of basic I18N capabilities for the core
language [Gillam et al. 1999b] and to defer the more complex aspects of internationalization and
localization for inclusion in a separately defined optional library [Gillam et al. 1999a,b]. However, it
took until 2012 for the specification [Lindenberg 2012] of such a library to be completed. In addition
to adding a small set of core language locale-specific functions, the I18N group also resolved how

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 43

• try-catch-finally and exception objects
• instanceof and in operators
• Object prototype methods: hasInstance, hasOwnProperty, isPrototypeOf, propertyIsEnumerable
• Global binding for undefined
• toFixed, toExponential, toPrecision
• URI handling functions
• Unicode characters in identifiers
• Basic I18N methods: Object toLocaleString; Array toLocaleString; Number toLocaleString;
String localeCompare, toLocaleLowerCase, toLocaleUpperCase; Date toLocaleDateString,
toLocaleTimeString

Fig. 19. New ES3 features not in pre-1998 browsers. Some of these were incorporated into browsers while ES3
was being developed by TC39.

to incorporate non-Latin characters into identifiers. It largely side-stepped the normalization issues
by recommending that the ECMAScript language specification be written with the presumption
that source code presented to an implementation is in Unicode Normal Form C. It also chose to not
include any support for Unicode normalization in the core language and to defer programmatic
support for normalization for inclusion in the optional library.

Amajor task for V2was to design the exception handlingmechanism for the language. In February
1998 [TC39 1998c], both Herman Venter of Microsoft and Waldemar Horwat of Netscape presented
design sketches. Both designs were loosely modeled after Java’s try-catch-finally statement syntax,
but with significant syntactic and semantic differences from both Java and each other.

In Microsoft’s design [Venter 1998b], any value can be thrown as an exception and try statements
have a single catch clause that declares a local variable that is initialized to the caught exception
value. Any exception propagated from the try block is unconditionally caught. There is no finally.

Netscape’s design [Horwat 1998] also allows any value to be thrown as an exception. However,
in this design try statements may have multiple catch clauses38 with syntactic instanceof
discriminators used to determine which catch clause to execute. If no catch clauses matches an
exception, propagation of the exception continues up the call stack after execution of the finally
clause. The instanceof discriminator was eventually replaced by an if discriminator39 which
evaluates an expression to a Boolean value which determines whether the descrimited catch is
selected.

At the February 1998 meeting, the committee agreed to use the try and catch keywords and that
a throw statement could propagate any value (not simply instances of specific built-in exception
Classes) to represent an exception. At the March 1998 working group meeting [TC39 1998d],
Waldemar Horwat argued for inclusion of the finally clause and agreed to further investigate
the details of how it could be implemented. The April working draft [Cowlishaw et al. 1998]
incorporated Netscape’s design but issues left unresolved at that time included support for finally,
scoping of the catch variable binding, whether multiple catch clauses would be allowed, whether
instanceof should be used as a catch selector, and whether unselected exceptions should be
automatically rethrown. Figure 20 provides examples illustrating the syntax used by Microsoft’s
proposal, Netscape’s revised proposal, and what is ultimately specified in ES3. Notice that in
Netscape’s design a separate selector expression is used to choose a catch clause while in both

38Mike Shaver reported in 2019 personal communications that he originated the idea of having multiple catch clauses.
Netscape’s [2000] JavaScript 1.5 subsequently included multiple catch clauses as a non-standard extension to ES3.
39In some working documents [Horwat 1998; Venter 1998c] the if keyword that prefixed a catch guard expression was
replaced with a colon.

Authors’ Corrections: March 2021

44 Allen Wirfs-Brock and Brendan Eich

Microsoft design Netscape design Final Edition 3 design

try {

doSomething ();

}catch (var e) {

if (e == "thing")

console.log("a thing")

else if (e == 42)

console.log("42")

else {

console.log(e);

cleanup ();

throw e; // rethrow

}

// no syntactic finally

}

cleanup ();

try {

doSomething ();

}catch(e if e =="thing"){

console.log("thing")

}catch (e2 if e2 == 42){

console.log("42")

}catch (e3){

console.log(e3);

throw e3; // rethrow

}finally {

cleanup ();

}

try {

doSomething ();

}catch (e) {

if (e == "thing")

console.log("a thing")

else if (e == 42)

console.log("42")

else {

console.log(e);

throw e; // rethrow

}

}finally {

cleanup ();

}

Fig. 20. Exception Handling Alternative Designs. In these examples, the doSomething function may throw
two kinds of exceptions that require distinct handling before execution continues in the current function. All
other exceptions are “rethrown” to propagate them to the current function’s caller. The current functions has
cleanup processing that needs to be performed regardless of whether doSomething throws an exception.

Microsoft’s design and the final ES3 design user logic in the single catch block is needed to
discriminate different exceptions.

The issue of whether the language should support multiple catch clauses was not resolved until
the final technical review [TC39 1999b] of the draft standard in September 1999 where that feature
was finally deferred for future consideration. It was also only at that final review that agreement
was reached on the set of built-in exception Classes that would be defined by the standard.

The catch clause guard expressions are an example of the difficulties the committee had with
adapting features from Java and other statically typedg class-based languages to the dynamic types
and prototypal inheritance of JavaScript. In Java, the determination of which catch clause will
handle a thrown exception is made via a side-effect–free subtype inclusion test that depends upon
only the statically declared class hierarchy. The test can be made before actually unwinding the
call stack. But JavaScript does not have a formal concept of class or a static class hierarchy and the
committee had decided to allow any kind of value to be thrown as an exception. Discriminating
among arbitrary values in a JavaScript catch clause requires evaluating arbitrary guard expressions
that potentially include assignments and function calls. But evaluation of expressions require es-
tablishing the appropriate lexical and dynamic environments and each guard expression evaluation
might have side effects that could change the result of subsequently evaluated guard expressions.
In one intermediate proposal, Waldemar Horwat [1998] had a complex prose specification that
allowed implementations to decide when and in what order to evaluate catch guard expressions.
It even allowed individual guard expression to be evaluated multiple times. Horwat hoped to
enable debuggers to determine, prior to unwinding the stack, whether a thrown exception was
unhandled. It is fortunate that this design was not accepted as subsequent experience showed that
such implementation variation is a significant source of interoperability issues for Web pages that
must work with multiple browsers.

Another example where TC39 had difficulty translating concepts and constructs from Java into
JavaScript is the instanceof operator. In Java, instanceof is a binary operator that tests whether
its left operand is an object that is an instance or a subclass instance of the class type named by its

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 45

right operand. Herman Venter’s [1998a] initial proposal for instanceof exactly mimicked Java’s
syntax by requiring that the right operand be an identifier. But JavaScript does not intrinsically
have the concept of classes and there are several ways to create new objects. Venter’s proposal
chose to assume usage of the constructor function pattern as the basis for the instanceof test. So,
the right operand is expected to dynamically evaluate to a constructor object, that is to a first-class
function value. Because the right operand is a first-class value rather than a type reference the
proposal was soon generalized to allow an expression in that position. The instanceof runtime
semantics was defined as a walk of the left operand’s prototype inheritance chain searching for
the object that is the current value of the right operand’s prototype property. For many simple
constructors this will produce a match for objects created by applying the new operator to the
constructor.

New JavaScript programmers with a Java background assume that instanceof is a reliable way
to discriminate among various kinds of objects. But many experienced JavaScript programmers
avoid using it. There is no guarantee that the object returned by a constructor will pass the dynamic
instanceof test and because of the mutability of the object meta-structures, repeated application
of instanceof may not be idempotent. The test can also fail if the object being tested is from a
different HTML frame than the constructor. Finally, even if the result is true, the object being tested
still may not have the data and behavioral properties created for it by its constructor.

ES3 includes inner function declarations and function expressions similar to what was originally
introduced in JavaScript 1.2. Function declarations were explicitly excluded from being nested
within a {} block or as a substatement. Waldemar Horwat [2008b] subsequently explained why:

1. Hoisting such declarations to the top level (as is done with var) doesn’t work because
such functions can capture scopes that include variables that don’t exist yet; ES3 didn’t
have local scopes but it did have exception scopes which cause the same problem. It
got worse when we considered what would happen once we extended the language
to have constants and dynamic (i.e. run-time) type annotations—such functions could
capture uncreated constants and, worse, variables whose types hadn’t been computed
yet!
2. Binding such declarations only as they’re encountered would have worked fine but
we didn’t want to implement this local binding in ES3 just for support of functions.
3. If such declarations were in the substatement position of an if statement, the planned
intent was to create them only when the if expression was true (or false for an else
clause), and put them into the nearest enclosing block-scope. This would constitute
a form of conditional compilation. A block with an attribute before it would be a
non-scoping block that distributes the attribute to the contained definitions, so you
could attach several definitions to one if statement.

The major browsers ignored these concerns and went ahead and implemented function declara-
tions within blocks. However, each implementation invented its own unique semantics for those
declarations. Fifteen years later this created significant problems for the designers of ES6 [TC39
2013b, Function In Block Options; §21.3.2].

By spring of 1999, it was clear that the 3rd edition could not be completed for General Assembly
approval in June but that a December approval was still possible. In March, the working group
performed a triage [Clinick 1999] to identify features that would need to be cut or deferred to make
the December target. The __proto__ property, sharp variables, call objects for stack reification, and
explicit closure objects were permanently cut. Features that were deferred for possible inclusion in
future editions included: atomic operations, exception catch guards, conditional compilation, date
scalars, decimal arithmetic, generic sequence operators, the optional I18N library, foreign function

Authors’ Corrections: March 2021

46 Allen Wirfs-Brock and Brendan Eich

interfacing, object persistence using toSource, support for numeric units syntax and arithmetic,
and an extensible syntax for literals.

The working group had four meetings between May and September 1999 to resolve issues for the
final draft of the 3rd Edition specification. Significant design issues that had to be resolved over this
period included creating an algorithmic specification of regular-expression–matching semantics,
deciding upon the set of built-in exceptions types, pinning down the binding semantics of function
expressions, and working out the details of incorporating Unicode support into the language.
On August 8, 1999, Mike Cowlishaw [1999c] distributed the final “E3 Draft Status” showing

all sections with a status of either “Content agreed” or “Unchanged since V1.” On August 25, Bill
Gibbons [1999] distributed the “Edition 3 Final Draft” and left the committee for a new job. Herman
Venter and Waldemar Horwat took responsibility for integrating any remaining changes into the
draft.
For the final ES3 development meeting [TC39 1999b], Horwat prepared a long list of notes

identifying corrections for minor editorial and technical issues. There were only a few changes that
had significance to everyday JavaScript programmers. The built-in exceptions ConversionError
and RegExpError were eliminated and replaced by TypeError and SyntaxError.
The August draft had not specified any meaning for the optional identifier that was allowed to

occur in the function name position of a FunctionExpression40 such as:

function fact(n) {throw "wrong fact"}; //a function declaration
var lambdaFact = function fact(n) {//a function expression: does it bind fact?

return n<=1 ? 1: fact(n-1);
};
lambdaFact (5); // should this recur or throw?

ES3 Draft

In that draft, calling lambdaFact would have thrown the exception because the name fact in the
head of the FunctionExpression did not create a lexical binding for fact. At the September meeting
there was agreement to revise the specification so that the name created a local name binding for
the function that was visible only within the body of the FunctionExpression.

The most surprising last minute addition was a feature called “joined functions” that Waldemar
Horwat proposed at the meeting. Joined function permitted implementations to repeatedly return
the same function closure object in situations like this:

function getClosure () {return function () {/* no free variable references */}}
var firstTime = getClosure ();
var secondTime = getClosure ();

//It would be implementation dependent whether
//the following displays true or false
console.log(firstTime === secondTime); //the same object?

Only ES3

Waldemar Horwat had concerns about the overhead of closure creation, and argued that this
change would allow an implementation the discretion to reuse closures in some common situations.
Herman Venter expressed some concerns, but by the end of the meeting agreed to allow this
change. This could have been a significant design mistake because subsequent experience with
Web browsers showed that the sort of observable implementation variation permitted by this

40FunctionExpression is a non-terminal symbol of the ECMAScript grammar. By convention, such symbols are italicized.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 47

Mike Ang Gary Fisher Clayton Lewis Sam Ruby
Christine Begle Richard Gabriel Drew Lytle Dario Russi
Norris Boyd Michael Gardner Bob Mathis David Singer
Carl Cargill Bill Gibbons Karl Matzke Randy Solton
Andrew Clinick Richard Gillam Mike McCabe Guy Steele
Donna Converse Waldemar Horwat Tom McFarland Michael Turyn
Mike Cowlishaw Shon Katzenberg Anh Nguyen Herman Venter
Chris Dollin Cedric Krumbein Brent Noorda George Wilingmyre
Jeff Dyer Mike Ksar Andy Palay Scott Wiltamuth
Brendan Eich Roger Lawrence Dave Raggett Rok Yu
Chris Espinosa Steve Leach Gary Robinson

Fig. 21. Technical Contributors to ECMA-262 Editions 1, 2, and 3.

feature could prevent websites from successfully working on all browsers. Fortunately, no browser
implemented the joined functions feature and in 2009 it was removed, from the ES5 specification.
Usage of octal constants (written with a leading 0 digit) and octal escape sequences in string

literals were discouraged by moving them from the normativeg specification into the non-normative
Annex B41 of the standard. Also moved to Annex B were the non-Y2K compliant Date methods,
the escape and unescape string functions, and the String method substr. These were all features
that were considered obsolete but were still used by websites. The hope was that listing features in
the standard’s non-normative Annex B would signal that these were deprecated features, which
should not be used and that implementations were empowered to eventually remove them. This
was a naïve expectation. TC39 members did not yet appreciate that browser implementors would
be extremely reluctant to remove any feature, whether standardized or not, that may have actually
been used on Web pages—some Web pages never go away.

After reviewing and resolving all of the outstanding issues, TC39 accepted without objections the
specification as complete, subject to incorporating the changes from the meeting. Waldemar Horwat
and Herman Venter prepared the final document [TC39 1999e] and passed it to the Ecma Secretariat
on October 13, 1999. The final draft included a list (Figure 21) of everyone who contributed to
the first three editions of ECMA-262 by authoring content, attending a technical meeting, or
contributing via email.
In November, several minor editorial and technical errors in the final draft were identified and

corrected [TC39 1999a]. Most significantly, Microsoft had discovered that a number of websites
(includingmicrosoft.com) broke when they changed JScript’s implementation of String.replace,
using a regular expression, to conform to the final draft. TC39 agreed to change the specification to
match Microsoft’s previous implementation.
On December 16, 1999, the Ecma General Assembly [Ecma International 1999] approved the

specification as ECMA-262, 3rd Edition [Cowlishaw 1999a]. Starting in March 2000, Waldemar
Horwat [2003b] maintained an unofficial ES3 errata. The major browsers shipped ES3 compliant
versions over the course of 2000 with Microsoft’s JScript 5.5 shipping as part of IE 5.5 in July 2000
and Netscape shipping JavaScript 1.5 as part of Netscape 6 in November 2000. ECMA-262 3rd Edition
was not replaced by a newer edition until December 2009. During that period, browsers were not
automatically updated and many users updated their browser only when they got a new computer
or new version of their operating system. It would be nearly a decade before Web developers could
assume that all users would be using a browser that supported ES3 features.

41Annex B is an appendix to the ES3 specification which provides definitions of obsolete ECMAScript features.

Authors’ Corrections: March 2021

48 Allen Wirfs-Brock and Brendan Eich

13 INTERLUDE: JAVASCRIPT DOESN’T NEED JAVA
Originally JavaScript was conceived as a Java side-kick scripting language and all sophisticated
programming tasks would be done using Java. But as experience with JavaScript grew, Web
developers began to realize that all they really needed was JavaScript.

13.1 The Evangelist
As JavaScript usage in browsers grew, JavaScript educators and evangelists emerged. One of the
most influential was Douglas Crockford. Starting with a short online essay titled “JavaScript: the
World’s Most Misunderstood Programming Language” [Crockford 2001a], he undertook the task
of changing how the software development community perceived JavaScript. In another essay
Crockford [2001e] explained:

When JavaScript was first introduced, I dismissed it as being not worth my attention.
Much later, I took another look at it and discovered that hidden in the browser was
an excellent programming language. My initial attitudes were based on the initial
positioning of JavaScript by Sun and Netscape. They made many misstatements about
JavaScript in order to avoid positioning JavaScript as a competitor to Java. Those
misstatements continue to echo in the scores of badly written JavaScript books aimed
at the dummies and amateurs market.

Douglas Crockford [2001d; 2002a; 2003; 2006] exposed JavaScript’s Scheme-like closures and Self-
like objects and explained how to use them. But he did not gloss over JavaScript’s warts and quirks.
In addition to identifying them, Crockford [2001e; 2002d] created and promoted JSLINT [Crockford
2001b], the first widely used linter42 utility for JavaScript. Crockford [2001c; 2019b] also introduced
the concept of minimization43 to JavaScript developers and created the JSMIN utility. He wrote a
best-selling book [Crockford 2008b] that told programmers how to use JavaScript’s good parts and
avoid the bad parts. Eventually, he became a participant in JavaScript standardization efforts.

Crockford championed simplicity and realized that the complexities of XML could be avoided by
using a subset of JavaScript’s object and array literal syntax as a language-independent data inter-
change format. He named this widely adopted format “JavaScript Object Notation” or “JSON” [Crock-
ford 2002b,c; Crockford 2019a]. This simple format could be easily parsed in any language but was
particularly easy to deal with in JavaScript where the eval function could convert a JSON data
record into JavaScript objects.44

13.2 Rich Internet Applications and AJAX
Early interactive Web applications were primarily forms based. Users would enter data into HTML
forms that were transmitted by a browser back to a Web server where the data would be processed
and databases updated. An updated HTML presentation was then transmitted back to the browser
for display. JavaScript was used browser-side for basic input data validation and simple dynamic
changes to the sever generated HTML. This style ofWeb application was subsequently characterized
as Web 1.0.45
Some applications are highly interactive requiring a rich low-latency user interface. It was

inevitable that some developers would want to develop Web applications with those characteristics.

42A development-time tool that checks source code for dubious coding practices and error-prone constructs.
43Mechanically reducing the download size of JavaScript program by removing comments, unnecessary whitespace, and
performing other semantic preserving source code transformations.
44It was ultimately recognized that using eval to process JSON was a security hazard that exposed applications to code
injection attacks. Modern JavaScript engines use dedicated JSON parsers which are not susceptible to such attacks.
45DiNucci [1999] made early use of the terms Web 1.0 and Web 2.0.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 49

In 1995, when Netscape introduced both Java and JavaScript into its Web browser, the plan was that
Java would be the primary language for implementing complex interactive Web applications and
JavaScript would primarily be used within forms-based applications [Shah 1996]. During the late
1990s and early 2000s many “Rich Internet Applications” [Allaire 2002] were built as Java Applets.

In 1997, Microsoft released a Web-client version of its enterprise email client. Outlook Web
Access (OWA) [Bilic 2007; Van Eaton 2005] was implemented as a Web-1.0–style application. OWA
1.0 was succeeded by a richer version that used Dynamic HTML46 and a new browser API called
XMLHTTP [Hopmann 2006]. XMLHTTP enabled JavaScript code on a Web page to asynchronously
transfer data to and from a server without completely reloading the Web page. The combination
of DHTML and XMLHTTP allowed a Web page to load once per session and then operate as an
interactive application with remote access to data and services.

Over the course of the first half of the 2000s various organizations built Web applications using
these and similar techniques. But this Web application style did not become widely known until
Google used it to implement GMail, Google Maps, and other applications. Jesse James Garrett [2005]
coined the term “AJAX” to describe it. AJAX and the social media applications built using it became
the hallmark of the Web 2.0g era.
The emergence of Web 2.0 and AJAX was a major transition point for the role of JavaScript in

Web development. JavaScript’s role was changing from a language for adding dynamic elements to
mostly static pages to a language for coding complex Rich Internet Applications.

At the same time, the browser ecosystem was growing more complex. There had always been a
variety of alternative browsers with very low market share. The gradual abandonment of active
browser development by Netscape (after its acquisition by AOL) and by Microsoft (after it achieved
market dominance) created the opportunity for new browsers to emerge. Firefoxg47 [Mozilla 2004],
Operag [Opera 2013], Apple Safarig [Melton 2003], and eventually Google Chromeg [Kennedy 2008]
gradually gained meaningful market share.
The new browsers all implemented their interpretation of the ES3 JavaScript specification and

the browser platform APIs that were partially specified by the W3C. But the platform specifications
were incomplete or imprecise. Most of the new browsers extended or modified the platform APIs
in various ways. And while these new browsers were emerging, many users continued to use
outdated versions of Internet Explorer and Netscape that were buggy and lacked support for the
latest language features and platform APIs.
Web browsers are different from most other application platforms in one important respect—

applications are distributed in source code form for immediate execution in an environment
provided by the user of the application. This differs from the more traditional scenario where a
developer may choose a specific version of a compiler and runtime library and then build and test
their application before deploying it in binary form to users. Douglas Crockford,48 in various talks,
characterized this aspect of Web development as: the user chooses (usually without knowledge) the
language processor. Web developers needed to ensure that their Web pages and Web applications
worked correctly on whichever browser an end-user chooses.

One way to deal with browser differences is to create a separate version of an application for
each incompatible browser. The Web server can then send different versions to different browser
based upon identifying information provided by the browser when requesting a Web page. But
typically most of the application source code is shared by all versions with only small variations to

46Dynamic HTML (DHTML) uses JavaScript to dynamically modify the HTML elements of the active Web page.
47An outgrowth of Netscape’s Mozilla Project where Brendan Eich was lead architect.
48personal communication 2019

Authors’ Corrections: March 2021

50 Allen Wirfs-Brock and Brendan Eich

account for the browser differences. This creates the development and operational challenge of
maintaining multiple, mostly identical, versions of the application.

A way to avoid multiple distinct versions of the application source code is to have a single source
file where the browser-specific variations are dynamically selected as the application runs within
a browser. Variations are selected using idiomatic code sequences that perform browser sniffing
(identifying a specific browser version) or feature testing (identifying the presence of specific
features or bugs).

The complexity of AJAX-style applications combined with browser interoperability issues led to
the emergence of application frameworks and libraries to simplify Web application construction.
Early frameworks included Prototype [Stephenson et al. 2007], MooTools [Proietti 2006], and
Dojo [Russell et al. 2005]. The one with the greatest adoption [W3Techs 2010] was jQuery [Resig
2006]. These early frameworks and libraries typically provided a structure for AJAX-style applica-
tions along with higher-level abstractions that simplified the coding of tasks commonly performed
by such applications. They also resolved many of the interoperability issues by internally dealing
with and hiding many of the browser functional variations.

One specific kind of library was significant enough that a new word was coined to characterize
it. The term “polyfillg” was coined by Remy Sharp [2010] to describe a library that provides APIs
that should be provided by a browser but which were missing. A well-designed polyfill dynamically
checks whether the feature it provides is already available and installs itself only if built-in support
is absent or incompatible. Early polyfill libraries focused on making browsers more interoperable by
hiding legacy feature variations that carried forward from early browser competition or supporting
new browser features in old browsers. If a feature was present in one popular browser and absent
from others, a polyfill could enable a Web application to use the same code to operate on all
browsers. As browser interoperability improved, polyfills became common as a way to provide
early access to new browser and JavaScript functionality. It became common to create a polyfill
library as part of the design process for new features. In addition to being useful for developers,
polyfill usage generated valuable developer feedback on new functionality and API designs.

Naming clashes were common when JavaScript applications were created by naïvely composing
independently created pieces. Many frameworks and libraries provided some sort of modularity
mechanism typically constructed using namespace objects and immediately invoked function
expressions (IIFE49). A namespace object is simply a singleton object whose primary purpose is to
provide qualified name access to functions or variables. JavaScript 1.0’s built-in Math object is a
namespace object. A limitation is that all of names in the namespace are public. That limitation can
be overcome by combining a namespace object with an IIFE in the module pattern as illustrated in
Figure 22.
The module pattern has several variations, but the basic concept is that the lexical scoping of

an IIFE (or sometimes a named function) is used to encapsulate some private state with a set of
functions. The IIFE returns a namespace object whose properties are the encapsulated functions
that need to be publicly accessible.
Douglas Crockford is often credited with popularizing the module pattern but it was likely

independently discovered by many JavaScript programmers.

13.3 Browser Game Theory
During the browser warsg [Borland 2003], Netscape and Microsoft tried to out-innovate each other
in the introduction of new website capabilities. They both tried to convince developers to use

49Immediately invoking a function is a substitute for a block-scope. This technique was known to Scheme programmers
and was widely used by JavaScript programmers starting in the mid 2000s. Ben Alman [2010] coined the term IIFE.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 51

// define services using the module pattern

var Services = function () {

var privateJobCount = 0; // private variable of the "module"

return { //the namespace object

jobCount: function () {return privateJobCount},

job1: function () {this.privateJobCount ++}

}

}(); // Services is initialized to the result of calling the function

// access entities from the namespace

Services.job1();

console.log(Services.jobCount ()); // should display 1

ES3

Fig. 22. An example of the JavaScript module pattern. The Services function encapsulates a private imple-
mentation. Services is initialized when called and returns a namespace object whose properties exposes the
public interface of the “module’.”

their unique features and ran “Works best on [XXX]” marketing campaigns. But browser users got
annoyed when websites did not work correctly with their preferred browser and Web developers
did not like having to code multiple versions of their sites for different browsers.
Even while Microsoft was investing heavily in both technical and non-technical means to win

market share from Netscape there was recognition that evolution of JavaScript would require
collaboration in addition to competition. At the July 1997 TC39 meeting, as work on the first
edition of ECMA-262 was nearing completion, Microsoft’s Scott Wiltamuth presented a pledge of
cooperation (Figure 23) regarding future ECMAScript development.

Brendan Eich recalls that at some point he realized that market pragmatics severely constrained
what browser implementors could do to improve their products, for example:
• Breaking-changes (even bug fixes) can drive away users.
• New browsers must conform to what is already there.
• Innovation is wasteful if only present in one browser.
• First browser to try something new may actually lose market share.

Eich recognized that this was likely a Nash Equilibrium [Nash 1950] situation and coined the term
“Browser Game Theory” to describe the constraints that browser implementors operate under.

The first constraint is sometimes expressed using the slogan “Don’t break the Web!” Web pages
are typically stored on servers as HTML and JavaScript source code that is reinterpreted by a
browser each time a user access the page. Many of these pages are unmaintained by their original
creators but still actively used. Some are documents with ongoing utility or historical importance.
A breaking-changeg to how a browser interprets the source code can cause a page to become
illegible or non-functional. If the change occurs only on a single browser, users may switch to using
different browsers. If such a change is pervasive among browsers, parts of the unmaintained Web
become permanently broken. This fact also limits the developers of Web standards. A standard that
introduces a new feature or mandates a change will be ignored by browser implementors if they
believe that it will invalidate significant existing Web content.

Today browser developers generally understand that the interoperability requirements of theWeb
and its open standards foundation limit their ability to compete via unilateral platform innovations.
Browsers can and do compete on quality of implementation grounds such as performance, security,

Authors’ Corrections: March 2021

52 Allen Wirfs-Brock and Brendan Eich

A different way of working
Microsoft’s ECMAScript standards pledge
— We will bring new ideas that impact ECMAScript to the group’s attention, as opposed

to keeping them secret.
— We will implement ideas that have achieved consensus in the group.
— We will follow the architectural principles guiding the group, rather than release alter-

natives which ignore or contradict these principles.
— We will not ship ECMAScript extensions without first submitting them to ECMA.
— We will implement all ECMA-approved ECMAScript standards.
— We will clearly identify any not-yet-approved ECMAScript features that we support as

such.

Fig. 23. Microsoft Pledge at July 1997 TC39 Meeting [TC39 1997g]

reliability, and usability. But advancing the basic technical capabilities of the browser application
platform usually requires cooperation among all the major browsers.
Browser game theory was a significant factor in the evolution of JavaScript. Moreover, it can

provide a perspective for understanding why JavaScript became successful and an explanation for
many of the innovation successes and failures that occurred over the course of its history.

Part 3: Failed Reformations

14 DISSATISFACTIONWITH SUCCESS
As the end of the 1990s neared, it was clear that the Internet and in particular the World Wide
Web was having a phenomenal impact upon the world [Miniwatts Marketing Group 2019]. The
rapid growth of the Web had been enabled by the incremental pragmatic enhancement of browser
technologies by Netscape, Microsoft, and other browser developers. The success of the Web and
the necessity of coordinating the ongoing evolution gave rise to standards groups such as Ecma
TC39 and W3G working groups. Some of the participants in those groups were subject matter
experts who were not directly involved with browser development. Their interest was focused on an
idealized future Web. From that perspective, the existing pragmatically developed Web technologies
were viewed as an impediment to that future.

In May 1998, the W3C held a workshop titled: “Shaping the Future of HTML.” The conclusions
in the record of the workshop say:

In discussions, it was agreed that further extending HTML 4.0 would be difficult,
as would converting 4.0 to be an XML application. The proposed way to break
free of these restrictions is to make a fresh start with the next generation of
HTML based upon a suite of XML tag-sets. The workshop expressed a need
for a better match to database and workflow applications, and for the widely
disparate capabilities of small/mobile devices. Modularizing HTML will provide
the flexibility needed for this. [W3C 1998]

David Singer [1998], representing IBM, was more blunt in a workshop presentation: “The Future of
HTML as we know it should be: Nasty, Brutish, and Short.”

As ES3 approached completion, TC39 found itself in a similar situation. With ES3, ECMAScript
had caught up with the JavaScript features provided by the Netscape and Microsoft browsers and,
at least initially, the browser vendors weren’t providing much guidance regarding what to do
next. Unlike Netscape in 1995, TC39 was not constrained to avoid Java-like capabilities. Some
TC39 participants saw a need for a second-generation browser scripting language that corrected

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 53

mistakes made in the original JavaScript design and that offered features [Raggett 1999b; TC39
1999c; Appendix J] catering to the needs and sensibilities of professional software developers rather
than non-professiional script writers. This new generation of ECMASript was targeted to be the
4th edition of of ECMA-262. Within TC39, it was initially called “E4” and later “ES4.”

15 ES4, TAKE 1
From the very first TC39 meeting—where Borland International [1996] presented a proposal
for adding class definitions to the language—there had been interest in adding features to
JavaScript to help manage the complexity of larger programs. Netscape’s JavaScript 1.2 supported
cryptographically-signed scripts which integrated with each other via import and export declara-
tions [Netscape 1997a]. Microsoft’s JScript 3 included its conditional compilation features [Clinick
1997]. The February 1998 version of the ECMAScript Futures List [TC39 1998c] lists “package
concept” as a possible item for V2. Such programming-in-the-large features were relatively quickly
dropped from the ES3 feature set but work on them continued in parallel within TC39.

The first major proposal came from Dave Raggett who was a W3C Fellow sponsored by Hewlett-
Packard. At the W3C, Raggett was developing a proposal named “Spice” to improve the integration
of HTML, CSS, and JavaScript. An early version of the proposal [Raggett 1998c] was submitted
to TC39 in February 1998. In addition to HTML and CSS integration features, Raggett’s initial
proposal included a construct for declaring prototype objects which was similar to the Borland class
declaration proposal. It added the ability to declaratively associate event handlers with prototype
objects. The proposal also included constructs for defining “libraries” and for importing definitions
from libraries, as follows:

import document , block , Inline from "http ://www.w3.org/Style/std.lib";

prototype Link extends Inline
{

href = "http ://www.w3.org/";
when onmousedown
{

document.load(this.href);
}

}

February 1998 Spice Proposal

The March 1998 meeting notes [TC39 1998d] show that Dave Raggett’s initial Spice submission
was discussed and remarked that the “initial feedback is negative.” Raggett continued to evolve his
proposal, working with Chris Dollin and Steve Leach, two language designers from HP Labs. In
September, Raggett submitted a new set of documents [Raggett et al. 1998] describing an expanded
Spice proposal. The proposal was, in effect, an incompatible replacement language for ECMAScript—
it even replaced curly-brace delimited C-style syntax with a closing-keyword-based statement
syntax.

Dave Raggett [1998a] presented the revised Spice proposal at the November 1998 TC39 working
group meeting. This meeting had been preceded earlier in the month by a private meeting between
the Spice designers and TC39 delegates fromNetscape andMicrosoft. At the working groupmeeting,
TC39 members had no interest in replacing the then-current statement syntax or in immediately
trying to integrate declarative support for style sheets. However, there was interest in extending
ECMAScript with some of the concepts in the Spice proposal such as classes, numeric units,50

50Numeric units means annotating numeric values with units of measure such as meters and kilograms. For Web pages
units such as pixels and points were of particular interest.

Authors’ Corrections: March 2021

54 Allen Wirfs-Brock and Brendan Eich

// C-style declaration alternative

var float x, int[] y, z; // what is type of z?

var float x, int[] y, int[] z; //is it this?

var float x, int[] y, any z; //or this?

// Pascal -style alternative

var x: float , y: int[], z; //type of z is any

Fig. 24. Early ES41 discussions considered both C and Pascal derived syntax alternatives for typed declarations

types, and modules. When asked, Raggett indicated that it was unlikely that HP would continue to
develop Spice if comparable features were added to ECMAScript.51
A new TC39 Spice Working Group was chartered to develop a proposal for presentation in

January 1999 to the full group. The sense of the committee was that new features in support of
new core concepts would have to be defined using the already reserved Java keywords and that the
semantics of classes should be similar to Java. Numeric units should be defined on top of classes
and would require adding operator overloading.

The Spice working group’s initial teleconference occurred in the first week of December 1998. On
December 10, Dave Raggett [1998b] distributed a new document based on that meeting. It touched
upon packages and numeric units but more extensively explored type declarations including class
and interface definitions. Its focus was more on syntax than semantics. The document assumes a
nominal type systemg with named built-in primitive types, a homogeneous array type, class types
where subclasses are nominal subtypes, interface types, and an any type which indicates that
accesses need to be dynamically type checked. Syntactically it explored alternatives for associating
types with variable bindings. It assumed that the var keyword would still be used for variable
declarations and explored both the C-style of using a type expression as a prefix to a declared
name and the Pascal-style of using a colon and type expression following a declared name. The
alternatives are exemplified in Figure 24.

Class and interface definition syntax roughly followed Java and included the full complement of
public, private, protected, and default (package) visibility modifiers. The underlying metaobject
structure was not covered but it was implicit that the metaobject model would have to be different
from the then-current JavaScript prototypal inheritance model. The document raised issues about
distinguishing between early bound member access using declared static type information and
late bound member access where no static type information is available. Dynamically adding
properties52 was explored and the document suggested that it might be desirable to permit a class
to disallow them.
Design discussions, primarily related to classes, type annotationsg, and scoping, continued in

January and February 1999 [Raggett 1999b,c] with Chris Dollin, Waldemar Horwat, and Herman
Venter being the primary participants. Much of the discussion concerned the nature of class-defined
objects and the semantics of class member access. Dollin and Venter generally preferred a Java-like
semantics where the structure of a class instance is statically determined by the class declaration,
and member accessibility is statically determined based upon type information available at the
referencing site. Horwat generally favored a more dynamic model where even in the presence of
type annotations, fallible dynamic lookup is used to access members. The optional type annotations,

51Chris Dollin and Steve Leach continued to develop a Spice language that was not based upon JavaScript [Dollin 2002],
and Leach subsequently evolved it into the Ginger programming language [Leach et al. 2018].
52Microsoft called these “expando properties.”

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 55

• Modularity enhancements: classes, types, modules, libraries, packages, etc.
• Internationalization (I18N) items:
– Internationalization library [possibly as a separate ECMA technical report]
– Calendar
• Decimal arithmetic (enhanced or alternative Number object)
• Catch guards (with types)
• Atomic (thread-safe) operations discussion/definition (possibly non-normative)
• Miscellaneous enhancements [other than modularity]:
– Declaration qualifiers extension mechanism
– Extensible syntax (e.g., use of # for RGB values)
– Units syntax and arithmetic library
– "Here documents" (long string constants)

Fig. 25. Provisional ES41 features from TC39 November 1999 “Futures List” [TC39 1999d]

expando propertiesg, the expectations of existing JavaScript programmers, and compatibility with
existing code that used prototype-based ad hoc classes all seemed to require a more dynamic
semantics. In addition, Horwat argued that a dynamic semantics was more aligned with the nature
of scripting which involves the dynamic assembly of code from multiple sources and use of libraries
that version independently from the scripts that reference them. Horwat [1999b] summarized the
difference between the static and dynamic approaches in a document describing member lookup
alternatives.
At the February meeting Waldemar Horwat [1999a] revealed his specification for “JavaScript

2.0.” He characterized it as an experimental design that had originally been written for Netscape53
which matches much of what had been recently discussed by TC39.54 It included a nominal type
system with a large set of machine-level numeric types, Java-like class member visibility rules, and
packages with explicit imports. It also had a number of more novel features including class extension
declarations, declaration-level versioning of package members, nullable and non-nullable types, and
first-class type values. Instead of the declaration-hoisting semantics of previous JavaScript versions,
JavaScript 2.0 proposed a “streaming execution model” [Raggett 1999d] where declarations are
not processed until encountered during execution. For example an if statement could be used to
conditionally declare a variable or to select between declarations with differing type annotations.
The combination of first-class type values and streaming execution of declarations made full static
type checking impossible in some cases.

JavaScript 2.0 was not an attempt to be fully backward compatible with original JavaScript or even
with the still-not-completed ECMAScript 3. When introducing JavaScript 2.0 to TC39, Waldemar
Horwat said: “At a bare minimum you should be able to write code that works in ECMAScript
1.0 and 2.0 [ES4]. Full backwards [sic] compatibility would be rather painful.” [Raggett 1999c]
For example, the syntactic complications of the optional type annotations precluded supporting
automatic semicolon insertions on line breaks. Horwat’s solution to backward compatibility was
for implementations to provide multiple compilers. He believed that switching compilers according
to the language version was preferable to a single language with strict forward compatibility.
Much of TC39’s attention for the remainder of 1999 was focused on completing ES3, but in

March it produced a “Futures List” [TC39 1999c] of possible post-ES3 features. The Spice Working
Group transformed into the Modularity Subgroup and continued to occasionally meet [Raggett

53Mozilla’s source code repository contains source code [Horwat et al. 2005] of Epimetheus [Horwat et al. 2003], Netscape’s
experimental JavaScript 2 implementation.
54Venter believes (2018 personal communication) that Raggett’s proposals had little influence on Horwat’s design.

Authors’ Corrections: March 2021

56 Allen Wirfs-Brock and Brendan Eich

1999a,d; TC39 1999a] regarding ES41. The pace picked up in November when TC39 shifted its
primary attention to “Edition 4” and updated the post-ES3 futures list (Figure 25). The November
1999 report of the TC39 chair [Lewis 1999a] describes the goal of ES41:

ECMAScript 2.0 [ES41], an ambitious much-improved ECMAScript language
definition that [the committee] hopes to standardize in the year 2000 (though
this may be overly ambitious). The principal goal of ECMAScript 2.0 is to provide
support for ‘programming in the large’ - that is, to support construction of
programs written by several different people and assembled, perhaps for the first
time, on the user’s desktop.

At the January 2000 meeting [Raggett 2000], Microsoft pushed for a December 2000 publication
date for the 4th Edition by trimming features to meet that date. Microsoft’s primary interests were
the addition of static type annotations and maintaining backward compatibility, including support
for Automatic Semicolon Insertion. Venter circulated a set of changes to the ES3 specification that
he believed would be sufficient for supporting type annotations. However, there remained much
uncertainty about the nature of the type system, the semantics of classes, packages, and name
spaces, and how to integrate static and dynamic language concepts into a single language.
On June 22, 2000, Microsoft [2000b] announced the .NET Framework. This was Microsoft’s

competitive response to Sun’s Java platform. Microsoft’s .Net was a multi-language application-
development platform. In addition to its premier language, C#, it supported dialects of Visual Basic,
JavaScript, and other languages. The announcement was followed in July by the release of the first
.NET preview build55 at Microsoft’s Professional Developer’s Conference [Microsoft 2000a]. The
preview included an early version of JScript.NET [Clinick 2000]. Unlike JavaScript in browsers,
JScript.NET was a precompiled language that targeted the .NET Common Language Runtime (CLR)
and used the .NET type system internally. Internet Explorer did not support JScript.NET (or .NET
in general); instead, JScript.NET could initially be used to construct desktop, server, and command
line applications using various .NET framework components. JScript.NET claimed compatibility
with the ES3 specification, but because it was not expected to run JavaScript code written for
browsers, strict backward-compatibility was not a significant concern. In addition to ES3 features,
JScript.NET added optional static type annotations, class and interface declarations which included
member visibility attributes, and packages with explicit imports. Microsoft’s Andrew Clinick [2000]
wrote that the new features had been designed in conjunction with other Ecma TC39 members and
warned that details of the design might change based upon ongoing TC39 discussions.

Prior to the June 2000 .Net announcement, Microsoft’s Herman Venter was unable to discuss
.NET or JScript.NET with Waldemar Horwat and other TC39 members. In August, Horwat and
Venter met privately to try to find alignment that would enable the completion of an ES4 stan-
dard. Horwat’s [2000] meeting notes record discussion of 43 issues or points of disagreement. It
summarizes the discussion as follows:

General: Herman [Venter] is readying an implementation of JScript for servers and
wants to freeze the language andmake it easily interoperable withMicrosoft’s .NET run-
time. Waldemar [Horwat] is concerned about the language’s applicability to browsers
and retaining the language’s dynamism, which he sees as the language’s differentiator.
He’s concerned about the language’s drift towards Java or C# because he thinks that
there is little need for another language in that space, and the result would be inferior
to C# for static programming anyway. Herman also recommends that new server
projects use C# instead of JScript, seeing the new JScript as a language geared towards
developers already used to programming in JScript.

55The .NET Platform 1.0 shipped on February 13, 2002.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 57

Horwat [2003a] forked a separate “ECMAScript 4 Netscape Proposal” document from the
JavaScript 2.0 document. This document was then used as the working draft for ongoing ES41 devel-
opment. The JavaScript 2.0 document continued to be maintained in parallel including additional
features that TC39 had not agreed to include.

Microsoft wanted .NET and its languages to be perceived as standards-based technologies. Ecma
had a reputation as an organization where it was easy to move proprietary technologies onto a
standards track and Microsoft was happy with how TC39 had worked out. So it proposed to Ecma
that the scope of TC39 be expanded and that .NET be standardized within it. TC39 was rechartered as
the Ecma technical committee for “Programming Environments.” The ongoing ECMAScript activity
was demoted to Task Group status within TC39 and become known as TC39-TG1. Additional TC39
task groups were formed for developing standards for the CLR and for C#.
Work on this attempt to create a 4th Edition of the ECMAScript specification would continue

for another three years, but in retrospect the announcement of JScript.NET was the beginning of
the end of the effort. By June 2000, Netscape had lost the “Browser Wars” [Borland 2003] with its
browser market share having dropped below 14% [Reuters 2000]. After being acquired by America
Online it was losing staff, operating with reduced resources, and struggling to ship new versions of
its browser.

Microsoft, with Internet Explorer, had won and ultimately achieved over 90% market share. It had
little ongoing interest in enhancing theWeb-programming platform overwhich it had no proprietary
control. Internally, resources were redirected from enhancing open browser technologies such as
ECMAScript to developing proprietary Microsoft technologies such as the Windows Presentation
Framework56 [Microsoft 2016], which it hoped would ultimately obsolete and displace open Web
technologies. In the area ofprogramming languages for .NET, it focused on C# and VisualBasic.NET.
In that context JScript.NET was relevant only to the degree it enabled JavaScript programmers to
migrate to the .NET platform.
TG1 continued to meet, discuss specific issues, and update the draft specification.57 There was

significant ongoing disagreement between Microsoft and Netscape regarding the nature of the type
system. Waldemar Horwat presented a paper [Horwat 2001] on the design of JavaScript 2.0 at the
MIT Lightweight Languages Workshop where he characterized JavaScript 2.0 as having “Strong
Dynamic Typing.” He further explained that in JavaScript 2.0, all variables have an associated
type that limits the values that can be stored into them, but the checking of the type constraints
must occur at runtime. JavaScript 2.0’s first-class type values and implicit downcasts58 makes it
impossible, in the general case, to statically type check its programs.
The frequency of TG1 meetings and attendance gradually decreased. Chris Dollin attended for

the last time in June 2001. Herman Venter’s last TC39-TG1 meeting was June 2002. On July 15, 2003,
America Online announced that it was disbanding Netscape and laying off most of its employees,
including Waldemar Horwat. At a TG1 meeting held that same week, Horwat resigned as ES4
editor. The remaining members of TG1 decided to focus their effort on developing XML support
for ECMAScript and to suspend work on ES4 until after the XML project was completed and a new
editor could be identified.

16 OTHER DEAD-ENDS
In the mid- to late-1990s there was significant interest in the concept of software components and
several software component models were proposed and implemented. These included CORBA
56Later rebranded as Windows Presentation Foundation.
57The JavaScript 2 Web page [Horwat 2003c] contains the specification change log from February 1999–June 2003.
58A downcast checks that the value of a variable declared with some type is usable in a context that requires a value of a
more specialized subtype.

Authors’ Corrections: March 2021

58 Allen Wirfs-Brock and Brendan Eich

from the Object Management Group (OMG), Microsoft’s COM, and Sun’s JavaBeans. Generally, a
software component model was a modularization scheme that provided a way to describe, discover,
and consume object-based software modules. At the July 1997 meeting of TC39 [1997g] Jim Tressa,
representing Oracle, made a presentation about an OMG RFP for a component scripting language.
At that meeting it was reported that IBM, Netscape, Oracle, and others were interested in responding
with an ECMAScript-based proposal, but the specification ultimately produced by the OMG was
not based upon ECMAScript.

ECMAScript Components was an attempt to promulgate a JavaScript-specific component model
for use in browsers and other JavaScript hosts. It specified an XML schema and vocabulary for
describing JavaScript components and a set of implementation conventions. The sponsors of
the effort were NetObjects, Inc.59 and Netscape. Richard Wagner [1998] of NetObjects made an
initial presentation to the Ecma GA in June 1998. At the same meeting a draft technical specifica-
tion [Wagner and Shapley 1998] was submitted to TC39. That document evolved through three
more drafts and was submitted to the Ecma GA. It was approved as an Ecma standard and published
as ECMA-290 [Wagner 1999]. There is no record of that standard being implemented. Based upon
TC39’s recommendation, the Ecma GA voted in 2009 to withdraw ECMA-290 as a standard [Ecma
International 2009b].

The ECMAScript 3rd Edition compact profile project defined a language profileg for a less-dynamic
subset of ES3 that would allow JavaScript implementations for resource-constrained environments
to still claim conformance to the ECMAScript specification. Its creation was motivated [Raggett
2000] by an effort, WMLScript, outside of Ecma to define a JavaScript dialect for use in cell phone
applications60 [Lewis 1999b]. The Compact Profile included all features of ES3 but it permited
implementations to exclude support for the with statement. Implementations could also exclude
eval and the Function constructor. The Compact Profile also permitted an implementation to
make the objects of the built-in library immutable and hence allowed for the possibility of precom-
piled or ROM-based implementations. The Ecma GA approved the Compact Profile standard as
ECMA-327 [Vartiainen 2001]. Unlike ECMA-290, ECMA-327 was actually implemented for some
environments. But as new editions of ECMA-262 were released, there was a lack of interest in up-
dating ECMA-327. Recent editions of ECMA-262 have been implemented for very resource-limited
environments. If an implementation for such environments needs to exclude certain features, they
simply do so. In practice, perfect JavaScript interoperability among implementation has not proven
to be a requirement for most resource-constrained applications. The Ecma GA voted in 2015 to
withdraw ECMA-327 as a standard [Ecma International 2015b].

In 2002, TC39-TG1 shifted most of its attention to developing an “ECMAScript for XML” specifi-
cation. E4X was a separate Ecma standard that added syntactic extensions to ES3 to support the
processing of XML documents. Editions of ECMA-357 [Ecma International 2004; Schneider et al.
2005] were issued in 2004 and 2005. Firefox was the only browser to implemented E4X and hence,
consistent with Browser Game Theory, it was seldom used. In 2015, ECMA-357 was withdrawn as
an Ecma standard because the E4X extensions were incompatible with ECMAScript 2015 [Ecma
International 2015b].

17 FLASH AND ACTIONSCRIPT
Macromedia’s Flashg, later acquired by Adobe, emerged in the early 2000s as a popular alternative
to both Java and JavaScript for constructing Rich Internet Applications. Flash was originally a
timeline-based animation product based upon work by Jonathan Gay [2006]. Flash consists of

59NetObjects was an IBM-funded startup.
60Cell phones of that era had very limited processor, memory, and communications bandwidth resources.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 59

a visual authoring tool that compiles animation-based applications into binary files, which are
interpreted by the Flash Player. The player component was integrated into browsers using the
browsers’ plug-in extension APIs. At its high point, a Flash player was installed by practically all
browser users [Adobe 2013].
Initially Flash authoring was primarily visual, but it also included the ability to write short

textual “actions” to define responses to various timeline events. In Flash Version 4, released in May
1999, Gary Grossman had evolved Flash actions into a simple dynamically-typed scripting language
with syntactic similarities to JavaScript. With the release of Flash 5 in 2000 the scripting language
became a dialect of ECMAScript 3 and was named “ActionScript.” ActionScriptg 1.0 supported
most ES3 statement forms and prototype-based objects but lacked support for regular expressions,
had a non-standard eval function which could evaluate only a restricted set of variable access
expressions, and had various other subtle semantic differences. Because ActionScript code was
compiled to run exclusively in the Flash Player environment, strict semantic conformance to the
ECMAScript specification was not a concern. For example, in ActionScript 1.0, var declarations are
scoped to the closest enclosing block rather than being scoped to the enclosing function.
ActionScript 2.0 was introduced in 2003 as a component of the Flash MX development envi-

ronment and Flash Player 6. ActionScript 2.0 extended ActionScript 1.0 with class declarations,
interface declarations, type annotations on declarations, and an import statement for accessing
classes defined in other scripts. The syntax for class annotations, class declarations, and interface
declarations roughly follows that used in the draft ES41/JS2 specification, but with a greatly simpli-
fied semantics. The use of type annotations was optional. Type checking was “a compile-time-only
feature” [Macromedia 2003]. Java-like nominal type checking was performed at compile-time
when type annotations were provided. Type information was erased before code was generated.
ActionScript 2.0 uses the same virtual machine as ActionScript 1.0 and performs basic runtime
safety checks. Programs can dynamically modify objects in a manner that violates the rules of the
nominal type system as long as such changes do not trigger any of the runtime safety checks.
In 2003, the wide adoption of Flash for Web development was leading to the creation of large

and complex ActionScript applications and some of them were encountering performance issues.
Like most ECMAScript language designers and implementors at that time, the Macromedia team
believed61 that dynamic typing (particularly of primitive types) was the main performance bottle-
neck, and were exploring ways to add static typing to the ActionScript runtime. Around this same
time, Jeff Dyer, who had been a TC39 delegate since 1998, joined Macromedia. Dyer confirmed that
TC39 shared that same perspective about static typing. This widely shared view of static typing in
virtual-machine-based languages was strongly influenced by the design of the statically typed Java
Virtual Machine (JVM). Jonathan Gay’s and Lee Thornason’s Maelstrom project was a Macromedia
experiment to see if a JVM could be integrated into Flash and used as the runtime for a statically
typed version of ActionScript. The experiment was successful enough that Macromedia approached
Sun about licensing the Java 2 Micro Edition (J2ME) JVM for use in Flash. They wanted to use J2ME
because the standard edition Java runtime was too large to embed within a Flash Web download.
But Macromedia’s proposed use of Java Micro Edition technologies did not align with Sun’s Java
licensing strategy. Edwin Smith, in a skunkworks effort, created a series of proof-of-concept virtual
machines. Those VMs helped to convince Macromedia to build their own statically typed JVM-like
virtual machine called AVM2 [Adobe 2007], and a new version of ActionScript to run on it. The
new language was designed by Gary Grossman, Jeff Dyer, and Edwin Smith, and was heavily
influenced by Horwat’s draft ES41/JS2 specifications. However, like JScript.NET, ActionScript 3.0

61Descriptions of internal Macromedia beliefs and actions are derived from personal communications with Jeff Dyer and
Gary Grossman, 2017–2018.

Authors’ Corrections: March 2021

60 Allen Wirfs-Brock and Brendan Eich

was a simplification of the ES41 design. It was less dynamic than JS2 and, unlike JScript.NET, it was
not constrained by the .NET type model. ActionScript 3.0 was also similar to JScript.NET in that it
was not heavily constrained by legacy compatibility concerns. Flash would ship with both AVM2
to support ActionScript 3.0 and AVM1 to support ActionScript 1.0 and 2.0. This effort to create a
new version of ActionScript and a new virtual machine took over three years to complete. It was
announced in 2006 as a component of Flash Player 9, which ultimately shipped in 2007. By the time
the effort was completed, Adobe had acquired Macromedia and Flash had become Adobe Flash.

18 ES4, TAKE 2
Work on ES41 had stalled in 2003, but the use of JavaScript on the Web continued to grow. Within
a year, TG1 members were again taking about designing a new version of ECMAScript that they
called “ES4.”

18.1 Resetting TC39-TG1
Macromedia became an Ecma member in November 2003, and Jeff Dyer became one of their TC39
delegates. This was an obvious move because the design of ActionScript 3 was heavily influenced by
TG1’s initial attempt to develop an ES4 specification. It was important to Macromedia to keep the
design of ActionScript aligned with future ECMAScript specification work and that TG1 consider
the requirements and precedents of ActionScript.
In the spring of 2004, the Mozilla Foundation had released a technology preview of the Firefox

browser and was on track to make a Firefox 1.0 release before the end of the year. Brendan
Eich, then Mozilla’s CTO, had concerns about the future of the open Web. Interest in browser-
hosted Web applications was growing rapidly, but the then-current suite of browser standards was
inadequate to support rich applications. Closed proprietary application platforms such as Flash,
Microsoft’s Window’s Presentation Framework (WPF), and .NET were competing to supplant the
HTML/CSS/JavaScript Web technology suite. And the standards organizations responsible for the
open Web were not responding to the challenge. In 1998, the W3C [W3C 1998] had decided to stop
evolving HTML in favor of XML-based alternatives. However, XHTML was neither syntactically
nor semantically compatible with HTML and was not universally accepted by browser vendors
or Web developers. Similarly, Ecma TC39-TG1’s attempt to evolve the ECMAScript specification
had floundered and its attention had been diverted to designing ECMAScript support for XML
processing. Some members of the Web technology community were concerned that “ECMAScript
is Dead” [Schulze 2004b].
In response, Brendan Eich [2004] facilitated the formation of WHATWG—The Web Hypertext

Application Technology Working Group [Hickson 2004]—which was focused on the future of
HTML. He also started to reëngage with TG1. Eich met with the Ecma Secretary-General in March
2004 [Marcey 2004] and the Mozilla Foundation applied for Ecma membership in May. In June 2004,
Eich attended a TG1 meeting [Schulze 2004a] for the first time since February 1998.
At the June meeting [Schulze 2004b], Convener responsibility for TG1 was transferred from

Microsoft’s Rok Yu to William Schulze of Macromedia. Jeff Dyer became editor of ECMA-262. The
delegates rededicated themselves to completing a 4th edition of the ECMAScript specification but
decided to not go forward with Waldemar Horwat’s ES41 draft. According to Schulze’s report,
“[ES41 was] too sweeping and broad for completion or adoption.” Instead, the members agreed
to take “a more incremental approach” [Schulze 2004a] that could be integrated into existing
implementations including ActionScript. Packages, namespaces, conditional attributes, runtime
type checking and XML support were listed as candidate features for integration. This list included
some of the most complex parts of the old ES41 draft, but members still committed to a 12-month

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 61

development cycle for a new Edition 4. Dyer agreed to prepare a draft of the contemplated changes
for presentation at the meeting scheduled for October 2004.
TG1 was not able to meet these new commitments. Most of the committee’s attention for the

remainder of 2004 and much of 2005 remained focused on revising the E4X specification [Schneider
et al. 2005] as part of an ISO fast-track process. Serious work on the new ES4 did not start until
October 2005. However, during this interlude Brendan Eich familiarized himself with the then-
current state of ECMAScript standardization and began to publicly express his ideas for the next
edition in conference talks and blog posts [Eich 2005a,b]. At the September 2005 meeting [TC39-TG1
2005] Eich became TG1 Convener and started pushing to make progress on ES42 development.

18.2 Redesigning ES4
In an October 2005 blog post, Brendan Eich [2005d] enumerated four goals for the next round of
work on ES4, as follows:

• Bringing Edition 4 back toward the current language, so that prototype based
delegation is not a vestigial compatibility mode, but the dynamic part of an ob-
ject system that includes classes with fixed members that cannot be overridden
or shadowed.
• Allowing implementors to bootstrap the language,62 expressing all the meta-
object protocol magic used by the “native” objects (ECMA-262 Edition 3 section
15), including get/set/call/construct and control over property attributes such
as enumerability.
• Adding type annotations without breaking interoperation of existing and new
editions, in support of programming in the large which is needed more and
more in XUL63 and modern Web applications.
• Fixing longstanding problems that bite almost every JS hacker, as I’ve dis-
cussed previously.

He stated that his intention was to complete this work, including an initial implementation to test
interoperability, by the end of 2006.

In a November 2005 blog post Brendan Eich [2005c] simplified these goals, as follows:
1. Support programming in the large with stronger types and naming.
2. Enable bootstrapping, self-hostingg, and reflection.
3. Backward compatibility apart from a few simplifying changes.

He also stated that making ECMAScript more like Java or any other language and making ECMA-
Script more optimizable were non-goals. In subsequent presentations Eich [2006a] acknowledged
criticisms of the original ES41 specification including those questioning whether declarative static
types or class definitions were needed. He countered that doing nothing was not a viable alternative.
His contention was that the ES3 language would scale poorly over the next ten years as Web
developers built complex applications. In particular, he argued that a type system that could be
used to enforce invariants and could optionally be statically checked was needed to enable such
applications. But such a change could happen only once, so this was the time to do it.

Brendan Eich was optimistic that application of contemporary research in programming language
specification techniques and type systems could help address some of the problem areas of the
original ES41 work. In early 2006 he recruited Dave Herman to join the TG1 ES42 design team.
Hermanwas a PhD student at Northeastern University and hadworked on developing an operational
semantics for ES3. Based upon Herman’s recommendation, Eich also invited Cormac Flanagan, a
62Using JavaScript code to implement JavaScript’s built-in library.
63XUL (XML User interface Language) was Mozilla’s JavaScript framework for creating Firefox browser extensions.

Authors’ Corrections: March 2021

62 Allen Wirfs-Brock and Brendan Eich

Jeff Dyer Adobe65
Brendan Eich Mozilla
Cormac Flanagan University of California, Santa Cruz
Lars T Hansen Opera/Adobe
Dave Herman Northeastern University
Graydon Hoare66 Mozilla
Edwin Smith Adobe

Fig. 26. 2006 ES42 Core Design Team

professor at UC Santa Cruz, to join. Flanagan was an expert in hybrid type systems [Flanagan 2006].
At about the same time Lars Thomas Hansen, a software architect working on the Opera Web
browser, became a regular TG1 participant.64 Herman, Hansen, and Flanagan all had either direct
or indirect ties to the programming language research community at Northeastern University.
In late 2005, TG1 established a schedule of weekly conference calls and monthly face-to-face

meetings for the ES42 project. Figure 26 lists the core ES42 design team in 2006. These are the
individuals who regularly attended the meetings, participated in key decisions, and made on-
going significant contributions. Other individuals from Adobe, Mozilla, and other organizations
occasionally attended meetings and/or made contributions but were less actively involved in the
project.
The first round of JS2/ES41 development had been quite cavalier about making changes which

would be incompatible with existing ECMAScript programs. The assumption was that in browsers
version information within HTML <script> elements could be used to select different versions
of the language. The new ES42 effort was more cognizant of the potential impact of breaking-
changes but still hoped to be able to use versioning to correct what the committee considered
to be early JavaScript design errors. Brendan Eich spoke about this possibility in his blog posts
and presentations. But there was also push back from some TG1 members. Douglas Crockford,
representing Yahoo! at the July 2006 TG1 meeting [TC39-TG1 2006c], stated that “backwards
compatibility was hard & important” but security was their biggest problem and that backward
incompatibilities could be tolerated if they fixed security related issues. Pratap Lakshman of
Microsoft stated: “Priority 0 [the highest priority] is backwards compatibility. Only for security
fixes will backwards compatibility be broken.”
Brendan Eich had said positive things about Python during the Q&A session [Danvy 2005]

after his ICFP’05 keynote talk commemorating the tenth anniversary of JavaScript. He even
speculated that for larger Web scripts, Python could have been a better language than JavaScript.
Over the course of the next year he lobbied for the inclusion of several features in ES42 that
were directly modeled after equivalent Python features. These included iterators, generators,
destructuringg assignment, and array comprehensions. He also promoted the concept of block-
scoped variables declared using the let and const keywords as an alternative to function-scoped
var declarations. These features were largely orthogonal to the other more complex “programming
in the large” features (as they were called) proposed for ES42 and versions of them were added to
the SpiderMonkey-based JavaScript 1.7 engine [Mozilla 2006a], shipped as part of the Firefox 2
browser in October 2006. However, those features were not adopted by other browsers and hence
did not have significant use outside of XUL.

64Effective April 2007, Hansen represented Adobe.
65Adobe completed its acquisition of Macromedia on December 3, 2005.
66In 2006 Hoare, as a personal project, was working on the early design of the Rust [Hoare 2010] programming language.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 63

Eich was concerned that other browser vendors and in particular Microsoft would be slow to
adopt ES42’s JavaScript improvements. Also of concern was the possibility that JavaScript engines
would not improve their performance to meet the demands of the rapid emergence of AJAX Web
applications. One way to address both issues would be to make a high-performance open-source
JavaScript engine available that supported the anticipated ES42 specification. To this end, Eich
convinced Adobe to contribute their AVM2 implementation to Mozilla under an open-source license.
Mozilla named the resulting code base “Tamarin” [Mozilla 2006b]. In subsequent months, Mozilla
announced [Eich 2007a] two projects: ActionMonkey, whose goal was to use the Tamarin code base
as a replacement for SpiderMonkey; and, ScreamingMonkey, a Tamarin-based JavaScript engine
that could be added as a third party plug-in extension to Internet Explorer. Neither project was
completed.
While this industry maneuvering was taking place, TG1 continued working on the new ES42

design. A major goal of ES42 was to provide a type system and type annotation notation that
could be used to validate the usage of complex data abstractions in large programs. Static type
analysis prior to deployment should be possible for suitably written programs, but the type system
needed to be able to deal with both new and existing unannotated programs and with the dynamic
structural mutation of objects allowed in the existing language. Much of the committee’s time in
2006 was devoted to understanding the implications of these requirements and trying to design a
type system to accommodate them [TC39-TG1 2006a,d].

The committee started with the type system informally described in the ActionScript 3 specifica-
tion [Macromedia 2005]. This was a nominal type system with class and interface types similar
to Java prior to the addition of generic types. ActionScript 3 has type-annotated declarations and
includes a universal type for declarations that lack an explicit type annotation. The ActionScript 3
specification does not explicitly include the concept of function subtypes and has an incomplete
definition of class/interface subtyping. The language has a strict mode that performs ahead-of-time
static type-checking using type-annotated declarations and limited type inferencing, and a standard
mode that dynamically validated actual data values against type annotations and operational
requirements.

An early suggestion of Dave Herman and Cormac Flanagan was to use a contract model [Findler
and Felleisen 2002] to better unify strict and standard modes along with typed and untyped
declarations. As work progressed, structural types [TC39 ES4 2006d] were added to deal with
object and array literals and parameterized types were added to deal with array types. Many
alternatives [TC39 ES4 2006b] were considered and documented on TG1’s private67 wiki site [TC39
ES4 2007g]. Herman and Flanagan also experimented with formalization of the type system [TC39
ES4 2007a]. By early 2007 the design was still incomplete but had evolved to encompass many
modern typing concepts including function types and co/contra-variance considerations [TC39
ES4 2007b]. The realities of supporting optional typing and legacy dynamically typed programs
was an ongoing significant source of complications.

Throughout 2006 and most of 2007 TG1 continued to work on developing new proposals and
refining existing proposals. Eventually there was a list [TC39 ES4 2007e; Appendix L] on the private
wiki of fifty-four approved proposals slated for inclusion in the ES42 specification. An additional
twenty-six proposals [TC39 ES4 2007f] had been deferred or dropped.
Dave Herman had been recruited to TG1 after Brendan Eich discovered Web pages [Herman

2005] documenting Herman’s experiments in formalizing the semantics of the ES3 specification. At
the February 2006 TG1 meeting [TC39-TG1 2006b] Herman presented an introduction to formal
techniques for specifying programming languages. He explained that in addition to providing

67TC39’s private wiki was eventually made public as wiki.ecmascript.org [TC39 2007].

Authors’ Corrections: March 2021

64 Allen Wirfs-Brock and Brendan Eich

guidance to implementors, a formal specification provides a way to find and correct bugs within the
specification. Concerns were raised about whether such a formal specification would be readable
by ECMAScript implementors and other users of the specification. Herman felt that an operational-
semantics-based formalism could be made quite readable. Over the next few months Herman
explored using Maude [Clavel et al. 2003], Stratego [Visser 2001], and PLT Redex [Matthews et al.
2004] for specifying the ECMAScript semantics but ultimately found them unsatisfactory for the
task. Over the same period there were also discussions about the possibility of defining the language
in terms of a reference implementation. Another possibility was to design a new formal specification
language specifically for ECMAScript. In October 2006, there was discussion [TC39-TG1 2006e] of
the possible syntax and semantics of such a language until Cormac Flanagan pointed out that the
committee was now talking about taking on the work of defining two languages, the specification
language and the new version of ECMAScript. At this point the group quickly agreed to use an
existing language to write a definitional interpreter for ES42. they quickly decided on using the
language SML68 [Milner et al. 1997]. By the middle of November, TG1 had put in place the tools
and infrastructure for this effort and members were working on coding the interpreter. Herman
and Flanagan [2007] describe the impact this had on the working style of the committee, as follows:

Once we switched to a definitional interpreter, the interaction style of the committee
changed substantially, from monthly 1½-day discussion-oriented meetings to a 3-day
hackathong, interspersed with technical discussions, as various corner cases in the
language design and implementation were discovered and resolved.

18.3 Resistance
Microsoft had minimal involvement with the restarted ES42 effort. Microsoft’s Developer Division
(DevDiv) had always been responsible for JScript development even though DevDiv was organi-
zationally remote from the Microsoft Windows organization which was responsible for Internet
Explorer. In the early 2000’s DevDiv had reorganized in support of the .NET initiative and its C#
product unit was given responsibility for both JScript.NET and the more conventional JScript engine
used within Internet Explorer. This included the responsibility for participating in ECMAScript
standardization activities. However, with weak customer adoption of JScript.NET and with the
Windows organization having little interest in enhancing Internet Explorer, JScript/ECMAScript
work was a low priority activity within the C# group.

In the 2000s, Microsoft usually sited strategically important development efforts at its main
Redmond, Washington, campus and often sited more tactical projects at other campuses around
the world. For the 2006 fiscal year, July 2005–June 2006, Microsoft DevDiv decided to transfer
responsibility for all JScript/ECMAScript work to its India Development Center (IDC) in Hyderabad.
DevDiv had previously transferred responsibility for its Java-like J#.NET product to IDC [Prasanna
2002]. By the spring of 2006 the transfer was largely complete. The task of representing Microsoft at
TG1 was given to Pratap Lakshman who had worked on the J# team and had also been involved with
TC39-TG3, the Ecma C# standards task group. Lakshman remotely attended his first TG1 meeting
in April 2006 and started attending phone meetings and some face-to-face meetings. However, he
was not a significant contributor to the ES42 development work during that period.

Allen Wirfs-Brock, one of the authors of this paper, had joined Microsoft in 2003 as a software
architect on an exploratory project investigating new IDE architectures. Prior to Microsoft, he had
been deeply involved for two decades with the Smalltalk programming language and development
environments. Wirfs-Brock had been the lead developer of one of the first commercial Smalltalk

68Standard ML of New Jersey.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 65

virtual machine implementations [Caudill and Wirfs-Brock 1986], worked on Smalltalk enhance-
ments to support programming in the large, designed the standard Smalltalk exception handling
system, and wrote the language definition portion of the ANSI Smalltalk Standard [ANSI X3J20
1998].

By late 2006, the IDE project seemed to be running its course and Wirfs-Brock had his eyes open
for new opportunities. At this time there was growing interest in dynamic languages within DevDiv.
Because no single DevDiv product unit was then currently responsible for dynamic languages; the
various product unit managers were jockeying to do something with them. Wirfs-Brock took a
staff architect position reporting to Julia Liuson, the Visual Basic Product Unit Manager, to advise
her on dynamic language technologies and opportunities.
Allen Wirfs-Brock started his new position the first week of January 2007. During a casual

conversation, Liuson asked if he knew anything about JavaScript. Wirfs-Brock recalls responding
with something like: not much, it’s a dynamic language used on Web pages that I think is loosely
related to Self. Liuson then turned her monitor around and showed him an email message she had
just received and asked whether he had any thoughts about it.

The message was from Pratap Lakshman and addressed to all DevDiv Product Unit Managers. It
asked for guidance on the position he should be taking regarding a new JavaScript standard that
Ecma TC39 was developing. Wirfs-Brock’s recollection is that Lakshman’s message said the new
standard was based upon Adobe Flash and that it was going to be a substantial change from what
was then currently in browsers. Lakshman said that what TC39 was developing was a powerful
language that was likely to be too complicated for the Web. He went on to enumerate a long list
of new features and changes including class-based static typing, structural types, parameterized
types, and method overloading. He also stated that the revised language would be specified via a
reference implementation written in Standard ML.

Allen Wirfs-Brock’s response to Julia Liuson was that this sounded like a complete redesign and
that in his experience attempts to improve dynamic languages by adding static types were seldom
successful. He did not know enough about JavaScript or Web development to say anything more
definitive. However, he offered to research it further.
Wirfs-Brock spent several days familiarizing himself with JavaScript, the then-current ES3

specification, and TG1 proposals from the public wiki snapshot [TC39 ES4 2007g]. He spoke with
Lakshman, software architects on the Internet Explorer team, and Microsoft engineers working on
Web-based applications. He recognized JavaScript’s role on the Web as being a significant instance
of Richard Gabriel’s [1990] “Worse Is Better” concept. It was a minimalist creation that had grown
in a piecemeal manner to become deeply ingrained in the fabric of the World Wide Web. In contrast,
the ES42 effort appeared to Wirfs-Brock to be what Gabriel calls a “do the Right Thing” project that
was unlikely to reach fruition and, if it did, would be highly disruptive to the Web. He concluded
that the technically responsible thing to do would be to try to get ECMAScript evolution back onto
a path of incremental evolution.
Given Microsoft’s then lack of strategic interest in Web browser technologies, Wirfs-Brock

thought it unlikely that DevDiv management would be interested in allotting resources to a Web
browser related effort. He decided that, for internal DevDiv consumption, he would need to focus
on the possible consequences of ES42 becoming a success. The primary concern that he identified
was Adobe’s contributions of the ActionScript 3 language definition and virtual machine to the
effort. DevDiv’s proprietary focus was on its .NET platform and its flagship language, C#, whose
primary customers were enterprise application developers. The main competition for .NET was
Sun’s Java platform but DevDiv was starting to see Adobe’s ActionScript-based Flash and Flex
products as .NET competition. Wirfs-Brock anticipated that a successful ES42 effort could transform
ActionScript into a first-tier enterprise language comparable in power and utility to C# or Java.

Authors’ Corrections: March 2021

66 Allen Wirfs-Brock and Brendan Eich

That, in combination with its standardization as the primary language for Web development, could
result in a serious competitive threat to Microsoft’s languages and developer products.
Allen Wirfs-Brock wrote a memo stating these concerns and recommending that Microsoft

actively engage within TG1 and try to redirect it onto a path of piecewise, non-disruptive evolution
of the ECMAScript standard. By mid-January, that recommendation was accepted and Wirfs-Brock
was given the responsibility of carrying it out. On January 18, 2007, Pratap Lakshman posted a
message to the TG1 private mailing list [TC39 2003] introducing Wirfs-Brock as a new Microsoft
TG1 delegate.

The March TG1 face-to-face meeting was to be hosted by Microsoft and Wirfs-Brock decided
to make that the first meeting he would attend. But he also felt that it was important to quickly
disabuse the committee of its perception that Microsoft was supportive of the ES42 effort. He asked
Pratap Lakshman to convey that message at the February meeting. Lakshman did so and also
posted [Lakshman 2007a] a page to the TG1 private wiki where he floated the idea of a simplified
ES4 browser profile. He reported back that the response he received was quite hostile but that
during a coffee break he was approached by Douglas Crockford who offered that Yahoo! would be
willing to stand with Microsoft in opposition to ES42.

Allen Wirfs-Brock contacted Douglas Crockford and they agreed to work together to create
a joint Microsoft-Yahoo! proposal for an alternative to the ES42 project. Crockford [2002d] had
previously published a small set of recommended modifications to the ECMAScript language that
were intended to make the language “a little bit better” by correcting mistakes and inconveniences in
its original design. Wirfs-Brock and Crockford agreed that they would use those recommendations
as the starting point for the technical aspect of a joint proposal. Pratap Lakshman, as a follow-
up to his browser profile idea, posted a proposal [Lakshman 2007b] for a minimalist approach
that incorporated many of Crockford’s suggested ES3 modifications. Meanwhile, Wirfs-Brock
collaborated with Crockford and Lakshman to draft a more formal proposal that was circulated
within both Microsoft and Yahoo! for internal approvals. On March 15, 2007, ahead of the March
21–23 TG1 meeting they posted the proposal [Crockford et al. 2007] and Crockford announced it
via the TG1 private email distribution list.

The full title was “Proposal to Refocus TC39-TG1 On the Maintenance of the ECMAScript 3rd
Edition Specification” and its opening paragraph was as follows:

We believe that the specification currently under development by TC39-TG1 as ECMA-
Script 4 is such a radical departure from the current standard that it is essentially a new
language. It is as different from ECMAScript 3rd Edition as C++ is from C. Such a drastic
change is not appropriate for a revision of a widely used standardized language and
cannot be justified in light of the current broad adoption of ECMAScript 3rd Edition for
AJAX-style Web applications. We do not believe that consensus can be reached within
TC39-TG1 based upon its current language design work. However, we do believe that
an alternative way forward can be found and submit this proposal as a possible path to
resolution.

The proposal recommended that TG1 should be reconstituted around three work items. The
first work item was the maintenance of the then-current ECMAScript language defined by the 3rd
Edition specification. The maintenance work would include clarification of underspecified portions
of the 3rd Edition; incorporation of new features such as those in Mozilla’s JavaScript 1.6/1.7; and,
minor corrections and improvements such as those identified by Crockford. The second work
item was to draft a standard definition for ActionScript. The third work item was to define a
new programming language for the browser that could coexist with ECMAScript while not being
constrained by ECMAScript compatibility. The proposal left open the possibility that work items

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 67

two and three might be merged. It suggested that work items two and three be assigned to a new
TC39 Task Group distinct from TG1.

As expected, the response on the TG1 private mailing list69 was generally negative, but it did
reveal that Apple’s Maciej Stachowiak [2007b] also had reservations about the direction ES42 was
taking. Brendan Eich [2007b] was the most vocal respondent defending static typing and other ES42
features as being essential to improved performance and the structuring of large applications. He
also questioned both Microsoft’s and Yahoo!’s motivations for making the proposal [Eich 2007c].
The email discussion intensified as the March meeting date approached. Pratap Lakshman

requested that most of the second day of the meeting be devoted to the Microsoft/Yahoo! proposal.
Brendan Eich countered that an hour should be sufficient, and both he and Jeff Dyer expressed the
desire that the majority of the meeting continue as an ES42 hackathon. Both Eich and Dyer argued
that the ES42 activities represented the long established TG1 consensus that Microsoft had helped
form and questioned whether it was appropriate for Microsoft and Yahoo! to now try to break that
consensus. Allen Wirfs-Brock responded that consensus was already broken because Microsoft
and Yahoo! were two of the three Ordinary Members of Ecma who regularly participate in TG1.

The second day of the March meeting [TC39-TG1 2007c] was more heavily attended than usual.
In addition to Allen Wirfs-Brock and Pratap Lakshman, Microsoft was represented by Scott Isaacs
and Chris Wilson. Isaacs was a framework architect for Microsoft’s “live.com” Web applications
and had been one of the original developers of DHTML.70 Wilson was the platform architect
for Internet Explorer and was actively involved with W3C Web standards. Isaacs and Douglas
Crockford both spoke about the difficulties in Web application development when there is poor
interoperability among ECMAScript implementations within browsers. Crockford argued that a
more complete specification of ES3 level functionality would improve the stability of the Web by
helping to eliminate interoperability issues. Isaacs was particularly concerned about minimizing
new syntactic language extensions that could cause parsing errors for new Web pages in older
browsers. Both Isaacs and Crockford emphasized the growing importance of security and privacy
features within Web applications. Eich, Dyer, and Graydon Hoare countered that ES42’s type
system was the foundation needed for a more stable, secure, and performant browser programming
environment. Wirfs-Brock argued that an evolutionary “ES3.1” specification would help stabilize
the Web and provide time for ES4 to be implemented and adopted. Eich was concerned that this
was simply a delaying tactic to give Microsoft time to establish their .NET-based Rich Internet
Application Web platform71 as competition for the standards-based HTML/CSS/JavaScript platform.
He cautioned that there was already a lot of community buzz and excitement about ES4 and that it
would reflect negatively on Microsoft and Yahoo! if they forced a delay in its development.

Ultimately there was agreement that there might be some value in developing an “ES3.1” specifi-
cation and that Microsoft and Yahoo! could work on it within the context of TG1. This was the
outcome that Wirfs-Brock had hoped for when preparing for the meeting. The ES42 proponents
insisted that ES3.1 must be a subset of ES42 and that its specification must use the specification
style developed for ES42. Wirfs-Brock was not particularly concerned about those limitations as he
still believed that it was unlikely that an ES42 specification would ever be completed and released.
Pratap Lakshman, Allen Wirfs-Brock, and Douglas Crockford started working on defining the

ES3.1 project. Wirfs-Brock and Crockford met on March 29 and agreed that Lakshman should draft
an initial proposal that could be circulated prior to the April TG1 meeting. Crockford suggested
some design principles and that the 3.1 specification be in the same style as the ES3 specification,
69Ecma International stores an archive of this mailing list [TC39 2003]. What follows is based upon a review of that archive.
70Dynamic HTML.
71This platform, initially code-named WPF/E, was still in its prerelease preview phase at this time. It was released in April
2007 with the product name “Silverlight.”

Authors’ Corrections: March 2021

68 Allen Wirfs-Brock and Brendan Eich

Goals

1. Improve implementation conformance by rewriting the specification to improve its rigor and
clarity, and by correcting known points of ambiguity or under specification.

2. Add commonly implemented and used extensions to the standard (specifically most JavaScript 1.6
and 1.7 features)

3. Incorporate high leverage incremental extensions that support current usage experience and best
practices

4. Adopt low impact language changes that correct well known performance or reliability issues
5. Identify problematic features to be designated as deprecated
6. Maximize both forward and backward compatibility between ES3 and ES3.1 as well as between

ES3.1 and ES4.

Design Principles

1. Primary focus is on correction of known errors and clarification of known ambiguities.
2. New features only considered if:
a. They introduce no new syntax
b. Offer significant new value

3. Prefer features that have been proven in existing implementations
4. Features may be marked as deprecated if they are known to create significant security or reliability

issues.
a. Consider deprecating features with minimal value that cause significant performance related

issues.

Fig. 27. ES3.1 Initial Goals and Design Principles [Lakshman et al. 2007]

even though that would conflict with the agreement at the March meeting. Using the same specifi-
cation formalisms was problematic when the final form of the ES42 specification had not yet been
established.

On April 15 Pratap Lakshman posted a number of pages to the wiki under the title “ES3.1 Proposal
Working Draft” [Lakshman et al. 2007]. It included a set of goals, backward/forward compatibility
requirements, and design principles (Figure 27). It also included descriptions of approximately
twenty fixes, changes, and new features that were candidates for inclusion. Many of these were
derived from Douglas Crockford’s “Recommended ECMAScript Changes” document which he
had updated in early April and would update twice more as he contributed to ES3.1 [Crockford
2007b,c,d].
The ES3.1 working draft was discussed at the April meeting [TC39-TG1 2007a]. The major

concern of the ES42 developers was how the ES3.1 work would relate to the ES42 specification. They
wanted the ES3.1 work to follow the same ML reference implementation specification technique
that they intended to use for ES42. The ES3.1 group pushed back that it did not seem very useful
to completely change the specification technique for a maintenance release of a specification. Jeff
Dyer finally suggested that, given the difference of perspective, ES3.1 people should just continue
with what they were doing. But he warned that work done in the context of the ES3 specification
would be of little interest to the rest of the group.

Through the rest of the spring and summer of 2007, the two subgroups largely worked indepen-
dently on their two projects. The ES3.1 group was analyzing the existing ES3 specification and
its implementations to identify interoperability issues that existed because of underspecification
or from failure to follow the specification [Lakshman 2007c; Wirfs-Brock 2007b; Wirfs-Brock and

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 69

Crockford 2007]. The ES42 group continued to use its ML reference implementation as a tool to
flesh out their various proposals.
The ES42 project continued to be very aggressive with its schedule. At the beginning of May

2007, a report [Miller 2007] to the Ecma Co-Ordinating Committee stated that the final draft of the
ES42 specification would be finished by October 2007 so that the Ecma General Assembly could
approve it in December. On June 8, 2007, Dave Herman [2007; Appendix K] announced on Lambda
the Ultimate72 the availability of the “M0” release73 of the ES4 Reference Implementation [TC39
ES4 2007d].
At the June meeting [TC39-TG1 2007b] there was a call-to-action to immediately start the ES4

“spec writing process.” But, significant technical design issues remained unresolved and new issues
were being frequently discovered. For example, at the July meeting [Eich 2007d] it was recognized
that there were significant issues with performing run-time type-checking of structural types.
The September 7 TG1 Convener’s Report [Eich 2007d] stated that a 2007 completion date was

unrealistic and that the new completion date was being pushed out a year to September 2008. It
also reported that Lars Hansen was taking on the role of ES42 editor. The report did not mention
the ongoing ES3.1 work or the reservations of Yahoo! and Microsoft about ES42.
A goal of the September meeting [TC39-TG1 2007d] was to accept, reject, or defer for a future

edition all remaining unresolved ES42 proposals that existed on the ES4 wiki. From the perspective
of the ES42 working group, that included the proposal labeled “Maintenance of ES3” which was
the umbrella proposal for ES3.1 work. Jeff Dyer’s position at the meeting was that before the
end of the day this proposal needed to be either accepted or rejected (and marked as such on
the wiki). If rejected, that would remove it as a work item for TG1. It is apparent in the meeting
minutes that he did not believe that acceptance was a possible outcome. Brendan Eich’s position
was more nuanced. As the public champion of ES42 he found the ES3.1 effort a distraction and
was very skeptical of Microsoft’s motives. He did not want ES3.1 to be developed in competition
with ES42 and suggested that the ES3.1 proponents consider leaving TG1 and seeing whether TC39
would be willing to establish a new TG to accommodate them. However, as the TG1 convener,
he wanted to find a way to avoid splitting the group. He suggested that the work product of the
ES3.1 group might be published as an Ecma Technical Report or some other less formal, non-ISO,
non-standards-track document. The entire conversation was heated and stressful for both the ES42
and ES3.1 proponents. At one point Pratap Lakshman in frustration stated, “We do not support
or agree to the current ES4 proposal, either in whole or in part. We intend to continue to work
with interested TG members to develop a proposal for a more incremental revision of the current
specification.” This reflected Microsoft’s position though it was not a very politic statement and
was slightly inaccurate regarding all parts of ES42. Ultimately, the immediate problem of the status
of the “Maintenance of ES3” proposal was resolved by moving the ES3.1 pages from under the
“Proposals” namespace of the wiki and placing them under a new “ES3.1” namespace. However,
the conflicting goals of the ES3.1 and ES42 proponents were not resolved and soon spilled out into
public rhetoric [Kanaracus 2007].

18.4 Finding Harmony
During 2007, the set of active TG1 participants started to grow. Some of the growth was due to
efforts by both the ES3.1 and ES42 groups to encourage new and currently inactive members to
participate. In the spring, inactive TG1 members IBM and Apple began to more regularly send
representatives to TG1 meetings and participate in online discussions. Google joined Ecma as

72A weblog that was popular among programming language researchers and implementors. Also known as LtU.
73M0 is an abbreviation for Milestone 0.

Authors’ Corrections: March 2021

70 Allen Wirfs-Brock and Brendan Eich

an Ordinary Member and appointed Waldemar Horwat as its GA representative and lead TG1
delegate. The Dojo Foundation joined as a non-profit member represented by Alex Russell and
Chris Zyp. Both Allen Wirfs-Brock and Douglas Crockford encouraged Mark S. Miller, an expert in
object-capability (OCAP) languages74 [Miller 2006], to participate. Miller worked for Google and
he started attending meetings as a Google delegate. Some of the new participants brought a Web
developer’s perspective to the group which previously had been dominated by language designers
and engine implementors.
At the beginning of 2007, TG1’s goal was to have a finished ES42 specification by October.

That goal was not met, but in October Lars Hansen [2007e] completed a document whose initial
drafts [Hansen 2007b] were titled “ECMAScript 4th Edition Language Overview.” This was not a
detailed specification but instead a 40 page summary of the major features of the language. The
first paragraph of its abstract described the language in this way:

The fourth edition of the ECMAScript language (ES4) represents a significant evolution
of the third edition language (ES3), which Ecma approved as the standard ECMA-262
in 1999. ES4 is compatible with ES3 and adds important facilities for programming in
the large (classes, interfaces, namespaces, packages, program units, optional type anno-
tations, and optional static type checking and verification), evolutionary programming
and scripting (structural types, duck typing, type definitions, and multi-methods), data
structure construction (parameterized types, getters and setters, and metalevel meth-
ods), control abstraction (proper tail calls, iterators, and generators), and introspection
(type metaobjects and stack marks).

It ultimately proved to be the best overall description of the envisioned ES42 language. However,
both Allen Wirfs-Brock [2007c] and Douglas Crockford [2007a] expressed concern that the unqual-
ified use of the name “ECMAScript 4th Edition” suggested that it was describing a language that
was very close to final approval as an Ecma standard. In addition, the introduction to the document
presented the design as representing the consensus of Ecma TC39-TG1 and made no mention
of any dissenting opinions about the ES42 design within TG1. After some negotiations, Hansen
agreed to add “Proposed” as the first word of the title and to insert a paragraph into the document’s
introduction which stated that a minority of TG1 opposed standardization of the presented design.
Similar concerns were raised about the website [TC39 ES4 2007c] that was being set up by members
of the ES42 team to distribute the overview paper and the Reference Implementation code. These
incidents intensified the ES3.1 proponents’ concerns about how the ES42 proponents were publicly
marketing ES4 while continuing to ignore or discount the ES3.1 effort.

Allen Wirfs-Brock was in regular contact with Microsoft’s corporate standards group including,
Isabelle Valet-Harperwhowas amember of the EcmaCo-Ordinating Committee (CC). The CC [Ecma
International 2007b] was concerned that the private, externally hosted wiki TG1 used for documents
and meeting minutes was not accessible to the Ecma secretariat and general membership. The
Secretariat requested that copies of agendas, meeting notes, and important documents be formatted
for posting to Ecma’s internal members-only website. TG1 decided that the easiest way to comply
was to make the entire TG1 wiki publicly readable [TC39 2007].

At the October 2007 CC meeting [Ecma International 2007a] there were discussions about the
operation of TC39-TG1. Prior to 2001, TC39’s charter had involved only ECMAScript. In 2001, it had
expanded to encompass additional programming languages and platforms, each the responsibility
of a largely independent TG. ECMAScript development was assigned to TC39-TG1. The Ecma
Secretariat was generally focused on supervising and supporting TC-level activities rather than
those of TGs. By 2007, TG1 seemed to be operating autonomously without supervision from either
74Using objects as the foundation of a capability-based access control system.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 71

TC39 or the Secretariat. Some CC members were concerned that TG1 might not be following all of
Ecma’s policies and procedures. Also discussed was the reported lack of consensus within TG1 on
its then-current work. One possible solution discussed was to elevate TC39-TG1 to full TC status
so it would receive greater Secretariat oversight. John Neumann, the then-current Ecma President,
agreed to attend the November 2007 TG1 meeting to try to clarify the situation.
That meeting [TC39 2007] was devoted mostly to airing the CC’s concerns and discussion of

the apparent lack of consensus about the ES3.1 and ES42 projects. John Neumann emphasized
concerns about the lack of communications of venue notices, agendas, meeting minutes, and key
documents from TG1 to the rest of Ecma and insisted that this needed to change. He also cautioned
that, from an Ecma perspective, TG1 was being too publicly open in some cases. In particular, there
was concern within Ecma’s management that disagreements among TG1 members were being
argued in public on weblogs and discussion forums. Neumann announced that he was going to
recommend that ECMAScript-related activities again become the single focus of TC39. Essentially,
TC39-TG1 would be rechristened as TC39. This would make the ECMAScript work more visible
within Ecma and make the support and oversight of the Ecma secretariat directly available to it.
The other currently active TGs of TC39 would be transferred into a a newly created TG49. This
reorganization was approved by the Ecma General Assembly at its December 2007 meeting, and as
of January 2008 TC39-TG1 once again became just TC39.
The November meeting also included discussion about TC39’s charter going forward. Douglas

Crockford proposed that there should be a new project to define a Secure ECMAScriptg (SES)
that could support mashupsg and other security-sensitive applications. Allen Wirfs-Brock [2007]
distributed a new Microsoft Position Statement that reiterated its call to take an evolutionary
approach to moving the ES3 language and specification forward rather than continuing with the
existing ES42 effort. Crockford announced Yahoo!’s support of that position. Lars Hansen asserted
that “the 3.1 proposal has languished and was finally sidelined in September, we’re working on ES4
here, not 3.1.” Brendan Eich also claimed that not much had happened with ES3.1 since April. Wirfs-
Brock did not accept that ES3.1 was sidelined and pointed out that multiple documents [Lakshman
2007c; Wirfs-Brock 2007a,b; Wirfs-Brock and Crockford 2007] analyzing ES3 interoperability issues
had been produced as inputs into ES3.1 development.

A straw poll was taken to gauge interest in the three possible TC39 activities. Everybody present
(representing nine organizations) supported continuedwork on ES42. Continuingwork on ES3.1 was
supported by Microsoft, Yahoo!, Apple, Google, and Mozilla. Starting work on a Secure ECMAScript
was supported by Microsoft, Yahoo!, Apple, and Google. From an Ecma perspective, those levels
of support were more than adequate to justify moving forward with those activities within the
new TC39. Microsoft’s support for continuing ES42 was contrary to what was stated in its position
paper. Allen Wirfs-Brock recalls thinking that it was unnecessary to push further on that point
because he still expected the ES42 effort to ultimately fail.

After the December 2007 Ecma GA meeting, Isabelle Valet-Harper spoke with Allen Wirfs-Brock
about who might be an appropriate chairperson for the new TC39. Brendan Eich could not be
chair because Ecma’s then-current rules required that TC chairs represent an Ordinary Member.
Mozilla was a Not-For-Profit Member. Wirfs-Brock and Valet-Harper agreed that the ideal chair
would be somebody who did not have a personal investment in or opinion regarding ES4, ES3.1, or
any other possible TC39 project. Valet-Harper suggested that Microsoft and Adobe, in a spirit of
cooperation, each contract with John Neumann to represent them and jointly nominate him as
TC39 chair. Adobe agreed to this idea and it was announced at the January 2008 TC39 meeting and
at the March 2008 meeting Neumann was elected as the TC39 chairperson.
In November, 2007, Lars Hansen [2007c] prepared an “Editor’s Report” with a new schedule

aiming for a final ES42 draft by October 2008 and publication as an Ecma standard in December 2008.

Authors’ Corrections: March 2021

72 Allen Wirfs-Brock and Brendan Eich

He also wrote a paper [Hansen 2007a] summarizing intentional ES42 incompatibilities with ES3,
and a tutorial [Hansen 2007d] on how ES42 gradual typing supported evolutionary programming. In
February 2008, Jeff Dyer [2008a] posted a newwork plan, still targeting December, with intermediate
drafts in May, July, and September. Hansen and Dyer [2008] also posted a position statement titled
“Features to Defer From Proposed ECMAScript 4.” It argues that the then-current ES42 plan includes
a number of features which are “strange, unproven, or costly” and that deferring them

will significantly increase the likelihood of finishing the spec in 2008, will increase
community buy-in, will help keep implementation complexity manageable, will reduce
the risk of standardizing something we’ll later regret, and will—with plenty of luck—
somewhat reduce the discord among TG1 members.

Proposed deferrals were: numeric conversion, int and uint, decimal, operator overloading, generic
functions, wrap75, stack marks, generators, tail calls, nullability, program units, reformed with,
resurrected eval, and namespace filters. After justifying why each of those features should be
deferred, the position statement presents Adobe’s revised view on how ECMAScript should evolve
going forward:

We think ES needs to evolve in a more piecemeal fashion than we’re seeing for ES4
so far. The fact that nine years will have passed from the publication of E262-3 to the
publication of E262-4 is not in itself a valid reason to introduce a large number of new
features at once; each feature must carry its weight, and experience must guide us.
That said, this paper [is] not advocating a watered-down “ES3.1” (which should really
be called “ES3.01”); we are advocating that we go for the 80% solution “ES3.8” now and
then plan to grow to meet new needs in the near future, when those needs are clearer.

There is no substantive discussion of this position paper recorded in any of the TC39 meeting
minutes or in the private or public TC39 email channels. The only recorded response was IBM
objecting to the suggestion that decimal arithmetic should be excluded. During this same period
significant criticism of various aspects of the ES42 design, methodology, and process was posted
to the es4-discussg mailing list. Some criticism came from influential framework developers and
ECMAScript implementors at Apple and Google. In March 2008 the ES42 designers discovered [Dyer
2008b] that there were fundamental semantic issues with the ES42 package abstraction used to
define modules and in May issues with namespaces were identified [Stachowiak 2008b].

Throughout the spring of 2008, Lars Hansen posted initial drafts of individual ES42 specification
sections for feedback. On May 16, Hansen [2008] announced his first draft [Hansen et al. 2008a,b,c]
for the specification:

Enclosed is a quite incomplete first draft of the specification for the Proposed ECMA-
Script 4th Edition. This draft is comprised of a short introduction, the surface grammar,
and a description of the core semantics—values, storage, types, names, scopes, and
name resolution. More will follow as it is ready, probably on a (more or less) bimonthly
schedule.

During this same period, the ES3.1 subgroup started developing a specification derived from the
ES3 specification. There was an expanding set of participants from organizations such as Google,
IBM, Dojo Foundation, and Apple. The initial draft of the ES3.1 specification was distributed [Lak-
shman 2008; Lakshman et al. 2008] on May 28.

75In ES42, wrap is an operator that performs a dynamic structural type check on a value and then, if the type check succeeds,
creates a wrapper object which can be used in place of that value. The wrapper revalidates each operation applied to it
before delegating the operation to the original value. Wrappers allow objects, whose properties may be removed or modified,
to be used in the context of statically provided type declarations.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 73

At the May 29–30, 2008, meeting, both specifications were introduced by their editors. Detailed
discussion was deferred until the July meeting to give members time to read the specifications.
It was clear from the rate of progress, the amount of remaining writing, and the number of still
unresolved design issues, that the final ES42 specification could not be ready for December 2008.
June 2009 or more likely December 2009, should be the release target. For ES3.1 to be ready for
December 2008, all major design decisions needed to be finalized before the July 2008 meeting. June
2009 seemed like a more realistic target.

In late June 2008, John Neumann organized a conference call that included Brendan Eich, Allen
Wirfs-Brock, Douglas Crockford, Adobe’s Dan Smith76, and David McAllister, Adobe’s Ecma Gen-
eral Assembly representative. McAllister and Smith announced that Adobe was going to discontinue
its support of the ES42 effort and that the staff assigned to it was going to be moving on to other
activities. Everybody present understood that this was the end of ES42 and that a broader announce-
ment should be carefully orchestrated. They agreed to make the announcement to all of TC39 at its
upcoming July meeting and to decide at that meeting how to make a public announcement. Eich,
who had been forewarned of the decision by Adobe, was in agreement with it and expressed a hope
to harmonize all of TC39 around completing the ES3.1 effort and developing a common plan for the
future that was not constrained by past ES4 design decisions. He agreed to present that vision at
the upcoming meeting. The agenda for the July 23–25 meeting in Oslo, Norway, was revised [TC39
2008f] to list “Harmonization of ECMAScript” as the first item of new business.
In 2018 email discussions, Jeff Dyer and Lars Hansen recounted that the withdrawal was their

decision made in consultation with their manager, Dan Smith. They had become convinced that
ES42 was unlikely to get finished. Their perception was that opposition from the members of the
ES3.1 working group was stalling work on ES42 and it was becoming apparent that the status quo
approach of ES3 plus fixes was carrying the day within TC39, leaving no room to incorporate the
static features of ActionScript 3.
Cormac Flanagan, in a 2019 personal communication, speculates that Adobe’s withdrawal was

really a recognition of the problems with ES42. His postmortem thoughts also include the following:
• The substantial language extension planned for ES4 was (in retrospect) a high-risk,
non-conservative approach.
• There was cutting edge language [technology] involved in the standardization pro-
cess, particularly around the addition of the static type system (10+ years later [in
2019], there are still hard unsolved research and performance problems [Greenman
et al. 2019]). The publication of “Space-Efficient Gradual Typing” at TFP’07 [Herman
et al. 2011], inspired by performance concerns in ES4, is perhaps a reflection of the
researchy nature of this work.
• The ‘buy-in’ concerns around ES4 in TC39, while problematic, were never fatal.
• The ML reference specification was a workable idea, although discarded for later
editions. In retrospect, it might have been better to start with a reference specification
for ES3.

Douglas Crockford [2008c], in a blog post, attributed the failure of ES42 to excessive unproven
innovation:

It turns out that standard[s] bodies are not good places to innovate. That’s what
laboratories and startups are for. Standards must be drafted by consensus. Stan-
dards must be free of controversy. If a feature is too murky to produce a consensus,
then it should not be a candidate for standardization. It is for a good reason that

76Lacking a written record, recollections are fuzzy regarding whether Adobe was represented by Smith, McAllister, or both.

Authors’ Corrections: March 2021

74 Allen Wirfs-Brock and Brendan Eich

“design by committee” is a pejorative. Standards bodies should not be in the busi-
ness of design. They should stick to careful specification, which is important and
difficult work.

AllenWirfs-Brock recalls feeling relief when Adobe announced its withdrawal from ES42. He was
aware that the Microsoft executives responsible for Internet Explorer had come to understand that
disinvestment in Internet Explorer had been a strategic mistake. IE was losing significant market
share to Firefox and the executives were aware that Google was preparing to launch a new browser.
Microsoft was actively confronting the perception among Web developers that it was opposed to
technical advancement of the Web. Microsoft’s opposition to ES42, particularly as exposed via the
very public arguments involving Brendan Eich and Microsoft’s Chris Wilson [Kanaracus 2007],
was feeding that narrative. By June of 2008 Wirfs-Brock was worried that Microsoft might decide,
for strictly business reasons, that it would be better to go along with ES42 rather than publicly
oppose it.
The majority of the Oslo TC39 meeting [TC39 2008g] was spent explaining and socializing the

concept of harmonization of TC39 around a common set of obtainable goals. The overall plan was
to focus the entire committee on completing the ES3.1 release during 2009 while simultaneously
collaborating in planning a more significant follow-on edition, code named “Harmony,” that would
not be constrained by the previous ten years of ES4 design decisions. There were discussions at
the meeting about what features would or would not be “harmonious” but no serious objections
to the basic plan were expressed either at the meeting or in post-meeting email discussions with
TC39 members who were unable to attend the meeting. The steps of the plan were summarized in
a white paper [Eich et al. 2008] prepared after the meeting:

1. Focus work on ES3.1 with full collaboration of all parties, and target two
interoperable implementations by early next year.

2. Collaborate on the next step beyond ES3.1, which will include syntactic exten-
sions more modest than current ES4 suggestions in both semantic and syntactic
innovation.

3. Remove from consideration the ES4 concepts of “packages,” “namespaces,” and
“early binding.”

4. Rephrase other goals and ideas from ES4 to keep consensus in the committee;
these include a notion of classes based on existing ES3 concepts combined with
proposed ES3.1 extensions.

On August 13, Brendan Eich [2008b; Appendix M] emailed a slightly personalized version of
the white paper to the es4-discuss mailing list. On August 19 Ecma International [2008] issued a
short press release announcing that TC39 was going to focus its work on ES3.1. On August 15, Eich
recorded a podcast [Openweb 2008] where he explained his view of the technical and pragmatic
causes of ES42’s failure and his hopes for a harmonious future within TC39. Early in the podcast he
said “the attempt to unify early binding and late binding through namespaces has failed.” Later he
elaborated:

First packages were cut by us, ES4, we cut that. Second namespaces were cut by
us, ES4, we cut that. We didn’t do it to curry favor with 3.1. We did it because of
problems with namespaces
. . .
this isn’t a concession or a us versus them—this [ES42] is really a good attempt to
try to unify things, going back to the Waldemar [Horwat] specs (or maybe even
Common Lisp) to do with namespaces and packages and realizing they weren’t
right for the Web.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 75

19 INTERLUDE: TAKING JAVASCRIPT SERIOUSLY
Starting in the late 1990s, TC39 members tried to redesign JavaScript as a language for serious
professional programmers. By the late 2000s, the developers of browsers and other related platforms
finally realized that JavaScript was a serious part of their platforms that needed serious engineering
attention.

19.1 The JavaScript Performance Revolution
Performance was neither a concern nor a goal when Brendan Eich constructed Mocha in May
1995. There were not yet any JavaScript programs in existence and the anticipated programs were
expected to be simple orchestrations of objects implemented with other, more efficient languages.
JavaScript was not envisioned as a language for coding even moderately complex algorithms.
Early JavaScript engines used either simple bytecode interpreters or parse tree evaluators to
directly interpret JavaScript functions and utilized simple memory management schemes. They did
not utilize any of the sophisticated high performance implementation techniques that had been
developed in the 1980s and early 1990s for Lisp, Smalltalk, Self, and other dynamic languages. The
basic architecture of Netscape/Mozilla’s SpiderMonkey and Microsoft’s JScript engines remained
basically unchanged for ten years. New ES3-level language features were added and security issues
were addressed but whatever performance gains were seen over that period can be attributable to
hardware performance improvements driven by Moore’s law [Moore 1975]. For most of that period
maintenance of a browser’s JavaScript engine was part-time work for a single software developer.
During the first half of the 2000s, the emergence of large AJAX-style JavaScript-based Web

applications began to seriously push against the performance limitations of those first generation
engines. By 2006–2007, Web developers were becoming more vocal about performance issues
and browser vendors were starting to staff teams to address the performance limitations of their
JavaScript engines. Being able to measure performance is an important starting point for improving
performance and Apple’s WebKitg team created the SunSpider JavaScript benchmark suite [Sta-
chowiak 2007a] for that purpose. SunSpider was far from perfect and consisted of relatively small
test cases, but it was derived from actual Web application code. Within a short period after its
release the Web application developer community was routinely using SunSpider to compare
browser JavaScript performance and talking about the results. Browser game theory generally
prevents browser vendors from competing on the basis of JavaScript features, but they could and
did begin to compete on JavaScript performance.
Different vendors took different paths to achieving high-performance JavaScript engines. In

2006, Google started developing what would ultimately become the Chromeg browser. Lars Bak
led the development of Chrome’s V8g JavaScript engine which built upon techniques he learned
developing Smalltalk, Self, and Java virtual machines [Google 2008b]. When Chrome was released in
September 2008 it became the new baseline for good JavaScript performance. One contemporaneous
report [Hobbs 2008] found that V8 ran Google’s benchmarks [Google 2008a] approximately 10
times faster77 than SpiderMonkey in the then-current release version of Firefox. However, on the
SunSpider benchmarks V8 was approximately only two times faster.

Mozilla’s initial approach, called TraceMonkey [Gal et al. 2009], was based on the graduate work
of Andreas Gal at University of California, Irvine. It used the existing SpiderMonkey interpreter
augmented with a trace-driven code-specializing JIT compiler that generated optimized native code
for dynamically identified execution hotspots. Apple’s SquirrelFish Extreme [Stachowiak 2008a],
also known as Nitro, used techniques inspired by Self and high-performance Lua implementations.

77In August 2018 one of the authors ran the same benchmarks in a browser using the then-current version of V8 on a
2011-vintage iMac. The reported result was approximately twenty times faster than the Hobbs’ 2008 V8 results.

Authors’ Corrections: March 2021

76 Allen Wirfs-Brock and Brendan Eich

CommonJS Modules Translates Into

// moda.js - source

var modp = require("modp");

exports.n = modp.p++;

exports.modName = "prefix"+exports.n;

// modb.js - source

var modx = require(require("moda").modName);

var propName = Object.keys(modx)[0];

exports[propName] = modx[propName];

// moda.js - CJS expansion

(function(exports ,require ,module){
var modp = require("modp");

exports.n = modp.p++;

exports.modName = "prefix"+exports.n;

});

// modb.js - CJS expansion

(function(exports ,require ,module){
var modx = require(require("moda").modName);

var propName = Object.keys(modx)[0];

exports[propName] = modx[propName];

});

Fig. 28. CommonJS modules are transformed by the module loader into functions implementing the module
pattern. Sharing among modules is via the properties of dynamically constructed exports objects.

Microsoft initially tried to incrementally redesign their legacy JScript engine for use in IE 8, but for
IE 9 they built Chakra, a completely new JIT-based JavaScript engine [Niyogi 2010].
All of these efforts were just the starting point for ongoing work to optimize JavaScript perfor-

mance. Today, each major browser’s development effort includes a substantial JavaScript team
focusing on performance as well as security and new language features of the ECMAScript standard.
Each of the engines developed by these teams is released under a compatible open-source license
so the teams are able to build upon each other’s work, sharing ideas and, sometimes, complete
subsystems as they compete to produce the fastest JavaScript implementation.

19.2 CommonJS and Node.js
From its inception, JavaScript has also been hosted on server platforms to provide basic scripting
capabilities. However, each platform was unique, providing its own distinct JavaScript APIs. For the
first fifteen years of JavaScript’s existence there was no common domain-independent, interoperable
environment for non-browser JavaScript applications. In January 2009, Kevin Dangoor, a developer
for Khan Academy, who had previously worked for Adobe and Mozilla, decided it was time to
change that. He wrote a blog post [Dangoor 2009] describing the problems and invited the server-
side JavaScript community to engage in solving the problems via an online discussion group and
wiki. A year later in a follow-up blog post [Dangoor 2010] he summarized what he originally hoped
to create as follows:

• A module system,
• A cross-interpreter standard library,
• A few standard interfaces,
• A package system, and
• A package repository

Within its first week, 224 members joined the discussion group [Kowal 2009a] and many of them
expressed interest in contributing to the project. The initiative was initially called ServerJS but
in August 2009 it was renamed to CommonJSg because its technologies would have applicability
beyond servers. The initiative was focused on writing specifications rather than implementations.
By April 2009, the group had an initial module specification [CommonJS Project 2009]. The

CommonJS Modules specification was based upon a design by Kris Kowal and Ihab Awad [2009a].

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 77

A CommonJS module is a JavaScript function body whose scope includes several bindings which
enables the body code to interact with other modules. This is implemented by a synchronous module
loader which fetches a module’s source code, wraps the code with a skeleton function definition,
and then parses and calls the synthesized function to initialize the module and its connections to
other modules. As illustrated in Figure 28, module-scoped declarations become local variables of
the synthesized function, and the control hooks of the system are exposed as function parameters
whose values are provided by the loader. The require parameter is a function that synchronously
performs a contextualized loading process for a requested module and returns its exports value.78
By default the exports value is an object provided by the loader. Module code exports values by
creating properties on the exports object. This is a dynamic run-time process. The module names,
the actual exports value, and its property names and values may all be dynamically generated.
This makes it difficult and sometimes impossible to predetermine an application’s required modules
and which entities are shared among them.

One of the early adopters of CommonJSModules wasNode.jsg whichwas being developed by Ryan
Dahl in early 2009. Node.js was conceived as an open-source JavaScript-based platform for building
server applications which would be capable of handling a large number of simultaneous client
connections. Node.js provided a JavaScript programming environment with libraries exposing
a pervasive asynchronous I/O model. It combined common POSIX interfaces with JavaScript
callbacks and a simplified version of the browser event loop. Its implementation consisted of
Google’s V8 JavaScript engine wrapped for standalone use, a CommonJS Module loader, and a
set of C-implemented modules providing non-blocking versions of the POSIX APIs and other
higher level file and network operations. The first public version was released in May 2009 [Node
Project 2009], but it got significant attention only after Dahl [2009] gave a presentation at jsconf.eu
in November 2009. Shortly after that Dahl was hired by Joyent which managed and supported
further development of Node.js until responsibility was transferred to a foundation in 2015 [Node
Foundation 2018].

Node.js was conceived as a technology for building server applications, but it became a platform
that enabled JavaScript to be used as a general-purpose programming language on a wide variety
of platforms including small embedded devices. The Node.js I/O modules combined with the
high-performance V8 engine was comparable in capability and often superior in performance to
other dynamic application languages such as Python and Ruby. It became the de facto standard
way of writing command-line JavaScript applications. Node.js enabled Web programmers who
had mastered JavaScript to transfer their skills to other kinds of applications and non-browser
environments. Originally, developers of client Web applications programmed in JavaScript because
there was no alternative. Many Node.js developers chose to use it because they preferred to program
in JavaScript.

19.3 JavaScript: The Browser Universal Runtime
JavaScript is the programming language that is part of the suite of standards that defines the
interoperable browser platform. It is the only language that developers of Web pages can expect
to be available79 in every browser. Other languages environments such as Java, Adobe Flash,
and Microsoft Silverlightg are not part of this standard platform and must be integrated into a
browser using a browser-specific add-on mechanism—if that browser is supported by that language.

78Only the first require for a specific module performs the full load process. The exports value is retained by the loader
and immediately returned by subsequent require requests for the same module.
79Web page developers should still consider the possibility that the user of a browser has disabled JavaScript or that the
page is being processed by a program that does not include JavaScript support.

Authors’ Corrections: March 2021

78 Allen Wirfs-Brock and Brendan Eich

Typically a language engine has to be separately installed by the browser user and may not be fully
integrated into the browser’s standard services such as the DOM-based graphics model.
Browser Game Theory predicts that the likelihood of success is extremely low for any attempt

to extend the standard browser platform by adding another programming language. It takes a large
investment for a browser vendor to design, implement, and promote a new language for the Web
with no guarantee that it will find significant adoption by Web developers. Adoption requires that
all major browsers agree to support a language that was designed by a competitor, has a small or
non-existent user base, and which will become a perpetual maintenance burden. For example, in
2011 Google introduced the Dartg language and promoted it as a better programming language for
the Web [Krill 2011]. Google distributed an experimental version of Chromiumg, [Google 2012a] the
open-source foundation of their Chrome browser, which included a Dart virtual machine [Google
2012b] but it was never incorporated into a production version of Chrome nor any other browser.
With the emergence of AJAX/Web-2.0–style applications in 2005, Web developers started to

write larger, more complex Web applications and some of them were looking for a programming
language that seemed more suited to such applications than ES3-level JavaScript. What does a
developer do if they need to write code that will run as part of a Web page in any browser and
they need or want to write the code in a language other than JavaScript? The only alternative is to
somehow use JavaScript to provide the runtime-support for the alternative language. This might
be done by writing an interpreter in JavaScript for the alternative language. But in the mid-2000s,
JavaScript engines were still implemented as relatively slow interpreters, and JavaScript was not a
particularly good language for writing efficient interpreters. A doubly slow interpreted interpreter
was not a very attractive solution. A more plausible way to host an alternative language was via a
source-to-source translator—a compiler that translates the source code of the alternative language
into JavaScript code that can run natively on a browser’s JavaScript engine. Runtime performance
of programs compiled in that manner could be relatively close to hand-written JavaScript if there
is a reasonably close match between the semantics of the alternative language and JavaScript’s
semantics.
Google Web Toolkit (GWT) [Google 2006], publicly released in May 2006, was the first widely

used AJAX toolkit using source-to-source translation; GWT incorporated a Java to JavaScript
compiler. It was successfully used for a number of significant Google public-facingWeb applications
and also found significant use outside of Google. The success of GWT proved the feasibility of
targeting JavaScript for source-to-source translation and translators for many other languages
followed. A January 2011 list of languages that compile to JS [Ashkenas et al. 2011] has nineteen
entries. A 2018 version of the same list [Ashkenas et al. 2018] includes more than 270 languages
which are translated to or otherwise hosted by JavaScript. Some of these are toys or incomplete
implementations. However, many are serious compilers with significant numbers of users. There is
even a Dart compiler that targets JavaScript.

Source-to-source translation was used not only for supporting legacy languages on Web pages. It
also provided a means for experimenting with new languages and for extending JavaScript. One of
the most successful source-to-source translators was CoffeeScriptg [Ashkenas 2010], developed by
Jeremy Ashkenas in 2009 and 2010. Before becoming aWeb developer, Ashkenas had programmed in
the Ruby language and preferred Ruby’s relatively punctuation-free syntax and Python-style signif-
icant whitespace to the C-style syntax used by JavaScript. He created CoffeeScript as new syntactic
skin for JavaScript while keeping the underlying JavaScript runtime semantics. Ashkenas [2009]
announced his work on CoffeeScript with this description:

JavaScript has always had a gorgeous object model hidden within Java-esque syntax.
CoffeeScript is an attempt to expose the good parts of JavaScript through syntax that

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 79

favors expressions over statements, cuts down on punctuation noise, and provides
pretty function literals. This CoffeeScript:

square: x => x * x.

Compiles into this JavaScript:
var square = function(x) {

return x * x;

};

In addition to “pretty functions,” CoffeeScript introduced a number of syntactic programming
conveniences including class declarations and destructuring operations which easily translated
into JavaScript code. A number of the CoffeeScript features were similar to features that were
being contemplated for ECMAScript Harmony. CoffeeScript validated that JavaScript programmers
were interested in such features. CoffeeScript quickly became quite popular and was adopted by a
number of major website developers. Its usage waned after ES2015 became widely available.

At the May 2011 JSConf, Brendan Eich shared the stage with Jeremy Ashkenas and spoke about
CoffeeScript and its role in the Harmony evolution of JavaScript. In his presentation, Eich [2011c]
introduced a Word of the Day, “transpilerg,” to describe source-to-source compilers like CoffeeScript.
This was not the first time that the term “transpiler” was coined with that usage, but it was not
widely known or used before Eich’s talk. Subsequently it came into common usage within the
JavaScript developer community and beyond.
Alon Zakai’s [2011] Emscripten is a transpiler that translates C/C++ into efficient JavaScript

code. It is based upon the observation that JavaScript’s 32-bit arithmetic coding patterns (§3.7.3)
and binary TypedArray data structures could be used to define a C execution environment that
was easily optimized by JIT-based JavaScript engines. Emscripten inspired asm.js [Herman et al.
2014], which is a specification defining a set of JavaScript code-patterns that such compilers should
generate and that should be recognized and optimized by engines. The success of asm.js led to
development of WebAssembly [Haas et al. 2017], which extends JS engines with a bytecode-level
interface that can be used as a compilation target for C/C++ and similar low-level languages.

Part 4: Modernizing JavaScript

20 DEVELOPING ES3.1/ES5
Throughout most of 2007, the ES42 working group believed that the ES3.1 effort was simply a
competitive attempt to derail ES42 and that it lacked any technical substance. However, Douglas
Crockford, Pratap Lakshman, and Allen Wirfs-Brock were committed to developing an incremental
improvement to the ES3 specification that brought it up to date and corrected sources of inter-
operability issues. The first step after posting the initial goals, design principles, and proposed
feature-level changes [Lakshman et al. 2007] for ES3.1 was to develop a fuller understanding of
the then-current state of JavaScript in Web browsers and how Web Reality differed from the ES3
specification.

An immediate concern for the ES3.1 working group was that Microsoft’s JScript implementation
for Internet Explorer had a reputation of not being in compliance with Web standards. In order to
understand the validity and scope of those concerns regarding ECMAScript, Allen Wirfs-Brock
asked Pratap Lakshman to do an analysis to determine all of the ways that IE JScript deviated from
ES3. This resulted in an 87-page “JScript Deviations from ES3” report [Lakshman 2007c] which
was completed in September 2007. The report had three major sections. The first major section
identified each place the then-current JScript implementation deviated from a clear requirement of
the ES3 specification. For each deviation the report provided the ES3 specification language that

Authors’ Corrections: March 2021

80 Allen Wirfs-Brock and Brendan Eich

2.15 String.prototype.split: §15.4.4.14
ES3 states that “If separator is a regular expression that contains capturing parentheses, then each
time separator is matched the results (including any undefined results) of the capturing parentheses
are spliced into the output array.”

JScript ignores the capturing parentheses. FF outputs empty strings instead of undefined.
Example:
<script>
alert("Aboldand<CODE>coded</CODE>".split(/<(\/)?([^<>]+)>/));
</script>

Output:
IE: A,bold,and,coded
FF: A,,B,bold,/,B,and,,CODE,coded,/,CODE,
Opera: same as FF
Safari: same as IE

Fig. 29. An ES3 deviation as documented in JScript Deviations Report [Lakshman 2007c]

was violated, a test case that could be used to observe the deviations, and the results of running
the test on the then-current releases of Internet Explorer, Mozilla Firefox, Opera, and Apple Safari.
Those browsers were considered the “top four” browsers as of that time. Figure 29 provides an
example of the sort of deviations that were identified. Some deviations were unique to Internet
Explorer, some occurred identically in all tested browsers, and some occurred identically in Internet
Explorer and in one or two of the other browsers.
The second major section of the deviations report identified all places in the ES3 specification

where behavior was explicitly defined as being implementation dependent or was inadequately
defined. This section also provided test cases and the results of running the test on the four major
browsers. The final major section described features implemented by Internet Explorer that were
extensions to the ES3 specifications. Wirfs-Brock [2007b] also prepared lists of documented Firefox
extensions to ES3. Douglas Crockford and Allen Wirfs-Brock met August 16, 2007, to review drafts
of these documents. The result of the meeting was a set of tentative changes [Wirfs-Brock and
Crockford 2007] to be made in the ES3.1 specification.

The development of ES3.1 got seriously underway at the January 2008 TC39 meeting, where the
goals were reviewed and several additional TC39 participants expressed an interest in working
on it. On February 11, Lakshman sent an ES3.1 call-to-action message to the TC39 private email
list. The email called attention to the deviation and interoperability documents that had been
prepared the previous summer and requested more feedback on them. On February 21, a conference
call was held at which a work schedule of twice-weekly conference calls was established. The
participation in those calls was considerably greater than in previous ES3.1 discussions. Figure
30 lists regular participants. Initially, direct emails were used to exchange and discuss proposals.
Some additional ES3.1 discussions occured on the es4-discuss email forum. However, the volume
of traffic relating to ES42 topics made it hard to pick out the ES3.1-specific topics, so in April a
separate es3.1-discuss80 email forum [TC39 et al. 2008] was created and most of the ES3.1 design
discussions between meetings moved to it.
One of the first topics of discussion [TC39 2008d] was a review of the overall goals for ES3.1

and the design rules that would be followed in resolving issues and adding new features. An
early position that had been advocated by developers from the Microsoft Live team and several

80In March 2009, this email forum was renamed to es5-discuss.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 81

Douglas Crockford Yahoo!
Pratap Lakshman Microsoft
Mark S. Miller Google
Adam Peller IBM
Sam Ruby IBM
Allen Wirfs-Brock Microsoft
Kris Zyp The Dojo Foundation

Fig. 30. 2008 ES3.1 WG Meetings Regular Participants

other Web framework developers was to avoid any new syntactic extensions that would cause
scripts to fail to parse on existing or older versions of browsers. But a “no new syntax” rule was
overly constraining and ignored the reality that various browsers already had some syntactic
extensions. That discussion led to the “3 out of 4” rule based upon the four most-widely known
browsers (Internet Explorer, Firefox, Opera, and Safari) that had been analyzed in Microsoft’s JScript
Deviations document. When 3 out of 4 of those browsers were in agreement on a feature or had a
common behavior, that agreement should be adopted by the ES3.1 specification. This rule led to a
broader discussion of how ES3.1 should approach browser interoperability issues.
There was agreement that an overriding ES3.1 principle should be “don’t break the Web” by

specifying language changes which would alter the behavior of existing Web pages that already
interoperated across major browsers. But there were hundreds of millions of existing Web pages.
Which aspects of the ECMAScript specification did they actually depend upon? Which changes
would be Web breaking? Anecdotal reports from browser implementors suggested that, because of
the massive base of existingWeb pages, every interoperable browser feature (no matter how obscure
or implausible the usage) was likely used by some existing pages. Based upon that view, features
which were common to all four major browsers could not be changed, and features common to 3 out
of 4 browsers were strong candidates for standardization. But what about features and behaviors
that were common to only 2 out of 4 browsers or that differed among all browsers? Apparently such
features and behaviors were not essential to the existing interoperable Web and could potentially
be modified in the course of standardization.
The working group also observed that generally all allowances for implementation variability

within the ECMAScript specification were hostile to the creation of interoperable Web pages. Situa-
tions where traditional language specifications might permit implementation-specific variation in
order to provide flexibility for language implementors or to accommodate known variations among
implementations were fundamentally incompatible with the idea of a worldwide interoperable Web
accessible through multiple independently created Web browsers. The ECMAScript specification
needed to be more prescriptive and detailed than traditional language specifications and, wherever
possible, existing allowances for implementation variation needed to be eliminated. Following
these initial discussions in February, Douglas Crockford [2008a] posted revised ES3.1 goals to the
TC39 Wiki (Figure 31).

At the March 2008 face-to-face meeting, the working group agreed that it was important to
immediately start writing the actual ES3.1 specification document. Pratap Lakshman had arrived at
the meeting with a version of the ES3 specification to which he had made the corrections from
the Mozilla-maintained ES3 errata [Horwat 2003b]. The working group agreed to use that as the
ES3.1 base document and asked Lakshman to serve as the editor. Like the previous editions, the
specification document would be composed using Microsoft Word. Change tracking relative to
the 3rd Edition would be used to track the evolution of the specification for review and to ensure

Authors’ Corrections: March 2021

82 Allen Wirfs-Brock and Brendan Eich

1. Browser implementation unification: Consider adopting features that are already implemented in 3 of
the 4 browser brands, or that are deployed in 3 out [of] 4 user computers and reduce cross browser
incompatibilities.

2. ES3.1 shall improve the language to benefit casual developers by reducing confusing or troublesome
constructs.

3. ES3.1 shall improve the language to benefit major websites by reducing confusing or troublesome
constructs.

4. ES4 shall become a superset of ES3.1.
5. ES3.1 shall be a friendly base for a secure subset.
6. ES3.1 shall attempt to correct errors in ES3.
7. ES3.1 new features shall require concrete demonstrations.
8. ES3.1 may deprecate (or eliminate with opt-in) features that are problematic for performance, security,

or reliability.
9. ES3.1 shall provide virtualizability, allowing for host object emulation.

Fig. 31. February 2008 ES3.1 Revised Goals [Crockford 2008a]

Lakshman New Array methods based upon Mozilla “Array Extras” plus reduce and
reduceRight

Lakshman Add support for array-like string indexing
Lakshman Date improvements
Lakshman Strict mode property access semantics
Crockford JSON support
Crockford Unicode update
Peller Recommend changes based on Microsoft’s deviations document
Ruby Decimal arithmetic
Zyp Syntactic getters/setters in object literals
Wirfs-Brock Static methods for property creation and inspection
Wirfs-Brock Update pseudo code notation and conventions
Miller Object freeze/seal and review everything from a security perspective

Fig. 32. ES3.1 Working Group Task Assignments as of March 28, 2008. [TC39 2008c]

that changes could be reintegrated with the ES42 effort. Members of the working group were
assigned (Figure 32) to develop specification text for specific new features. As they were completed,
Lakshman would integrate their work into the master draft.
On May 29, 2008, Pratap Lakshman posted to the TC39 wiki the initial draft of the ES3.1 speci-

fication. Updated drafts were typically posted weekly with a “review draft” posted two to three
weeks before each scheduled TC39 meeting. A total of 26 intermediate drafts were posted between
May 29, 2008, and March 2, 2009.
IBM had long advocated that JavaScript needed to support decimal arithmetic. Starting at the

November 19, 1998, TC39 working group meeting, Mike Cowlishaw had argued for its inclusion
in ES3 and in ES41. When IBM reëngaged with TC39 to contribute to ES42 and ES3.1 they again
strongly advocated for the inclusion of decimal support. The IBM participants made sure that TC39
was aware that it was IBM’s policy to oppose all new language standards which did not include
support of decimal arithmetic. Many in TC39 were skeptical of the feasibility of accomplishing that,
but Brendan Eich was supportive of IBM and pointed out that the most common bugs reported
against Firefox were from JavaScript developers who did not understand the semantics of binary
floating point arithmetic. Eich helped Sam Ruby get started developing a prototype, using Mozilla’s
SpiderMonkey engine, that implemented IEEE 754-2008 decimal floating point as a new primitive

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 83

data type which could be used combination with the Number type in mixed-mode expressions. A
fairly complete specification of this decimal feature was incorporated into the September 2008 and
November 2008 ES3.1 drafts. The intent of the November 19–20, 2008, TC39 meeting was to make
the final decisions regarding which new features to retain or remove from the ES3.1 draft. The first
item considered was decimal arithmetic support. The committee’s conclusion was that the decimal
design was still too immature and had remaining design issues which were unlikely to be resolved
without delaying ES3.1. The concerns were documented in the meeting minutes [TC39 2008a] and
concluded:

Because of these concerns the decision was made to defer inclusion of decimal
support until the Harmony revision of ECMAScript. The attendees acknowledged
that very significant progress has been made in the development of the ECMA-
Script decimal proposal and want to thank Sam Ruby of IBM for the effort he has
put into its development. The attendees encourage the continued development
of the proposal by Sam and other TC39 members and are optimistic that a fully
integrated and generic version of decimal arithmetic can become an integral part
of the Harmony revision.

The decimal materials were absent from the next review draft released in January 2009.
At the March 25–26, 2009, meeting [TC39 2009d] Pratap Lakshman announced that he was

resigning as ECMA-262 editor because Microsoft was transferring responsibility for JavaScript
development to a new Redmond-based group, and he had declined the opportunity to relocate with
it. The committee appointed Allen Wirfs-Brock to succeed him as editor.
Wirfs-Brock recalls that at a break during that TC39 meeting he approached Brendan Eich

and suggested that ES3.1 should be rechristened with a whole-number edition designation. The
argument for the new designationwas that E3.1 had grown to be a full-fledged revision of ECMA-262,
as significant as the three previous editions. Because of the amount of publicity that the discontinued
ES42 work had received, designating ES3.1 as the 4th edition would cause confusion for both the
JavaScript developer community and Web search engines. Instead, Wirfs-Brock suggested that
Ecma should permanently retire the ECMA-262 4th Edition designation and release the ES3.1 work
as the 5th Edition. Eich agreed, so when the meeting resumed they presented the idea to the entire
committee which accepted it. The committee also agreed to accept the then-current draft, after
updates agreed to at the meeting, as the final draft. On April 7, 2009, the “final draft” was released
with the 5th Edition designation [Lakshman et al. 2009]. That final draft was followed by five
release-candidate drafts containing minor technical and editorial corrections. In August 2009, Apple
discovered [Hunt 2009] that the decision tomake arguments objects inherit from Array.prototype
had an unanticipated interaction with the Prototype framework that broke several Apple websites
and the NASA website. That change was removed from the final specification.
On September 23, 2009, TC39 [2009b] voted to accept completion of ES5 and to forward it to

the Ecma General Assembly for its approval. The final draft for Ecma GA review and approval
was posted October 28, 2009. ECMA-262 5th Edition was approved by the General Assembly [Ecma
International 2009a] December 3, 2009, ten years after the approval of the 3rd Edition. The GA vote
was 19 for and 2 opposed. IBM voted no because the standard did not include support for decimal
arithmetic. Intel stated their no vote simply reflected that they had not had sufficient time to do a
complete intellectual property review of the specification.

ECMA-262 5th Editionwas submitted as a fast-track revision of the ISO/IEC ECMAScript standard.
It went through the ISO national bodies review process and based upon that feedback, Allen Wirfs-
Brock incorporated a number of editorial corrections and clarifications into the specification. That
revision was published in June 2011 as ECMA-262 Edition 5.1 and as ISO/IEC 16262 Edition 3.

Authors’ Corrections: March 2021

84 Allen Wirfs-Brock and Brendan Eich

20.1 ES5 Technical Design
Even though the original ES3.1 goals were very modest ES5 includes several technical innovations.

20.1.1 Strict Mode. ES5 strict mode is the direct end product of Douglas Crockford’s goal of
“correcting mistakes and inconveniences” in JavaScript’s design. A few of the inconveniences, such
as the inability to use reserved words as property keys in object literals and after a dot were then-
currently syntax errors and could be corrected in ES5 without affecting existing code. However,
many of JavaScript’s misfeatures could not be unconditionally fixed because they would be changes
that could change the runtime behavior of existing code and hence “break the Web.” The idea for
strict mode was to give JavaScript developers an opportunity, in new or updated code, to explicitly
opt-in to a dialect of the language that incorporated such fixes. Browsers, would have to support
both strict mode and the legacy non-strict code and ideally strict mode should be selectable at the
individual function level so that existing scripts could be incrementally converted to using strict
mode. The hope was that over time strict mode would become the dominant dialect for writing new
code. However, initial adoption was a concern. It was assumed that there might be a considerable
delay before ES5 strict mode would be implemented by all major browsers. Browser game theory
predicted that if opting into strict mode made scripts unusable on some popular browsers, then
developers would not use it. This problem was avoided by making strict mode subtractive. It does
not add new features to ECMAScript; instead it removes problematic features. Bug-free strict
mode code when run on a browser that did not support strict mode should continue to work as its
developer expected.
An early issue was how the opt-in to strict mode would work. Fine-grained selection of strict

mode required that the opt-in be via a mechanism that could be easily embedded within a script. It
could not be external, such as a <script> element attribute. The ES4 efforts had contemplated a use
directive that could be placed within ECMAScript code to select various modes. But such a directive
would violate the ES3.1 “no new syntax” design rule. One possibility was to use a special form of
comment as a directive. However, the ES3.1 working group was reluctant to make comments, of any
form, semantically significant because JavaScript minimizers remove comments. Allen Wirfs-Brock
observed that the syntax of an ECMAScript ExpressionStatement makes any expression, including
those that consist of only a literal string constant, into a valid statement as long as it is explicitly or
implicitly (via ASI) followed by a semicolon. That means that a statement such as "use strict";
is syntactically valid ES3 code. Because it is simply a constant value, evaluating it has no side effects
in ES3. It is a no-opg. It appeared quite safe to use such a statement as the opt-in for strict mode as
it seemed highly unlikely that any existing JavaScript code would already have used that exact
statement form and an ES3 implementation would ignore its presence in any ES5 code that was
loaded. The working group adopted that idea. A statement of the form "use strict"; occurring
as the first statement of a script or a function body indicated that the entire script or function
should be processed using strict mode semantics.

One of the main goals of strict mode was to explicitly catch coding errors that were easy to make
but not obvious at runtime. Strict mode adds the following new runtime errors:
• Assignment to an undeclared identifier. In legacy JavaScript an assignment to a mistyped
variable name results in creation of a property of on the global object.
• Assignment to a read-only own or inherited property. In legacy JavaScript this silently does
nothing.
• Attempting to create a property on a non-extensible object. Such objects did not exist prior to
ES5, but for legacy consistency doing this outside of strict mode in ES5 silently does nothing.
• Applying the delete operator to a non-deletable property. In legacy JavaScript deletewould
return false.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 85

• Applying the delete operator to a variable reference produces a syntax error. In legacy
JavaScript delete returns false for explicitly declared variables. If the variable reference is
backed by an object via a with statement or is a property of the global object it is deleted in
legacy JavaScript.

Strict mode also removes or modifies features that may make programs more confusing, harder to
optimize, or less secure:
• The with statement is disallowed. A with statement provides a form of dynamic scoping of
variable references which can be confusing and is difficult for implementations to optimize.
• The eval function cannot be used to dynamically add new bindings to the current scope.
• The names eval and arguments cannot be used as variable or parameter names.
• A function’s arguments object is not joined (§3.7.5) to its formal parameters. Instead, a
strict mode arguments object is an array-like object whose elements are a snapshot of the
argument values passed to the function. Modifying an element does not modify the value of
the corresponding formal parameter and vice versa.
• The arguments object of a strict mode function does not have a callee property (§5). Passing
such an object to other code no longer implicitly transfers the ability to call its function.81
• An implementation is forbidden from providing a caller property (§3.7.5) on the arguments
object of a strict mode function. A caller property was a non-standard but widely imple-
mented extension to ES3 which enabled walking a function’s call stack and retrieving the
calling functions.
• Calling a strict mode function without providing a this value does not make the global
object available to the function (§3.7.4).

Other features on Douglas Crockford’s [2007d] list of mistakes and inconveniences were considered
for strict mode but not included. For each feature, either TC39 could not reach consensus that
the feature was undesirable or it was discovered that the change would not be subtractive. For
example, while Crockford and many others disliked JavaScript’s Automatic Semicolon Insertions,
many developers preferred to code without explicit semicolons. Also, changing the meaning of
typeof null to return something other than "object" would not be subtractive.

20.1.2 Getters, Setters, Object Meta Operations. Beginning with the first implementations of
JavaScript, some properties of certain built-in and host-provided objects had special characteristics
that were not available for objects created using JavaScript code. For example, some properties
had read-only values or could not be deleted using the delete operator, and method properties
of built-in and host objects are skipped when enumerating properties using the for-in state-
ment. In ES1, these special semantics were specified by associating ReadOnly, DontDelete, and
DontEnum attributes with the specification’s model of object properties. These attributes are
tested by the pseudocode which defines the semantics of language features which are sensitive to
them. These attributes are not reified—there were no language features that enabled JavaScript
code to set these attributes for either newly created or preëxisting properties. ES3 added an
Object.prototype.propertyIsEnumerablemethod for testing for the presence of the DontEnum
attribute, but there were no corresponding methods for non-destructively testing for the ReadOnly
or DontDelete attributes. Similarly, many of the host objects provided by the browser DOM ex-
pose properties, typically called “getter/setter properties” but christened “accessor properties” by
ES5, which perform computations when the value of the property is set or retrieved. The lack of
standardized support for these features made it impossible for JavaScript programmers to define

81That other code may come from an unknown source and may not be trustworthy.

Authors’ Corrections: March 2021

86 Allen Wirfs-Brock and Brendan Eich

libraries that follow the same conventions as the built-in or host objects or to implement polyfills
which faithfully emulate such objects.

The unified solution to these problems is the largest collections of new ES5 functionality. The
feature set does not have an official name but is informally called the “Static Object Functions”82”
or “Object Reflection Functions.” Allen Wirfs-Brock [2008] wrote a design rationale document for
this feature set. It presents use cases and also includes these design guidelines that were followed:
• Cleanly separate the meta and application layers.
• Try to minimize the API surface area such as the number of methods and the complexity of
their arguments.
• Focus on usability in naming and parameter design.
• Try to repeatedly apply basic elements of a design.83
• If possible, enable programmers or implementations to statically optimize uses of the API.

The first guideline discouraged adding additional methods such as propertyIsEnumerable to
Object.prototype which would further blur the separation of the meta and application layers.
Instead, the ES5 working group decided that such functions should be segregated from application
objects by making them properties of a namespace object. The working group considered adding a
new built-in global object called Reflect to serve as the namespace object but they were concerned
about possible name conflicts with existing code. Ultimately, they decided to expose the new
functions as properties of the Object constructor rather than as properties of Object.prototype.
The Object constructor was a good candidate to use as a namespace because it was a preëxisting
global on which implementations and previous editions of the standard had not specified any
properties; also, its name aligned with the idea of reflecting upon the definition of objects.
The next issue was determining the form of the API. Following the second guideline, the ES5

designers wanted to avoid separate query and assignment functions for each property attribute or
for setting and retrieving the functions performed by accessor properties. The designers considered
various ways to combine this functionality into a small number of functions. Some possibilities
included a single function with bit encodings of Boolean attributes, such as “read-only” or a single
function with a large number of positional parameters. However, both of those approaches had
poor usability. Using optional keyword arguments might have solved those usability issues but ES5
lacked keyword arguments.
Allen Wirfs-Brock suggested using a descriptor object whose properties would correspond to

the various property attributes. Such descriptors could be used for both defining and inspecting
properties. Wirfs-Brock’s first draft proposal84 showed an example of a possible API for adding a
property to an object called obj:

Object.addProperty(obj, {name:"pi", value:3.14159, writable:false});

In this example, the descriptor is coded as an object literal, and default values are used for any
properties missing from the descriptor corresponding to other property attributes. A hypothetical
defineProperty function, taking a similar descriptor, could be used to change the attribute values
of a preëxisting property. For defineProperty, attributes corresponding to absent descriptor
properties would be left unmodified. Finally, a getProperty call could be used to obtain a complete
descriptor for any preëxisting property of an object.

82Alternatively, “Methods.” The distinction between an object used as a namespace and an object used as a behavioral
abstraction is conceptual and not reflected in the actual semantics of the language. Some JavaScript programmers use the
term “method” to make that distinction, others do not.
83Meaning, individual features should be designed using a set of common concepts and syntactic elements.
84This proposal is not directly available, but Miller’s [2008a] response embeds most of the text of the proposal.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 87

Function Name Behavior
Object.create Create a new object using a provided object as its prototype.

Optionally, add the properties defined by a property map.
Object.defineProperty Based on a property descriptor, create a new property or update

the definition of an existing property
Object.defineProperties Create or update the definition of the properties as specified in a

property map.
Object.getOwnPropertyDescriptor Return the descriptor object of a named property if it exists or

undefined if it does not exist.
Object.getOwnPropertyNames Return an Array containing the string names of all the own

properties of an object.
Object.getPrototypeOf Return the prototype object of the argument object.
Object.keys Return an Array containing the string names of an object’s own

properties which are visible using for-in.
Object.preventExtensions Prevent any more properties from being added to an object.
Object.seal Prevent adding any more properties or changing the definition

of an object’s own properties.
Object.freeze Seal an object and freeze the values of all its own data properties.
Object.isExtensible Test if additional own properties may be added.
Object.isSealed Test if an object is sealed.
Object.isFrozen Test if an object is frozen.

Fig. 33. ES5 Object Reflection Functions

Mark Miller improved on the proposal by suggesting that defineProperty could be defined
to support both the “add new property” and “modify existing property” use cases. Miller also
suggested removing the name property from property descriptors and instead wrapping descriptors
in an enclosing object whose property names were the names of the affected properties in the
target object. Such a “property map” would allow multiple properties to be defined using a single
call. For example, the following operation defines properties named x and y:

Object.defineProperties(obj , {
x: {value: 0, writable: true},
y: {value: 0, writable: true}

});

ES5

Miller proposed eliminating defineProperty and having only the defineProperties form as
it could easily be used for a single property. However, that formulation made it difficult to define a
property that had a computed name. ES3.1 did not have a syntactic way to place a computed value
in a property name position of an object literal. Ultimately, ES3.1 provided both defineProperty
for defining a single property with the name passed as a separate argument and defineProperties
which can define multiple properties using a property map. The complete set of Object Reflection
Functions defined by ES5 is shown in Figure 33.
Accessor properties are supported via an alternative formulation of a property descriptor. An

accessor property is defined using a descriptor that has either or both of the get and set attributes
instead of a value attribute. For example, an accessor property that mediates access to a data
property can be defined as:

Authors’ Corrections: March 2021

88 Allen Wirfs-Brock and Brendan Eich

Object.defineProperties(obj , {
x: {set: function(value) {this.privateX = value},// public accessor property

get: function () {return this.privateX}
},
privateX: {value: 0, writable: true} // "private" data property

});

ES5

In addition to this reflection-based interface, ES3.1 also adds syntactic support for defining
accessor properties using object literals. This feature was already present in three out of four
different browsers, so it met the criteria for adding new syntax. An accessor property is defined by
including within an object literal a function definition where the keyword function is replaced
with either get or set, for example:

var obj = {
privateX: 0, //a normal data property
set x(value){this.privateX = value}, // accessor property x setter
get x(){return this.privateX}, // accessor property x getter
get negX(){return -this.privateX} //a get -only accessor
};

ES5

Supporting these new capabilities required extending the internal object model, first defined in
the ES1 specification, and exposing parts of it via the object reflection API. This also provided an
opportunity to reconsider the terminology of the object model. ES1 had described properties as
having a value and a set of attributes. The ES1 attributes were ReadOnly, DontEnum, and DontDelete.
The ES1 attributes were not stateful. They were markers that were attached to properties with
meaning assigned to their presence or absence. The ES3.1 designers wanted to reify the attributes
as properties of property descriptor objects. They accomplished this by changing the internal
model such that the ES1 attributes were modeled as Boolean-valued state variables associated with
each object property, and by reconceptualizing the property value as another state variable. The
internal naming convention for attributes was changed to follow the double bracket pattern used for
internal methods. The model was extended to include accessor properties by adding the attributes
[[Get]] and [[Set]] whose values were respectively the getter and setter functions (or undefined,
indicating the default function) which were invoked by value references and assignments to the
property. A property could then be distinguished as either a data property or an accessor property
by whether or not it had the [[Value]] attribute and neither of the [[Get]] nor [[Set]] attributes.
Support for accessor properties required updating the specification of the [[Get]], [[Put]], and

[[CanPut]] internal methods originally defined by ES1. Support for the property descriptors used
by the Object reflection API required the addition of [[DefineOwnProperty]], [[GetOwnProperty]],
and [[GetProperty]] internal methods. But that reflection API was still insufficient. In ES3.1 the
for-in statement’s enumeration of property keys and the Object.getOwnPropertyNames and
Object.keys functions still used informal prose to specify their semantics.

The final step in the design of the Object reflection API was deciding upon consistent and usable
naming conventions for the vocabulary used to expose property attributes as property names
within property descriptor objects. In particular, names like DontEnum and ReadOnly lacked
internal consistency and raised usability concerns. This was particularly true when treated as
Boolean-valued flags. For example, to make a property enumerable would be expressed as a double
negative, setting DontEnum to false. Early in 2008, on an ES42-related thread Neil Mix [2008b]
suggested that “enumerable,” “writable,” and “removable” (for DontDelete) were better names for

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 89

Fig. 34. ES5 Property Attribute Statechart [Miller 2010b]

the attributes. Mark Miller [2008b] responded with appreciation for those names and proposed a
design guideline: attribute names should say what is allowed rather than what is denied. He further
proposed following the security best practice of deny by default. When defining a property it would
be necessary to explicitly enable any desired attributes.

The Object reflection API provided a new capability not available in previous versions of ECMA-
Script. It allowed a program to change the attributes of an existing property including changing
a property between being a data property and an accessor property. Consideration was given
to whether an additional attribute would be needed to disable the ability to make such changes.
Possible attribute names considered included “dynamic,” “flexible,” and “fixed.” There was concern
about the possible impact upon existing implementations of adding an additional Boolean property
attribute. What if an implementation did not have an extra bit available that could be used to
represent that attribute? Eventually, the ES3.1 working group realized that changing the attribute
of a property was equivalent to atomically querying the current attributes of the property, deleting
the property, and then recreating a property with the same name but with modified attribute values.
Given that equivalence, a single attribute could be used to enable both deletes and modifications.
The DontDelete/removable attribute was renamed “configurable”85 and assigned that meaning. A
statechart [Harel 2007] diagram for the ES5 property attributes was drafted by Mark Miller [2010b;
Figure 34] and posted on the ECMAScript wiki. Notice that when the configurable attribute is false
it is still possible to change the writable attribute of a property from true to false. This anomaly was
created so that a security sandboxg could change certain built-in properties from non-configurable
but writable into non-configurable, non-writable.

Douglas Crockford was a proponent of using of the prototypal style of object-oriented program-
ming for JavaScript applications. He had promoted the use of a function named beget for creating
85The term “configurable” was suggested by Neil Mix [2008a].

Authors’ Corrections: March 2021

90 Allen Wirfs-Brock and Brendan Eich

objects with an explicitly provided prototype. The ES5 function Object.create was essentially
the beget function with a property map added as an optional second parameter, for example:

var point1 = beget(protoPoint); // Create a point , using Crockford style
point1.x = 0;
point1.y = 0;

var point2 = Object.create(protoPoint , { //using ES5 declarative style
x: {value: 0},
y: {value: 0}

});

ES3 with Crockford’s beget function compared to ES5

Allen Wirfs-Brock had hoped that JavaScript programmers would adopt the declarative style
and that implementations would recognize that pattern to optimize object creation. In practice, a
usability issue prevented wide adoption of that ES5-enabled pattern. The problem was with the
selection of default property attributes. Going back to JavaScript 1.0, a property created by implicit
assignment had the equivalent of property attributes {writable: true, enumerable: true,
configurable: true}. But the deny-by-default policy used in designing ES5 attribute descriptors
meant that all of those attributes would have the default value false for the Object.create
declarative-style example as shown in the following:

// Using Object.create in a Crockford style
var point1 = Object.create(protoPoint);
point1.x = 0;
point1.y = 0;
// point1.x attributes: writable:true , enumerable:true , configurable:true
// point1.x attributes: writable:true , enumerable:true , configurable:true

// using Object.create in a declarative style
var point2 = Object.create(protoPoint , {

x: {value: 0},
y: {value: 0}

});
// point2.x attributes: writable:false , enumerable:false , configurable:false
// point2.x attributes: writable:false , enumerable:false , configurable:false

ES5

To exactly match the effect of the beget example an ES5 JavaScript programmer would have to
write:

// Create a point instance , with ES5 support and traditional attribute values
var point2 = Object.create(protoPoint , {

x: {value: 0, writable:true , enumerable:true , configurable:true},
y: {value: 0, writable:true , enumerable:true , configurable:true}

});

ES5

That formulation was too verbose for most programmers, who wanted to continue to use the
more permissive defaults traditionally used by JavaScript. In practice, the single argument form
of Object.create is routinely used to create new objects and Object.defineProperties is used
to define and manipulate properties of previously created objects, but the two argument form of
Object.create is seldom used to define the properties of new objects.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 91

20.1.3 Object Integrity and Security Features. The HTML <script> element src attribute, intro-
ducted by Netscape 3, enabled a Web page to load JavaScript code from multiple Web servers. In its
most common formulation, the scripts were loaded into a single JavaScript execution environment
where they shared a global namespace. Cross-site scripts could directly interact—this enabled the
creation of mashup applications. The ability to load cross-site scripts was widely used and was
a key enabler of advertising-based Web business models. However, cross-site scripts could also
tamper and interfere with each other and with scripts from the page’s home site. Web developers
ultimately realized that there was a risk that third party scripts could steal confidential user data
such as passwords or modifying the behavior of a page to trick users. By 2007, malicious ads
were starting to be observed, unknowingly distributed by Web advertising brokers. The browser
vendors developed various HTML and HTTP level features such as Content Security Policy (CSP) to
address the problem, but features at that level do not directly address the many low-level JavaScript
vulnerabilities [Barth et al. 2009].

While they were participating in the ES3.1 working group, both Douglas Crockford [ADsafe
2007] and Mark Miller [Caja Project 2012; Miller et al. 2008] were actively developing technologies
for providing JavaScript execution sandboxes that could be used to securely host the execution of
untrusted third-party JavaScript code. While ES3.1’s strong backward compatibility requirements
meant that it was not going to be possible to eliminate many of the known third-party script
vulnerabilities, both Crockford and Miller pushed for eliminating vulnerabilities that could be
compatibly removed and for adding new features that would facilitate the creation of secure
sandboxes. Mark Miller, in particular, was interested in features needed to build sandboxes based
on object-capabilities [Miller 2006].
The biggest issue was the mutability of JavaScript objects. By default, every JavaScript object,

including standard library objects, are completely mutable by any code that obtains a reference to
the object. Properties, including methods, can be added, have their values changed, or be deleted.
This applies to a directly referenced object and to all objects indirectly referenceable starting from
a root object. Even though ES3 did not provide a way to directly modify an object’s reference
to its prototype object, all major browsers, except for Internet Explorer had implemented the
non-standard property __proto__ which could be used to modify an object’s prototype inheritance
chain. The only exceptions to this pervasive mutability were a small number of built-in properties
that were tagged in ES3 with the ReadOnly or DontDelete attributes.

BothMarkMiller and Douglas Crockford wanted to add the capability to lock down the properties
of an object before passing it to untrusted code. They would use that capability to secure the built-in
library objects exposed to a sandbox and allow the code hosting a sandbox to secure any objects that
it needed to pass to untrusted code. The repurposing of the DontDelete attribute as the Configurable
attribute and the ability to make a property non-Configurable using Object.defineProperty
provided the basic capability to secure an individual property. But that was insufficient to prevent
untrusted code from attaching new properties to an object that was passed to it. The ability to add
new properties enabled untrusted code to override inherited behavior and potentially to construct
covert communications channels that could be used to leak private data. In ES5 this problem was
solved by associating a new state, internally called [[Extensible]], with each object. Objects are
initially created with [[Extensible]] set to true. But if it gets set to false for an object, then new
own properties cannot be added to that object. Implementations are forbidden from providing
any extensions that can be used to change an object’s [[Prototype]] when [[Extensible]] is false.
Finally, once [[Extensible]] is set to false it cannot be reset to true.
The function Object.isExtensible provides an API for querying an object’s [[Extensible]]

state. The function Object.preventExtensions forces [[Extensible]] to false. Object.freeze
is a convenience function that sets [[Extensible]] to false and sets the [[Configurable]] and the

Authors’ Corrections: March 2021

92 Allen Wirfs-Brock and Brendan Eich

[[Writable]] attributes of all own properties to false. This makes the direct state of an object
completely immutable. The function Object.seal is like Object.freeze except that [[Writable]]
is not set to false. This fixes the prototype and the property set of an object, but still permits the
values of data properties to be modified.

Another significant concern was ambient access to the global object. ECMAScript defines the
global object as the object whose properties populate the global scope. All of the named standard
library objects exist as properties of the global object and most JavaScript hosting environments
add additional environment-specific objects and API functions to the global object. For example, in
browsers the global object is the same as the window object and provides full access to the current
Web page’s DOM objects and other browser APIs. Typically a sandbox restricts access to some or
all of these global object properties or provides alternative versions of some of the global object
properties. In theory, it should be possible to accomplish this by imposing an additional lexical
scope around all sandboxed code and setting up that scope so it either provides alternative bindings
for some global object properties or censors them by providing shadow bindings with the value
undefined. But since JavaScript 1.0 there has been a way to gain access to the global object that
cannot be masked by lexical scoping:

function getGlobalObject () {
//when directly called , the value of this is the global object
return this;

}
getGlobalObject ().document.write("pwned");

JavaScript 1.0

Up until ES5, it was specified that the behavior of a direct call (rather than a method call qualified
by an object) to a function was to pass null as the implicit this argument and that all functions,
upon entry, would replace a this whose value was null with the global object. For backward com-
patibility this could not be changed for existing code. But ES5 strict mode provided an opportunity
for new code to opt-in to new behaviors. In ES5, strict mode functions never replace an actual this
argument with the global object. A sandbox can protect itself from ambient global object access by
allowing only strict mode JavaScript code to run in the sandbox.
As ES5 was being developed, actual malicious exploits like the example shown in Figure 35

were starting to be observed on the Web. ES3 specified that objects created using object literals
inherit from Object.prototype and that object literals use the [[Put]] internal method to install
the properties listed in the literal on the new object. But when a value is assigned to an object’s
property using [[Put]] it looks up the prototype inheritance chain to see if it can find a property
with the same name. If it finds a setter property with that name it will execute that setter function.
If such a setter is installed on Object.prototype then any attempt to use an object literal to create
a property with the same name as the setter will call the setter passing it the property value.
Fixing this loophole was a breaking-change to the semantics of object literals, but it is the

kind of change that browsers vendors are willing to make to correct security vulnerabilities.
The actual specification change was simple: instead of using [[Put]] semantics to create the new
object’s properties ES5 used the new [[DefineOwnProperty]] internal method which always ignores
inherited properties and creates new properties directly on an object.
ES5 could take only small steps toward making JavaScript more secure. While work on ES5

was progressing, Douglas Crockford proposed formation of a Secure ECMAScript (SES) working
group within TC39. The purpose [Crockford 2008d; TC39 2008b] was to explore the possibility of
developing a secure dialect of ECMAScript that did not have backward compatibility constraints.
The SES working group met four times in 2008–2009 and reviewed a number of existing JavaScript

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 93

// Assume we have discovered that a Web page uses an object literal

// to store some valuable information in a property named "secret"

function setupToStealSecret () {

// Use non -standard , pre -ES5 getter/setter API

// to define a getter/setter pair on prototype

Object.prototype.__defineSetter__("secret", function(val) {

this.__harmlessSoundingName__ = val; //store value elsewhere

exploitTheSecret(val , this)

});

Object.prototype.__defineGetter__ ({"secret", function () {

//get value from alternative location so nothing breaks

return this.__harmlessSoundingName__;

});

}

// The secret is leaked whenever the attached code defines an object

// using an object literal with a property named "secret"

var objectWithSecret = {

secret: "password"; //this triggers the inherited setter.

// probably defines other properties too

};

Fig. 35. Security exploit using JavaScript 1.5’s __defineSetter__ extension. By defining a setter property on
Object.prototype an attacker can hijack the values of specific properties defined using object literals.

solutions [TC39 2008e] for secure evaluation of untrusted code. Ultimately, the idea of TC39
standardizing a separate new dialect was abandoned but SES concepts such as the object-capability
model significantly influenced the Harmony effort. Ankur Taly et al. [2011] formalized how strict
mode and other ES5 features enable creation of mashup-friendly secure ECMAScript subsets.

20.1.4 Elimination of Activation Objects. Prior to ES5, the ECMAScript specification had made
explicit use of ECMAScript objects to define the scoping semantics of the ECMAScript language.
Each scope contourg was represented by an activation object—an regular ECMAScript object whose
properties provided the variable and function bindings created by the code corresponding to that
contour. Nested scopes were specified as a list of activation objects which were searched in order
for a referenced binding. Language features that referenced bindings used the same property-access
semantic operators both for accessing activation objects and for accessing properties of objects
defined by the user programs. ES1 and subsequent specifications stated that activation objects
were pure specification devices that were unobservable to ECMAScript programs. However, the
semantics of property access resulted in several unexpected edge-case behaviors that could be
observed if an engine was in full compliance with the specification. Implementations differed in
how closely, if at all, they implemented these edge-case semantics.

One anomaly was that activation objects presumably inherit from Object.prototype which is
the default prototype of newly created objects. Thatmeans that the properties of Object.prototype
are inherited by all activation objects and would appear as local bindings of each activation object
shadowing any identically named bindings in outer scopes.

Because binding resolution is specified to occur dynamically, using property lookup on the acti-
vation objects, any free reference from within a called function could be intercepted by introducing
an Object.prototype binding of the referenced name prior to the call, for example:

Authors’ Corrections: March 2021

94 Allen Wirfs-Brock and Brendan Eich

var originalArray = Array;
function AltArray () {

//this is a replacement for the built -in Array constructor
//...

}
//Call a function , forcing it to use AltArray in place of Array
Object.prototype.Array = AltArray;
somethingThatFreelyReferencesArray ();
delete Object.prototype.Array; // remove the alternative Array binding

ES1–ES3

Another anomaly is ES3 treatment of the parameter of a try statement’s catch clause as a local
lexically scoped binding in a new scope which encompasses the body of the catch clause. The use
of an ECMAScript object to represent scope contours also caused a problem for that semantics. The
ES5 specification [Lakshman and Wirfs-Brock 2009, Annex D] describes this problem as follows:

12.4: In Edition 3, an object is created, as if by new Object() to serve as the scope
for resolving the name of the exception parameter passed to a catch clause of a
try statement. If the actual exception object is a function and it is called from
within the catch clause, the scope object will be passed as the this value of the
call. The body of the function can then define new properties on its this value
and those property names become visible identifiers bindings within the scope
of the catch clause after the function returns. In Edition 5, when an exception
parameter is called as a function, undefined is passed as the this value.

During most of 2008, the working group intended to include const declarations in the new edition
because it was a feature that was available in 3 out of 4 of the major browsers, although with
differing semantics. The plan was to make const lexically scoped down to the block level and
that was expected to further stress the legacy scoping model used in previous editions of the
specification.

To address these issues, Allen Wirfs-Brock developed a new specification-level model of scopes
and bindings that did not use ECMAScript object semantics to define the identifier resolution
mechanism. The model introduced the concepts of environment records which contain the bindings
for a single scope contour and environments which are ordered lists of environment records that
provided the context for identifier resolution at a point in an ECMAScript program. There were
different kinds of environment records that were used to represent the global scope, function scopes,
block scopes, and with statement scopes, but all environments expose a common specification-
level protocol for the definition, lookup, and value mutation of individual bindings. Language
features that declare or access variables and other kinds of bindings are specified using the common
environment record protocol.
However, const declarations were eventually deferred until a future harmony edition of the

specification because the working group realized that early inclusion of const might introduce
semantics that would encumber a future design for a more comprehensive set of block-scoped
declarations. The new scoping model was still used in ES5 to address the known legacy scoping
anomalies and provided the foundation for a more comprehensive set of declaration statements in
ES6.

20.1.5 Other ES5 Features. In addition to the Object reflection functions listed in Figure 33, ES5
adds the following standard built-in functions, methods, and properties:
• JSON.parse and JSON.stringify for converting objects from and to JSON interchange
format strings

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 95

• Nine new Array.prototype methods: indexOf, lastIndexOf, every, some, forEach, map,
filter, and reduce, reduceRight
• A new String.prototype method: trim
• Date: The Date.now method and other extensions to parse and produce data strings in ISO
8601 date format
• A new Function.prototype method bind and a name property on function instances

Other miscellaneous changes and enhancements include:
• Semantic fixes to the scoping of with statements and catch clause parameters
• Array-like indexing on strings using [] syntax
• Minor corrections to the regular expression grammar
• Requiring creation of a new RegExp object each time a regular expression literal is evaluated
• Early error reporting of malformed regular expression literals
• The global object properties undefined, NaN and Infinity have read-only values
• Requiring that all specification algorithms use the initial built-in values of Object, Array,
etc. instead of the current value
• Various non-normative semantic clarifications and corrections listed in the Annex D and E
of the specification

20.2 Implementations and Tests86

During the July 2008 Ecma TC39 meeting in Oslo the committee agreed to have two interoperable
implementations of ES3.1 before proceeding to publication. The primary motivation of this “two
interoperable implementations” requirement was to ensure that the committee did not standardize
something that had not first been proven to be both technically feasible and compatible with existing
Web content. Mozilla committed to providing one of the implementations. Because of Microsoft’s
market position, and historically infrequent browser updates, there were strong feelings within
TC39 that Microsoft should demonstrate its commitment to ES3.1 by making publicly available a
browser-hosted prototype implementation as part of the ES3.1 validation process. The TC39 plan
at that time was to have the ES3.1 ready for publication at the June 2009 Ecma GA meeting. For
that to happen a go/no-go decision would need to be made at the March 2009 TC39 meeting based
on the result of interoperability testing to be done in the February / March time frame. At the time,
there was no official conformance test suite for ECMA-262 and certainly there were no tests of
new ES3.1 features. All implementations had their own ad hoc test suites and all of them except for
Microsoft also used Mozilla’s JavaScript test suite. Microsoft had concerns regarding the Mozilla
Public License used for the Mozilla test suite and would not use or contribute to it. Microsoft’s
preference was for a test suite that would be made available through Ecma using an MIT or BSD
style license.

In October 2008, Pratap Lakshman began working on the twin efforts of creating both an Internet
Explorer hosted implementation of ES3.1 and a companion test suite.
The test cases that were implemented were to be contributed back to the community. The goal

for the test suite was to achieve maximum code coverage, where the “code” was the pseudocode in
the specification. Each test case was named after its section and algorithm step numbers in the
latest draft of the specification and placed in a single .js source file. Figure 36 explains convention
used in naming the test files.
Lakshman implemented over 900 test cases and a simple test harness to run and report on the

individual testcases. Figure 37 is an example of one of the testcases.

86Pratap Lakshman contributed to this section.

Authors’ Corrections: March 2021

96 Allen Wirfs-Brock and Brendan Eich

sectionNumber-algorithmStepNumber-testNumber-s.js

where
sectionNumber: a section number from the specification

algorithmStepNumber: the step whose requirements this test validates
testNumber: optional, present if there aremultiple test cases for a particular algorithm

step
-s: optional, present if the test is for strict mode code

Fig. 36. The naming convention used for esconform test case files. Each file contained a single test and the
file name encoded the specification pseudocode step that it tested.

// Test Subclause 10.4.2 Alorithm 3 Step 1 Strict mode}

var testName =

"Eval code in strict mode -cannot instantiate variable in calling context";

function testcase () {

eval("'use strict ';var __10_4_2_3_1_s = 1");

try{

__10_4_2_3_1_s;

} catch(e) {

if (e instanceof ReferenceError)

return true;

}

}

Fig. 37. An ES5conform Test. This is the test in file 10.4.2-3-1-s.js from the initial zip file of tests con-
tributed by Microsoft to TC39 [Microsoft 2009a].

At the January 2009 TC39 meeting [Horwat 2009], Pratap Lakshman demonstrated the prototype
ES3.1 implementation using an experimental version of JSCRIPT.dll integrated into the just-
released Microsoft Internet Explorer 8 Release Candidate 1. The demonstration included the new
language functionality as well as the conformance test suite. There was general appreciation of this
effort, and Waldemar Horwat reported in his meeting notes: “There was much rejoicing among the
natives.”
Microsoft contributed the tests to Ecma and also released them on its open-source projects

portal, codeplex.com, under the name “ES5conform” [2009]. At about the same time, Google
announced [Hansen 2009] that it was releasing an open-source ES3 test suite it had created in the
course of developing Chrome’s V8 JavaScript engine. The test suite, named “Sputnik,” consisted of
over 5,000 tests.
In 2010, ES5conform and Sputnik became the core of a common Ecma TC39 managed test

suite named “Test262.” It was a radical change for an Ecma Technical Committee to maintain and
distribute a software package, and a number of policy and licensing issues had to be worked out to
make this happen. David Fugate led the initial ES5 phase of Test262 development. He was followed
by Brian Terlson who got Test262 organized for ES6 and then by Leo Balter in the post ES6 era.
Test262 is now an integral part of TC39’s development process and tests must be created for every
new ECMAScript feature before it is incorporated into the ECMAScript standard. As of August
21, 2018, Test262 consisted of 61,877 tests. The success of Test262 helped convince TC39 that an
executable specification was not a necessity.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 97

21 FROM HARMONY TO ECMASCRIPT 2015
The termination of ES42 provided TC39 with its first opportunity since 1999 to start with a relatively
clean slate as it planned the future evolutionary path of JavaScript. No longer was TC39 thinking
in terms of starting over to create a better language. TC39 was beginning a path toward success. It
would take only seven years to reach its end.

21.1 Getting Started with Harmony
TC39’s Harmony project was not constrained by previous decisions made during either of the ES4
efforts but could still draw upon them. TC39 was constrained by decisions made as part of the ES5
project, but that work was now generally in alignment with the direction Harmony was expected
to take. In fact much of TC39 meeting time for the latter half of 2008 and most of 2009 was devoted
to finishing ES5. This provided an opportunity for the entire committee to grow comfortable with
working from an ES5 specification baseline for Harmony.

21.1.1 Strawmen and Goals. In August 2008, the “Harmony Strawman” page was created on the
ECMAScript wiki and the es4-discuss mailing list was renamed to es-discussg. Following the
Harmony announcement there was an eruption of new discussions on es-discuss about potential
Harmony features. The workflow that developed was that new ideas would surface either on
es-discuss or at TC39 meetings. If a TC39 member thought an idea had merit, they would write
up a preliminary design or description of the feature and post it on the Strawman wiki page. The
strawman would be presented at a TC39 meeting, and depending upon the committee’s reaction, the
idea would either be abandoned or the process would be iterated to refine the idea. On November
21, 2008, the wiki Strawman page [TC39 Harmony 2008] listed the following entries:

• classes
• const
• lambdas
• lexical scope

• names
• return to label
• types

All the entries pointed to short strawman proposals created by Dave Herman except for classes
which was a placeholder.

The discussions of possible Harmony features were expansive, and by the summer of 2009 the
committee decided to impose more structure on the effort. At the July 2009 meeting [TC39 2009a]
the TC39 members decided it was time to define the goals for Harmony. They concluded that the
ES3.1 goals [Crockford 2008a] were still applicable with a few additions and refinements. Brendan
Eich [2009a] posted an updated version of those goals. The result is the Harmony Goals Statement
shown in Figure 38.

21.1.2 The Champions Model. Dave Herman proposed to the committee that it should adopt a
“champions model” of development.87 Applying the champions model, an individual member or
collectively a small group of members are responsible for an individual feature. The champion
writes an initial strawman proposal and attempts to refine it until it is ready to be integrated
into the actual specification. Starting with the initial strawman and subsequently as the proposal
evolves, the champion makes presentations to the entire committee and accepts feedback from
the committee and other reviewers. It is up to the champion to digest the feedback and to make
decisions regarding whether to update the proposal based upon the feedback. According to the

87Herman does not recall where he encountered this idea, but it is likely related to Oscar Nierstrasz’s [2000] Champions
Patterns for organizing program committees.

Authors’ Corrections: March 2021

98 Allen Wirfs-Brock and Brendan Eich

Requirements

1. New features require concrete demonstrations.
2. Keep the language pleasant for casual developers.
3. Preserve the “start small and iteratively prototype” nature of the language.

Goals

1. Be a better language for writing:
I. complex applications;
II. libraries (possibly including the DOM) shared by those applications;
III. code generators targeting the new edition.

2. Switch to a testable specification, ideally a definitional interpreter hosted mostly in ES5.
3. Improve interoperation, adopting de facto standards where possible.
4. Keep versioning as simple and linear as possible.
5. Support a statically verifiable, object-capability secure subset.

Means

1. Minimize the additional semantic state needed beyond ES5.
2. Provide syntactic conveniences for:

I. good abstraction patterns;
II. high integrity patterns;
III. defined by desugaring into kernel semantics.

3. Remove (via opt-in versioning or pragmas) confusing or troublesome constructs.
I. Consider making Harmony build on ES5 strict mode.

4. Support virtualizability, allowing for host object emulation.

Fig. 38. Harmony Goals Statement, July 2009 [Eich 2009a]

champions model, the committee should avoid falling back into design by committee behavior
during champion presentations. Ultimately, it still takes a consensus decision of the full committee
to include a final proposal in the specification.

The committee accepted Herman’s proposal to follow the champions model and generally used
it effectively. However, there were times when it broke down. The core group of members during
this period was relatively small and very technically competent. Sometimes they simply could not
resist the temptation to do a little bit of design by committee and sometimes this was actually the
most effective way to make progress on a proposal. At times multiple champions emerged with
alternative approaches and proposals for a particular feature or design problem. In those cases, if
the competing champions could not come to agreement on a common proposal, the committee
would have to choose one or in some cases reject all of the competing proposals.

21.1.3 Choosing a Feature Set. For most of 2009, 2010, and the first half of 2011, TC39 champions
worked on developing strawman proposals, vetted them with the committee, and tried to get
the consensus needed to advance to accepted proposal status. By August of 2009, the Strawman
page [TC39 Harmony 2009] had grown to 21 proposals from its original 7. By early 2010, the general
shape of the Harmony feature set was beginning to emerge. Brendan Eich [2010a] organized
them into a set of themes (Figure 39) that he added to the Harmony Goals page. By December
2010, the Strawman page [TC39 Harmony 2010b] had grown to 66 proposals, and an additional 17
proposals [TC39 Harmony 2010a] had already been deferred or abandoned. By the beginning of

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 99

Themes

1. Modularity, or how to delineate units of source code to hide the insides from outside users
2. Isolation, to prevent effects from propagating, or allow them only through certain references
■ Zero-authority maker-style modules
■ Other combinations of primordials/contexts/builtins with modules
■ Lack of isolation in browsers: multiple connected global objects

3. Virtualization, for stratified guest code hosting, bridging disjoint object systems, and in
particular emulating host objects
■ Proxies
■ Weak references or Ephemerons

4. Control Effects, for simpler iteration and state-machine code
■ Delimited continuations
■ Generators, iterators

5. Library/Tool Enabling, so the TC39 committee is not blocking library evolution
■ Object.hashcode
■ Byte arrays of some kind
■ Value types (for Decimal, etc.)

6. Language Reform, the “better carrots” needed to lead users away from bad forms
■ let, const, function in block scope
■ Default and rest parameters, the spread operator
■ Destructuring

7. Versioning, since new syntax is part of Harmony
■ This theme is about minimizing opt-in versioning, easing migration, and future-proofing

for the next edition

Fig. 39. 2010 Harmony Feature Themes [Eich 2010a]

May 2011 the Strawman page [TC39 Harmony 2011c; Appendix N] had over 100 entries and the
approved Proposals page [TC39 Harmony 2011a] had 17 entries.
In 2009, Brendan Eich [TC39 2009b] had proposed that TC39 target June 2012 for Ecma GA

approval of “ES.next” with a feature freeze target of May 2011. As the May target date approached it
was obvious that June 2012 was not achievable, but it still made sense to draft a committed feature
list to focus specification development. The majority of the May meeting [TC39 2011b] was devoted
to triaging the strawman list and reaching consensus on which remaining strawman proposals
would advance to “Harmony Proposal” status. Each strawman proposal was discussed prior to
gauging whether or not there was consensus to advance it. Some proposals were advanced or
rejected after minimal review. Other proposals representing important functionality were advanced
even though the committee was not satisfied with the then-current strawman. Those proposals
served as placeholders, pending development of improved proposals. Both modules and classes
were given that treatment. The final Harmony feature set was not strictly frozen at that meeting.
As development of ES.next continued, some proposals were added and some were dropped. But
the proposal list from this meeting established the general shape of what would become ES2015.
Figure 40 lists the participants at the May meeting, and Appendix O shows the Harmony Proposal
page [TC39 Harmony 2011b] following the meeting.

21.1.4 Writing Starts. Allen Wirfs-Brock, as project editor, had overall responsibility for creating
the ES.next specification document from the Harmony proposals developed by TC39 champions. At

Authors’ Corrections: March 2021

100 Allen Wirfs-Brock and Brendan Eich

Avner Aharon Microsoft Waldemar Horwat Google
Douglas Crockford Yahoo! (Phone) Mark Miller Google
Brendan Eich Mozilla John Neumann Ecma
Cormac Flanagan UCSC Alex Russell Google
David Fugate Microsoft Mike Samuel Google
Dave Herman Mozilla István Sebestyén Ecma
Luke Hoban Microsoft Sam Tobin-Hochstadt Northeastern Univ
Bill Frants Periwinkle (guest) Allen Wirfs-Brock Mozilla

Fig. 40. Attendees at May 2011 TC39 Feature Winnowing [TC39 2011b]

5.1.4 Introduction of the concept of supplemental grammars.
5.3 Introduction of concept of Static Semantic Rules.
8.6.2 [8.6.2] and various places. Eliminated [[Class]] internal property. Added

various internal trademark properties as a replacement.
10.1.2 Defined the concept of “extended code” that means code that may use new

Es.next syntax. Also redefined “strict code” to mean either ES5 strict mode
code or extended code.

11.1.4 Added syntax and semantics for use of spread operator in array literals.
11.1.5 Added syntax and semantics for property value shorthand and various se-

mantic helper abstract operations.
11.2, 11.2.4 Added syntax and semantics for spread operator in argument lists
11.13 Add syntax and semantics for destructuring assignment operator.
12.2 Added BindingPattern syntax and partial semantics to support destructuring

in declarations and formal parameter lists.
13 Added syntax to support rest parameter, parameter default values, and de-

structuring patterns in formal parameter lists. Also static semantics for them.
However, instantiation of such parameters is not yet done. Defined the argu-
ment list “length” for such enhanced parameter lists.

15 Clarified that clause 15 function specifications are in effect the definition of
[[Call]] internal methods.

15.2.4.2 Respecified toString to not use [[Class]]. Note that adding an explicit exten-
sion mechanism is still a to-do.

Annex B Retitled as normative optional features of Web Browser ES implementations.

Fig. 41. Change log for 1st ES6 Draft [Wirfs-Brock et al. 2011a, reformatted]

Microsoft his responsibilities were split between TC39 related work and other projects. In December
2010, he left Microsoft and went to work for Mozilla to focus on ES Harmony.

The ES4 and ES5 experiences had taught Wirfs-Brock that continual work on the actual specifica-
tion document was essential to making progress toward completing a new edition of the standard.
On June 22, 2011, with stern determination he opened the source file for the recently completed
ES5.1 specification, changed the cover page to say “Draft, Edition 6,” and saved it as the baseline
ES6 draft specification. He then immediately started editing new material into that draft based on
the May feature triage and other decisions that had been made by the committee over the previous
two years. On July 12, he posted the “first working draft of the ES.next specification” [Wirfs-Brock
et al. 2011a,b]. Figure 41 is the change summary for that draft. It was the first of 38 distributed
drafts, the last of which was posted to the wiki on April 14, 2015 [Wirfs-Brock et al. 2015a,c].

21.1.5 One JavaScript. From the beginning of the Harmony effort, TC39 assumed that some sort of
explicit opt-in would be required in order to use many or perhaps all new Harmony features. This

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 101

was a carry-over from the ES4 era where a number of proposals included breaking-changes that
would invalidate some existing JavaScript programs. The Harmony process was more conservative
about including breaking-changes, but a few were still contemplated. Over the first three years
of Harmony development, the exact opt-in mechanism was undecided but frequently discussed.
The first ES6 draft incorporated the concept of “extended code” which was a superset of ES5
strict code but did not yet include a description of the opt-in mechanism. Alternatives considered
included external opt-in using an attribute of the HTML <script> element, a new use mode pragma
statement, a delimited syntactic form, or adding an additional directive similar to "use strict";.
There was concern about how many modes there would be in the future. Was each major edition
of the standard going to require a new opt-in mode? This seemed like a major complexity burden
for both users of the language and implementors.
Dave Herman [2011b], in an es-discuss message titled “ES6 doesn’t need opt-in,” argued that

breaking-changes should be very limited and restricted to code that is encapsulated as an ES6
module. The vast majority of features should be non-breaking and behave identically whether or
not they occur within modules. In some cases that might require redesigning some features and
in a few cases contemplated features might have to be dropped. These ideas were refined in the
course of over 150 replies to the es-discuss message. At the next TC39 meeting, Herman [2012]
made a presentation titled “One JavaScript,” which introduced a refinement of these ideas. The key
point was that future programmers and implementors of ECMAScript Harmony should be able
to think in terms of one unified JavaScript language without thinking about modes, versions, or
dialects. It was the responsibility of TC39 to design ES.next to be consistent with that perspective.
Much of the meeting was devoted to discussion of this proposition and the impact it would have on
various Harmony features. The consensus was to try to make “1JS” work for Harmony. In the next
specification draft [Wirfs-Brock et al. 2012a], the concept of extended code was gone and various
other changes were made to eliminate what would have been breaking-changes.

21.1.6 Brendan’s Dreams. In January 2011, after more than two years of work onHarmony, Brendan
Eich [2011b] published a blog post titled “Harmony of My Dreams,” in which he presented some
opinions about language evolution and standards committees. The heart of the post provides
examples of what he hoped Harmony JavaScript would be like:

. . . I’d like to present a refreshed vision of JavaScript Harmony. This impressionist
exercise is of course not canonical (not yet), but it’s not some random, creepy
fanfic either. Something like this could actually happen, likelier and better if done
with your help (more on how at the end).

I’m blurring the boundaries between Ecma TC39’s current consensus–
Harmony, straw proposals for Harmony that some on TC39 favor, and my ideas.
On purpose, because I think JS needs some new conceptual integrity. It does not
need play-it-safe design-by-committee, either of the “let’s union all proposals”
kind (which won’t fly on TC39), or a blind “let’s intersect proposals and if the
empty set remains, so be it” approach (which also won’t fly, but it’s the likelier
bad outcome).

He presents examples of how various use cases are coded using ES5 features and alternative
examples of how the same things could be expressed in the Harmony of his dreams. The dream
examples provide an intermediate stage view of Harmony proposals and how they evolved into
actual ES2015 features. Some of what he presented was not included in ES2015 and most of the
features ultimately changed in some ways. Other changes were necessary because the 1JS approach
eliminated the possibility of opt-in changes to the syntax and semantics of existing features.

Authors’ Corrections: March 2021

102 Allen Wirfs-Brock and Brendan Eich

To get a perspective on this feature evolution, compare some of Brendan Eich’s 2011 dreams88
with what eventually became the reality of ES2015.

Dream—Binding and Scoping. Block scoped declarations and free variable references are early
(parse-time) errors:

let block_scoped = "yay!"

const REALLY = "srsly"

function later(f, t, type) {

setTimeout(f, t, typo) // EARLY ERROR

}

ES2015 reality: Block-scoped let and const declarations but 1JS precludes early errors for free
variable references.

Dream—Improved Function Definitions. Eliminate function keyword, implicit return of last
expression, eliminate redundant closures for functions with no free variables:

const #add(a, b) { a + b }

#(x) { x * x }

ES2015 reality: Arrow functions replaced the # notation. Implicit return only for arrow functions
with expression bodies. Concise methods in object literals and class bodies. Unobservable closure
optimizations left to implementations:

const add = (a, b) => a + b // expression body has implicit return

x => x * x

x => {console.log(x); return x * x} // statements body needs explicit return

// method definition in object literals and classes

class {

add(a, b) {return a + b} // No expression bodies

}

Dream—Lexical this. In hash functions this is lexically bound to enclosing this binding:
function writeNodes () {

this.nodes.forEach (#(node) {

this.write(node)

})

}

ES2015 reality: this and other function-scoped implicit bindings lexically bound in arrow functions.

function writeNodes () {

this.nodes.forEach(node => this.write(node))

}

Dream—records and tuples. Immutable data structures with content based equality:
const point = #{x: 10, y: 20}

point === #{x: 10, y: 20} //true

ES2015 reality: Not included. Too closely linked to the concept of extensible value types which did
not get fully developed for Harmony.

88The dream labels and descriptions are paraphrased from Brendan Eich’s blog post. The dream code snippets are direct
quotes. Notice that he chose to use a semicolon free style when coding the dreams.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 103

Dream—Rest, spread, and destructuring. Syntactic support for variable length argument lists,
expanding arrays into argument lists and array literals, and extracting components from arrays
and objects.

function printf(format , ... args) {

/* use args as a real array here */

}

function construct(f, a) {

return new f(...a)

}

let [first , second] = sequence

const {name , address , ... misc} = person

ES2015 reality: Exactly the same except that in ES2015 did not support object destructuring using
the ... operator. That feature was added to a subsequent edition.

Dream—modules. A simple modularity design that supports asynchronous loading in browsers.
module M {

module N = "http ://N.com/N.js"

export const K = N.K //value of N.K exported

export #add(x, y) { x + y }

}

ES2015 reality: One module per file with no explicit module definition delimiters. More import and
export formulations. Bindings rather than values shared among modules.

// content of http ://M.com/M.js

export {K} from "http ://N.com/N.js" // binding of N.K exported

export const add = (x, y) => x + y

Dream—iteration. Paren-free for-in statement extended to work with iterators provided by
proxy-based standard library or user defined generator functions:

module Iter = {"@std:Iteration"}

import Iter.{keys ,values ,items ,range}

for k in keys(o) { append(o[k]) }

for v in values(o) { append(v) }

for [k,v] in items(o) { append(k, v) }

for x in o { append(x) }

#sqgen(n) { for i in range(n) yield i*i }

return [i * i for i in range(n)] //array comprehension

return (i * i for i in range(n)) // generator comprehension

ES2015 reality: 1JS motivated the for-of statement as the alternative to overloading for-in via
dependency on modules and proxies. Standard key/value/entries protocol defined for built-in
collection classes. Comprehensions were dropped late in Harmony development because of future-
proofing concerns.

for (k of o.keys()) append(o[k])

for (v of o.values ()) append(v)

for ([k,v] of o.entries ()) append(k, v)

for (x of o) append(x) // o provides its default iterator

function *sqgen(n) {for (let i of Array(n).keys) yield i*i }// a generator

Authors’ Corrections: March 2021

104 Allen Wirfs-Brock and Brendan Eich

Dream—paren-free statements. More modern syntax that eliminates required parenthesizes in
compound statements:

if x > y { alert("paren -free") }

if x > z return "brace -free"

if x > y { f() } else if x > z { g() }

ES2015 reality: Not included. Rejected by TC39 as too radical. 1JS required continued recognition of
old forms and mixing of old and new forms resulted in extra design and user complexity.

21.2 Recrafting the Specification
The desire to express the ECMAScript semantics using an executable, testable specification had
carried forward from the ES42 effort, but ML had been discarded as a specification language. Early in
the Harmony effort Allen Wirfs-Brock [2009] had floated the idea of using a definitional interpreter
written in ES5 JavaScript to specify Harmony. That idea had even been included in the Harmony
Goals Statement (Figure 38). But by the spring of 2010 not much progress had been made on that
concept, and TC39 members were less sure of that approach. The pseudocode improvements made
for ES5 (Appendix Q) had eliminated most of usability issues that had existed with the pseudocode
in earlier editions. Progress with Test262 showed that a comprehensive test suite was useful for
verifying the specification as well as implementations. The specification formalism was again
discussed at the May TC39 [2010] meeting, and the status quo remained attractive to many at the
meeting. Apple’s Oliver Hunt observed that, as an implementor, the pseudocode in ES5 worked
better for him than any executable specification code he had seen. The consensus decision was to
continue to use pseudocode to specify Harmony.
For the project editor, creating the specification was more than a simple integration task. In

theory, proposals were developed by champions to the point where they were ready for easy
integration into the specification. In practice, this was rarely the case. Some champions were not
familiar enough with the structure of the specification or its formalisms to create integration-ready
pseudocode. Others did not have the time or expertise necessary to create detailed semantics
specifications. For many proposals, Allen Wirfs-Brock had to devise how to integrate them into
the specification, work out semantic details, and write or rewrite the proposal’s specification
algorithms.
Champions tended to have a narrow focus on the features defined by their proposals. Good

proposals take into consideration how the feature interacts with preëxisting features of the language.
However, even themost skilled champions have a hard time considering all the potential interactions
between their features and other proposals which are being simultaneously developed by other
champions. All the features had to pass through the editor in order to become part of the actual
specification, so Wirfs-Brock had the most complete view of how the existing language and all the
Harmony proposals would fit together to form ES6. He was particularly focused on cross-cutting
concerns that span multiple feature proposals, and ensuring that there was syntactic and semantics
consistency among proposals. As he integrated approved proposals he tried to transform them
into a set of composable orthogonal features [Lindsey 1993]. Sometimes this required changing
syntactic or semantic details of a proposal or even adding or removing significant functionality.
These changes would then have to be presented to the champions and often the full committee for
approval.

21.2.1 Reorganizing the Specification. From the first draft of the first edition in 1997 (Figure 13)
through ES5.1, the organization of the ECMAScript specification had remained fundamentally
unchanged. While working on the ES5 specification, AllenWirfs-Brock had found the basic ordering

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 105

Clause ECMA-262, 5.1 Edition (245 pages) ECMA-262, 6th Edition (545 pages)
1 Scope Scope
2 Conformance Conformance
3 Normative References Normative References
4 Overview Overview
5 Conventions Notational Conventions
6 Source Text ECMAScript Data Types and Values
7 Lexical Conventions Abstract Operations
8 Types Executable Code and Execution Contexts
9 Type Conversion and Testing Ordinary and Exotic Object Behaviors
10 Executable Code and Execution Contexts ECMAScript Language: Source Code
11 Expressions ECMAScript Language: Lexical Grammar
12 Statements ECMAScript Language: Expressions
13 Function Definition ECMAScript Language: Statements and Declarations
14 Program ECMAScript Language: Functions and Classes
15 Standard Built-in ECMAScript Objects ECMAScript: Language: Scripts and Modules
16 Errors Error Handling and Language Extensions
17 ECMAScript Standard Built-in Objects
18 The Global Object
19 Fundamental Objects
20 Numbers and Dates
21 Text Processing
22 Indexed Collections
23 Keyed Collections
24 Structured Data
25 Control Abstraction Objects
26 Reflection

Fig. 42. Organization of 5th and 6th Editions. In the ES6 specification clauses 6–9 define the virtual machine
semantics. Clauses 10–15 define the language and clauses 17–26 define the standard library.

of the material in the specification confusing. He came to understand that the specification defined
three fundamentally separable parts:
• an ECMAScript virtual machine including its runtime entities and their semantics
• the ECMAScript language syntax, semantics, and its mapping to the virtual machine
• the standard library of objects that is available to all ECMAScript programs

The original specification and its revisions interwove the three parts in a manner that obscured
this basic structure. Allen Wirfs-Brock felt that explicitly organizing the specification into a three-
part structure would make it easier to understand and would provide a clearer presentation of the
large amount of new ES6 material. The committee agreed. Figure 42 shows the new organization of
the ES2015 specification compared with that of ES5.

21.2.2 New Terminology. ES6 provided an opportunity to clarify and update some of the termi-
nology used in the specification. One area that needed attention was nomenclature for objects.
JavaScript 1.0 implementations had given JavaScript programs access to host-specific and JavaScript
engine-specific objects whose fundamental object semantics differed in various unusual ways from
the objects that could be created using ECMAScript code. The ES1 specification used the terms
“object,” “native object,” “standard object,” “built-in object,” “standard native object,” “built-in native
object,” and “host object” to refer to the various ways objects could be implemented. The distinctions
between these designations were subtle and not particularly useful. It was not clear exactly which

Authors’ Corrections: March 2021

106 Allen Wirfs-Brock and Brendan Eich

of these categories permitted unusual object semantics or whether objects created by JavaScript
programmers fit into any of the categories.

A goal of ES6 was to enable self-hosted implementations of most standard library and host objects
using JavaScript code. With the possibility of self-hosting, the distinction between host-provided,
engine-provided, and program-provided had diminishing relevance. The semantic differences
among objects are more important than who provides them or the technology used to implement
them.

The fundamental terminology need was to distinguish objects with normal semantics from those
with abnormal (that is, unusual) semantics. Douglas Crockford [TC39 2012b], riffing on the name of
Ecma’s highest membership category, suggested “ordinary objectg” as the term for objects that have
the semantics of an object created using a JavaScript object literal or new Object(). Objects whose
semantics deviated in any way from the ordinary object semantics were called “exotic objectsg.”
Both ordinary and exotic objects might be provided by the host, engine, or application programmer,
and might be implemented using JavaScript or some other language.

21.2.3 New Kinds of Semantics. Prior to ES6, the majority of pseudocode algorithms, other than
those that defined standard library functions, were associated with grammar productions and
specified the runtime evaluation semantics of their production. There was no need to name these
algorithms because they were the only semantics associated with the grammar productions. There
were also a few algorithms, such as those for type conversions and the internal methods that define
object semantics, which were not directly associated with the grammar. Those were given names
so that they could be referenced from the evaluation algorithms.

ES6 introduced new features, such as object destructuring, which have complex behaviors whose
specifications must cross-cut many grammar productions. Some of the algorithms need to perform
multiple traversals of the parse tree to collect information or to sequence evaluation steps that span
multiple parse nodes. There are also common grammar-linked behaviors that, for consistency, are
used by multiple features. To accommodate these requirements, the ES6 specification can associate
named algorithms with parse nodes in addition to the implicitly named evaluation algorithms. They
are referenced by name in association with grammar symbols. Typically such named algorithms are
polymorphic in the sense that a same-named algorithm is defined for multiple grammar productions.
The specific algorithm selected depends upon the actual derivation of the grammar symbol used to
parse a specific source text.
With the goal of minimizing implementation variation, each subsequent edition of ECMA-262

was more precise in its definition of error conditions and when they are detected. ES3 implicitly
introduced the concept of “early errors” which was further refined in ES5. An early error is an
error in a script that is detected and reported prior to evaluation of the script. Detection of an early
error prevents evaluation of the script. The most common form of early error is a syntax error
which occurs when the source code of a script cannot be parsed using the ECMAScript grammar.
Syntax errors are implicit in the definition of the grammar. ES3 introduced a few other kinds of
early errors, for example a break statement that references a statement label that does not lexically
enclose the break statement. ES5 strict mode added a few more. The specification defined most of
these as syntax errors even though they are not parsing errors but instead are violations of the
static semantic rules of the language. Prior to ES6, most such errors were specified using informal
prose placed near an evaluation algorithm. Others were specified by including pseudocode that
tested for runtime error conditions within evaluation algorithms and then used prose to state that
the error could or should be reported as an early error.
ES6 features introduced many more kinds of early errors. For example, it is an early error to

attempt tomultiply define an identifier using let or const declarations. ES6 added “Static Semantics”

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 107

13.3.1.1 Static Semantics: Early Errors
LexicalDeclaration : LetOrConst BindingList ;
• It is a Syntax Error if the BoundNames of BindingList contains "let".
• It is a Syntax Error if the BoundNames of BindingList contains any duplicate
entries.

LexicalBinding : BindingIdentifier Initializeropt
• It is a Syntax Error if Initializer is not present and IsConstantDeclaration of the
LexicalDeclaration containing this production is true.

. . .
13.3.1.3 Static Semantics: IsConstantDeclaration
LexicalDeclaration : LetOrConst BindingList ;

1. Return IsConstantDeclaration of LetOrConst.
LetOrConst : let

1. Return false.
LetOrConst : const

1. Return true.

Fig. 43. Sample ES6 Static Semantic Rules [Wirfs-Brock 2015a, pages 194–195]

subclauses to the grammar for consistently specifying early error conditions. Figure 43 shows a
sample set of early error definitions. As shown, early-error rules may reference static semantic
algorithms. Static semantic algorithms use the same conventions as the runtime algorithms except
they may not reference any of the runtime state of the ECMAScript environment—because they are
applied before evaluation of a script. Static semantic early-error rules and algorithms are restricted
to using and analyzing information that can be extracted from source code without executing it.
Runtime algorithms may invoke static semantic algorithms but static semantic algorithms may not
invoke runtime algorithms.

21.3 ES2015 Language Features
The proposals listed in the final versions of the Harmony Proposals wiki page [TC39 Harmony 2014]
were developed into dozens of new and extended language and standard library features. Typical
proposals went through multiple iterations before being incorporated in the draft specification,
and in some cases further evolved after that. A number of proposals were eventually dropped from
consideration or deferred to future editions.

The following sections take a deeper look at the development history of a few key proposals and
summarizes details of other important features.

21.3.1 Realms, Jobs, Proxies, and a MOP. The Harmony goals included enabling the self-hosting
of built-in and host-defined exotic objects and fully specifying the semantic extensions that were
implemented by Web browsers. To support this goal, it was necessary to refine some of the existing
abstractions of the ECMAScript “virtual machine” and to add new abstractions that could be used
to specify language features that were new or underspecified.
“Realm” [Wirfs-Brock 2015a, pg. 72] is a new specification abstraction added to describe the

semantics of multiple global namespaces within a single ECMAScript execution environment.
Realms support the semantics of HTML frames (§3.6), a feature of browsers that had been ignored
by ECMAScript since ES1. “Job” [Wirfs-Brock 2015a, pg. 76] is a specification abstraction added to
deterministically define how an ECMAScript execution environment sequentially executes multiple

Authors’ Corrections: March 2021

108 Allen Wirfs-Brock and Brendan Eich

scripts, each of which runs to completion. Jobs provide a way to explain the semantics of event
dispatching and deferred callbacks provided by browsers and other JavaScript hosts. They also
provide the basis for defining the semantics of ES2015 Promises.
The internal methods provided by ES1 (§9) were essentially a vestigial metaobject protocol.

The intent was that variations in the observable semantics of property access among various
kinds of built-in and host-provided objects could be explained as differences in the specification
of their internal methods. But prior to ES2015, the internal methods semantics was incomplete,
underspecified, and used inconsistently. In order to tame host objects, enable self-hosting of exotic
objects, and support object-capability membranesg [Van Cutsem and Miller 2013], the ES1–ES5
internal method design was transformed into a fully specified MOP.

For JavaScript code to define exotic objects, it has to be able to provide the implementation of the
internal methods of those objects. This capability is provided by ES2015 Proxy objects [Wirfs-Brock
2015a, pg. 495]. ES42 proposed a mechanism called “catchalls” [TC39 ES4 2006a] which was intended
to enable JavaScript code to override, on a per object basis, the default actions that occur when
attempting to access a property or invoke a method that does not exist. ES42 catchalls were intended
to be an improvement on JavaScript 1.5’s non-standard __noSuchMethod__ mechanism [Mozilla
2008a]. For Harmony, Brendan Eich [2009b; 2009d] generalized ES42 catchalls by introducing the
concept of dynamically attaching what he called “action methods” to an object. Performing certain
language operations on an object would call an action method if one was defined for that object.
The set of available actions were similar to the set of ES5 internal methods but not a direct reflection
of them. An open issue was whether the actions would be triggered on all property access or on
accesses only to non-existent properties. Eich’s API for attaching actions to an object was modeled
on the ES5 Object Reflection functions:

var peer = new Object;
Object.defineCatchAll(obj , {

// add action methods that implement Array -like length behavior
has: function (id) { return peer.hasOwnProperty(id); },
get: function (id) { return peer[id]; },
set: function (id, value) {

if ((id >>> 0) === id && id >= peer.length) peer.length = 1 + id;
peer[id] = value},

add: function (id) { Object.defineProperty(obj , id,
{ get: function (){ return peer[id]; },
set: function (value) { peer[id] = value);

}})},
// definitions of other actions ...

});

Harmony Catchall Proposal

In this example, the properties has, get, set, and add provide the catchall actions that get dynami-
cally attached to object obj. The action functions lexically share access to the peer object. This
establishes a one-to-one association between obj and peer. The handlers work together to use
peer as the backing store for what will appear to be own properties of obj. They also dynamically
update the value of the peer object’s length property so its value is always one greater than the
largest integer used as a property name.

Brendan Eich’s catchall proposal was shortly followed by an alternative design championed by
Tom Van Cutsem and Mark Miller [2010a; 2010b]. Announced [Van Cutsem 2009] as “Catch-all
proposal based on proxies,” it defined a stratified object-intercession API. The intent of the Proxy
proposal was to enable definition of virtual objects, such as the membrane objects used for isolation

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 109

in secure object-capability–based systems. TC39 was generally receptive to the Proxy strawman
and quickly accepted it as a Harmony proposal.
The proposal introduced the concept of Proxy objects. Instead of extending a base object with

interceding action methods, a Proxy object is created with an associated handler object whose
methods are called “traps.” Traps are triggered by language operations. A handler could completely
define the object behaviors used by language operations. The traps might be self-contained or they
might work in conjunction with preëxisting objects known to the handler via lexical capture, for
example [Van Cutsem and Miller 2010c]:

// a simple forwarding proxy
function makeHandler(obj) { return {

has: function(name) { return name in obj; },
get: function(rcvr ,name) { return obj[name]; },
set: function(rcvr ,name ,val) { obj[name]=val; return true; },
enumerate: function () {

var res = []; for (name in obj) { res.push(name); }; return res; },
delete: function(name) { return delete obj[name]; } };

}
var proxy = Proxy.create(makeHandler(o), Object.getPrototypeOf(o));

Initial Harmony Proxy Proposal

In this example, makeHandler is a helper function that is used to create a handler object whose
traps lexically share access to the object that was passed as an argument to makeHandler. The
object passed to makeHandler might be a newly created object, in which case it can serve a role
similar to the peer object in the catch-all example. Alternatively, the passed object could be a
preëxisting object. In that case, the traps could forward some or all of their trapped operations to
that object. In that case the object serves the role of the target of a “forwarding proxy."

Placing the trap methods in the handler object avoids name conflicts with base-object properties.
The proposal defined seven fundamental traps, six derived traps,89 and two traps which are specific
to function objects. As with the catchall proposal, the traps were similar to the ES5 internal
methods but not a direct reflection of them. ES5 established certain invariants [Wirfs-Brock 2011b,
page 33], which must not be violated, for the [[GetOwnProperty]] and [[DefineOwnProperty]]
internal methods. A troublesome issue for ES2015 was how to virtualize frozen/sealed objects and
non-configurable properties while enforcing90 those invariants.

Prototyping the original Proxy proposal led to a major revision announced by Van Cutsem [2011]:
A couple of weeks ago, Mark and I sat together to work on a number of open issues
with proxies, in particular, how to make proxies work better with non-configurable
properties and non-extensible objects. The result is what we call “direct proxies”: in
our new proposal, a proxy is always a wrapper for another “target” object. By slightly
shifting our perspective on proxies in this way, many of the earlier open issues go
away, and the overhead of proxies may be substantially reduced in some cases.

In the Direct Proxies proposal [Van Cutsem and Miller 2011a,b, 2012], the target object (o in the
following example) is like the object passed to makeHandler in the forwarding Proxy example. It is
kept as internal state of the Proxy object and is passed as an explicit argument when a trap is called.
Because the Proxy knows the target object it can use the target to enforce the essential invariants.
The following is a Direct Proxies version of the forwarding Proxy example:

89Fundamental traps are primitives. The default behaviors of the derived traps are defined using the fundamental traps.
90ES5 did not support user-defined internal methods, so explicit enforcement of the invariants was unnecessary.

Authors’ Corrections: March 2021

110 Allen Wirfs-Brock and Brendan Eich

// a simple direct forwarding proxy
var Proxy(o,{

//the handler object
has:function(target ,name){return Reflect.has(target ,name)},
get:function(target ,name ,rcvr){return Reflect.get(target ,name ,rcvr)},
set:function(target ,name ,val ,rcvr){return Reflect.set(target ,name ,val ,rcvr)},
enumerate:function(target){return Reflect.enumerate(target)},
// ...

});

Harmony Direct Proxy Proposal

The methods of the Reflect object correspond to the standard internal methods. They enable a
handler to directly invoke an object’s internal methods rather than using JavaScript code sequences
that implicitly invoke them. The Direct Proxy design initially defined sixteen different traps largely
based upon the ES5 internal methods. The design also identified a number of internal operations on
objects that could not be intercepted by a Proxy because they were not defined in terms of internal
methods. Tom Van Cutsem, Mark Miller, and Allen Wirfs-Brock worked together to co-evolve the
Harmony internal methods and the Proxy traps so that they were aligned and adequate to express
all of the object behaviors defined by the ECMAScript specification and by host objects. This was
accomplished by adding new internal methods and by redefining some non-interceptable operations
as regular base-level, trappable method calls. Essential invariants for each internal method were
defined. ECMAScript implementations and hosts are required to adhere to those invariants and
Proxy enforces91 them for self-hosted exotic objects. Figure 44 is a summary of the ES2015 MOP.

The Direct Proxy design uses an encapsulated target object, but it is not intended to provide easy
transparent wrapping of the target object. Contrary to appearances, Proxies are not a simple way to

ES5 Internal Method ES6 Internal Methods ES6 Proxy Traps & Reflect methods
[[CanPut]]
[[DefaultValue]]
[[GetProperty]]
[[HasProperty]] [[HasProperty]] has
[[Get]] [[Get]] get
[[GetOwnProperty]] [[GetOwnProperty]] getOwnPropertyDescriptor
[[Put]] [[Set]] set
[[Delete]] [[Delete]] deleteProperty
[[DefineOwnProperty]] [[DefineOwnProperty]] defineProperty
[[Call]] [[Call]] apply
[[Construct]] [[Construct]] construct

[[Enumerate]] enumerate
[[OwnPropertyKeys]] ownKeys
[[GetPrototypeOf]] getPrototypeOf
[[SetPrototypeOf]] setPrototypeOf
[[IsExtensible]] isExtensible
[[PreventExtensions]] preventExtensions

Fig. 44. The ES6/ES2015 Metaobject Protocol is defined by the specification-level internal methods and reified
via Proxy traps and Reflect methods.

91A design concern was the cost of enforcing the invariants after each Proxy trap. Notification Proxies [Van Cutsem 2013]
is a alternative design that was briefly considered as a way to eliminate that overhead.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 111

log property access or handle “method not found”. Naïvely implemented Proxy objects, intended to
support such use cases, are often unreliable or buggy. The core use cases for Direct Proxies are the
virtualization of objects and the creation of secure membranes. As Mark Miller [2018] explained:

Proxies and WeakMaps were designed, and initially motivated, to support the creation
of membranes. Proxies used standalone cannot be transparent, and cannot reasonably
approximate transparency. Membranes come reasonably close to transparently emulat-
ing a realm boundary. For classes with private members, the emulation is essentially
perfect.

21.3.2 Block-Scoped Declarations. Adding block-scoped lexical declarations was contemplated
beginning with the first ES41 attempt. Programmers experienced with C-like language syntax
expect declarations located within a {} delimited block to be local to that block. The original
JavaScript 1.0 var scoping rules (§3.7.1) are surprising and sometimes mask serious bugs. One such
bug that is commonly encountered is the closure-in-loop bug:

function f(x) { //this function has the closure in loop bug
for (var p in x) {

var v = doSomething(x, p);
obj.setCallback(function(arg) {handle(v, p, arg)});
//bug: all the closures created in this loop share
//the same binding to v and p rather than having
// distinct per iteration bindings.

}
}

ES3

This pattern is quite common in code that manipulates the browser DOM—even experienced
JavaScript programmers sometimes forget that a var declaration is not block-scoped.

The existing var declaration forms could not be changed to be block-scoped without breaking
existing code. The ES42 effort had settled on using the keywords let and const for declarations
that respected block scoping expectations. The keyword let was used to define mutable variable
bindings and const for immutable constant binding. Their use was not restricted to blocks but
could appear anywhere a var declaration could occur. The ES42 design group even had t-shirts
made with the slogan “let is the new var.” Harmony carried forward let and const declarations.
But the ES42 work had left many issues relating to their semantics unanswered.

ES5 had contemplated adding const declarations and the ES5 specification included abstractions
that could be used to specify block-level declaration binding semantics. But it was not obvious
exactly what those semantics should be. The following code snippet illustrates some of the issues:

{ // outer block
let x = "outer";
{ // inner block

console.log(x);
var refX1 = function () {return x};
console.log(refX1());
const x = "inner";
console.log(x);
var refX2 = function () {return x};
console.log(refX2());

}
}

ES2015

Authors’ Corrections: March 2021

112 Allen Wirfs-Brock and Brendan Eich

Should some or all of the references to x that occur within the inner block before the const
declarations be compile time errors? Or, should they be runtime errors? If they are not errors should
they resolve to the outer binding of x, or perhaps the inner x should have the value undefined
until it is initialized? Does calling the function refX1 before the const declaration resolve to the
same binding of x and same value as when it is called after the declaration? All of the questions
would still apply if the inner declaration of x was a let declaration. Waldemar Horwat [2008a]
characterized four possible semantics for these references:
A1. Lexical dead zone. References textually prior to a definition in the same block are errors.
A2. Lexical window. References textually prior to a definition in the same block go to outer scope.
B1. Temporal dead zone. References temporally prior to a definition in the same block are errors.
B2. Temporal window. References temporally prior to a definition in the same block go to outer

scope.
Horwat credits Lars Hansen for introducing the concept of “dead zones” to the discussion. The
term “temporally prior” refers to the runtime evaluation order. A2 and B2 are undesirable because
the same name at different points in the block can have different bindings and with B2 a name at a
specific point in the block can have different bindings at different times. A1 is undesirable because
it prevents these declaration forms from being used to define mutually recursive functions. A2 has
the disadvantage that it requires run-time initialization checks on all references; however, many of
them could be safely eliminated by a compiler using fairly simple analysis. It took nearly two years,
but eventually the TC39 consensus was that the new lexical declaration forms should have the B1
temporal dead zone (TDZ) semantics. Those semantics are summarized by these rules:
• Within a scope, there is a single unique binding for any name.
• let, const, class, import, block level function declarations, and formal parameter bindings
are dead at runtime until initialized.
• It is a runtime error to access or assign to an uninitialized binding.

In the specification, the first rule is expressed as an early-error rule, and the other two rules are
expressed in the runtime semantic algorithms.

When Allen Wirfs-Brock began to integrate let and const into the specification he discovered
many potential interactions, with legacy var and function declarations. This led to another round
of TC39 discussions before reaching agreement on the following additional rules:
• Multiple var declarations for a name can exist at any level of block nesting. They all refer
to the same binding whose definition is hoisted to the closest enclosing function or global
top-level scope (ES1 legacy semantics).
• Multiple var and function/global top-level function declarations for the same name are
allowed with one binding per name (ES3 legacy semantics).
• All other multiple declarations in a scope are early errors: var/let, let/let, let/const,
let/function, class/function, const/class, etc.
• It is an early error for a block-level var declared name to hoist over any outer let, const,
class, import, or block-level function declarations of same name.
• var declarations are auto-initialized to undefined when the binding is created so there is no
TDZ limitation on accessing them.

Another set of issues concerned the handling of global declarations. Prior to ES2015, all global
declarations created properties on the global object (§3.6) provided by the host environment. But
object properties have no provisions for tagging a property as being uninitialized as is required to
implement a temporal dead zone. One proposal was to treat global level occurrences of the new
const, let, and class declarations as if they were var declarations. There was a precedent. Some

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 113

pre-ES2015 JavaScript engines had implemented const declarations in that manner. However, that
would have created inconsistency between use of the new declarations at the global level and
their use anywhere else. Instead, the TC39 consensus was that lexical declaration rules should
apply as consistently as possible across all kinds of scopes. For the global scope, var and function
declarations retain the legacy behavior of creating properties of the global object, however all other
declaration forms create lexical bindings which are not backed by global object properties. The
new rules disallowing conflicting var/let and similar conflicts apply except that global object
properties which are not created using a var or function declaration do not result in multiple
declaration conflicts. In those cases, a global let/const/class declaration shadows the like-named
global object property. An implication of the rules is that globals defined using the new declarations
cannot be multiply defined in separate scripts.
Simply adding block-scoped let and const declarations is not enough to fully eliminate the

closure-in-loop hazard. There is also the problem of scoping the variable introduced by the for state-
ment: for (var p in x). ES2015 addresses this by allowing let and const to be used in the head
of a for statement in place of var. A let or const used in this manner creates a binding in a scope
contour that is recreated for each iteration of the loop body. The loop, for (const p in x) {body},
desugarsg approximately as follows:

// approximate desugaring of: for (const p in x) {body}
{ let $next;

for ($next in x) {
const p = $next;
{body}

}
}

ES2015

Dealing with lexical bindings introduced by the C-style three-expression for statement is more
complicated and was more controversial. JavaScript 1.0 had included the ability to use a var
declaration as the first expression of such for statements, so a let or const declaration should
also be usable there. But what is the extent of the bindings created by such declarations? Should
there be a single binding whose lifetime is the duration of the entire for statement or should there
be a separate binding for each iteration of the loop such as was done for the for-in statement? The
answer is not obvious, because common coding patterns use the second and third expressions or
code in the loop body to update the value of the declared loop variables for use on the next iteration
of the loop. If each iteration gets a fresh binding of the loop variables it would be necessary to
automatically use the final loop variable values from the previous iteration to initialize the loop
variable bindings of the next iteration. Most C-like languages have used the single binding per
for statement approach rather than the binding per iteration approach, and that is what the ES6
draft specification initially did. However, that approach still has the closure-in-loop hazard. For
that reason, three-expression for statements with let declarations were eventually changed to
use a binding per iteration with value propagation between iterations. A single binding per loop
proved adequate for const declarations in the first expression, as such variables cannot have their
values modified by the other expressions in the for header or the loop body.

Another significant issue concerned the semantics of functions declared within statement blocks.
ES3 had intentionally excluded (§12) any syntax or semantic specification of function declarations
within blocks. But implementations had ignored that guidance and allowed such declarations—
unfortunately, each major-browser implementation gave them different semantics. However, there
was enough semantic overlap that for some use cases [Terlson 2012] it was possible to declare such

Authors’ Corrections: March 2021

114 Allen Wirfs-Brock and Brendan Eich

functions and use them in a manner that would be interoperable among all major browsers. Some of
those use cases would be illegal or change their meaning under the ES2015 lexical declaration rules.
Implementing the new rules for those cases would “break theWeb.” This was not a problem for strict
mode because ES5 had forbidden implementations from providing block-level function declarations
within strict mode code. One approach for non-strict code would be to follow the example of ES3
and not specify anything about block-level functions—leaving it to each implementation to decide
if and how to integrate block-level function declarations with the new lexical declaration forms.
But that would not foster interoperability and would also be contrary to the 1JS goals [TC39 2013b].
Instead, TC39 [2013a] determined that there were only a few use cases where existing block-level
functions were usefully interoperable and yet erroneous according to the new rules, for example:

function f(bool) {
if (bool==true){

function g() {/*do something */}
}
if (bool==true) g(); //this worked in all major browsers

}

Non-standard but interoperable ES3 extension

The fix was to define some additional non-strict code rules [Wirfs-Brock 2015a, Annex B.3.3] that
statically detect those specific interoperable use cases and make them legal and compatible with
legacy Web pages. For the above example, the rules would treat the above code as if it had been
code like this:

function f(bool) {
var g; //but early error if let declaration of g exists at top -level
function $setg(v) {g = v}
if (bool==true){

function g() {/*do something */}
$setg(g); //set top -level g to value of local g

}
if (bool==true) g(); // references top -level g

}

ES2015+Annex B desugaring

21.3.3 Classes. At the July 2008 TC39 meeting that initiated the Harmony effort, considerable
time was spent discussing whether and how classes should be included. Both ES4 efforts had
put significant effort into developing a sophisticated class definition syntax and semantics, and
both designs required new runtime mechanisms to support them. Those designs can be loosely
characterized as “Java-inspired classes.”

Mark Miller [2008d] argued that ES3 already had most of the runtime mechanisms necessary to
implement class-like abstractions using lambda functions and lexical-capture techniques similar
to those used in Scheme [Dickey 1992; Sussman and Steele Jr 1975] and adapted for JavaScript
by Douglas Crockford [2008b, pages 52–55]. This style of lambda desugaring of class definitions
is essentially the same as the module pattern (§13.2) suggesting that a class is simply a small
lightweight module intended to be instantiated many times. Miller called this approach “classes as
sugar.”

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 115

Cormac Flanagan [2008] summarized the initial classes discussion, as follows:
EcmaScript [sic] needs better support for providing high-integrity objects92 with
data abstraction and hiding, and for private fields and methods. . .

. . .We initially focus on a simple, minimalist design, with no support for inheri-
tance or for type annotations, and with instance-private data. There is no separate
namespace for class names, and class objects are a new kind of (first-class) values.

Flanagan’s strawman used a simple syntax for class definitions, as follows:

class Point (initialX , initialY) {
private x = initialX;
private y = initialY;
public getX() {return x};
public getY() {return y};

}

Flanagan’s Harmony Class Strawman

Cormac Flanagan’s proposal lacked a full desugaring and included few semantic details. Mark
Miller [2008c; 2009; 2010a] countered with a design with similar surface syntax. Miller’s proposal
included a complete desugaring which did not require a new kind of runtime object for class
instances. In Miller’s design there is no inheritance and all methods and instance variables default
to private access. All methods and instance variables are represented as per-instance lexically
captured declarations which are directly accessible from only within the body of the class definition.
The properties of class instance objects provide external access to public methods, and get accessors
are provided for public instance variables. Direct external external assignment to instance variables
are not allowed. The this keyword is not used.

A recurring criticism of Mark Miller’s classes-as-sugar proposals were that they created too many
objects. Each object instantiation of a class with 𝑛 methods implicitly creates 𝑛 instance-specific
closure objects in addition to the actual instance object. Miller’s position was that the desugaring
defined only the observable semantics and that implementations were free to develop techniques to
avoid creation of the closure objects. However, committee skeptics doubted whether implementors
would develop such optimizations. Another concern was the lack of support for inheritance or
other behavioral composition mechanisms, so Miller also developed proposals [Miller 2010d, 2011a]
that incorporated compositional Traits [Van Cutsem and Miller 2011c] into his class desugaring
design.
Support for defining high-integrity objects was a top priority of those committee members

who were most concerned about hostile Web ads and other Web mashups that might try to steal
private information (§20.1.3). The entire committee shared this concern, but not necessarily the
prioritization. Waldemar Horwat [2010] in his notes on the September 2010 TC39 meeting observed:

Schism within group about goals: “high integrity” vs. “supporting the things that people
are already writing with better syntax” vs. maybe possible to get both.

Allen Wirfs-Brock believed that making object creation less imperative might support the second
goal. In classic JavaScript, the closest analog to a Class is a constructor function (§3.3) which
imperatively defines a new object’s properties. Object literals provided a more declarative way to
define an object’s properties but lacked the affordances needed to easily match the conventions93
followed for ECMAScript’s built-in Classes. Perhaps object literals could be extended to better

92A “high-integrity object” supports impenetrable information hiding. Its structure, inheritance relationships, encapsulated
state, and methods cannot be directly modified or extended other than by the code that defines the object.
93For example, the non-enumerability of methods and the use of read-only properties.

Authors’ Corrections: March 2021

116 Allen Wirfs-Brock and Brendan Eich

function tripleFactory(a,b,c) {

return { // This object literal creates the triple objects

<proto: Array.prototype , // proto meta -property sets inheritance

prototype

sealed >, // sealed meta -property applies Object.seal()

0: a,

1: b,

2: c,

var length const:3, // var sets [[enumerable]]: false ,

// const: sets [[writable]]: false

method toString (){ // methods are data properties with function values

// and [[enumerable]]: false

return "triple("+this [0]+","+this [1]+","+this [2]+")"},

method sum(){return this [0]+ this [1]+ this [2]}

}

}

Fig. 45. A factory function based on Wirfs-Brock [2011c; 2011d] Harmony Extended Object Literal Proposals

support what people were already writing without having to introduce “classes” as new kind of
language entity.
In a group of related proposals, Wirfs-Brock [2011c; 2011d] showed how object literals might

be extended to be more declarative and eliminate the need to use the ES5 object reflection APIs
for routine object-definition use cases. For example, Figure 45 shows how a factory functiong that
uses extended object literal features would define classes with an explicit prototype, methods, and
private properties.
Allen Wirfs-Brock’s proposals also showed how the extended object literal syntax could be

used as the body of a class definition. In a March 2011 TC39 presentation, Wirfs-Brock [2011a]
proposed that class definitions should generate the basic triad of constructor function, prototype
object, and instance objects used for the built-in library Classes in clause 1594 of the ECMAScript
specifications of all previous editions of ECMA-262. Rather than desugaring class definitions into
lambda expressions (classes as sugar) or a new kind of runtime entity (Java-inspired classes),
they should desugar into the familiar constructor functions and prototype-inheriting objects
already used by JavaScript programmers and framework authors. At the meeting there were
significant differences of opinion about many details of the extended object literal syntax, but
a loose consensus was established that the core class definition semantics should be the clause
15-constructor/prototype/instance triad.

In early May 2011, the TC39 ES.next feature-freeze meeting was rapidly approaching and there
were still several competing strawman proposals relating to classes. It seemed doubtful that there
would be sufficient consensus for any of the proposals to make the cut. OnMay 10, 2011, AllenWirfs-
Brock met with Mark Miller, Peter Hallam, and Bob Nystrom. Hallam and Nystromwere members of
the team that was prototyping JavaScript class support using Google’s Traceur transpiler [Traceur
Project 2011b]. Their prototype incorporated ideas from both Wirfs-Brock’s and Miller’s proposals.
The goal of the meeting was to get sufficient agreement to be able to present a unified proposal.
Bob Nystrom [2011] in his meeting report lists many points of agreement including:

. . .The trinity of constructor functions, prototypes, and instances are more than
adequate for solving the problems that classes solve in other languages. The

94Prior to ES6, clause 15 was the section of the specification that defined the built-in objects and Classes.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 117

intent of a Harmony class syntax is not to change those semantics. Instead, it’s to
provide a terse and declarative surface for those semantics so that programmer
intent is shown instead of the underlying imperative machinery.
. . .Objects are declarative and informational. Functions are imperative and

behavioral. The question with classes is, “do we build on one of those abstractions
and if so, which one?”. . .

Our consensus proposal addresses this religious disagreement by using both: an
object literal-like form for the class body itself, and a function for the constructor.

After the meeting, Mark Miller [2011b] created a new strawman that was accepted at the
feature-freeze meeting [TC39 2011b] even though there remained many details of the proposal that
lacked consensus. The example class definition in Figure 46 is based upon one given in Miller’s
feature-freeze class proposal.
A month later, Dave Herman [2011c] in an es-discuss post titled “minimal classes” expressed

concerns that the complexity of the class proposal and its many points of disagreement created a
schedule risk for ES.next. He suggested an alternative minimized design which included only class
declarations with prototype inheritance, constructors, declarative methods, and calling inherited
methods using the super keyword. Excludedwould be declarative properties, constructor properties,
private data, and anything else that was controversial. Herman’s suggestion was discussed at the
July 2011 meeting [TC39 2011a], but the committee decided to focus on resolving the open issues
of Mark Miller’s then-current proposal. Brendan Eich [2012a] later wrote:

Minimal classes had a good subset of TC39 supporting last summer in Redmond, but
we got hung up future-proofing use-before-initialization for const and guards. . .

Continuing online discussions about alternative class designs [Ashkenas 2011; Eich 2011a;
Herman 2011a] motivated Dave Herman [2011d] to write a new “minimal classes” strawman.

class Monster extends Character {

constructor(name , health) { //the constructor function

super (); //call superclass constructor

public name = name; //a public instance property

private health = health; //a private instance variable

}

attack(target) { //a prototype method

log('The monster attacks ' + target);

}

get isAlive () { //a prototype get accessor

return private(this).health > 0;

}

set health(value) { //a prototype set accessor

if (value < 0) {

throw new Error('Health must be non -negative.')

}

private(this).health = value

}

public numAttacks = 0; //a prototype data property

public const attackMessage = 'The monster hits you!'; //read -only

}

Fig. 46. A class declaration based on Mark Miller’s [2011b] Unified Harmony Class Proposal

Authors’ Corrections: March 2021

118 Allen Wirfs-Brock and Brendan Eich

This proposal formalized Herman’s earlier post but added “static” constructor data and method
properties. There was little discussion of Herman’s minimal proposal at the next two TC39 meetings
and little progress toward resolving disagreements about the plan of record. Brendan Eich [2012c]
described the problem as follows:

. . . the general tendency observed by Waldemar [Horwat] is real: too minimal and
there’s no point. Too maximal and we can’t agree. We need “Goldilocks classes”—just
the right temperature/amount.

By early March of 2012, es-discuss community members were expressing growing frustration
with the apparent inability of TC39 to finalize a design for ES.next classes. Russell Leggett [2012]
in a post titled “Finding a ‘safety syntax’95 for classes” asked the question:

Is it possible that we can come up with a class syntax that we can all agree is better
than nothing, and importantly, leaves possibilities open for future enhancement? As a
“safety syntax” this doesn’t mean we stop trying to find a better syntax, it just means
that if we don’t find it then we still have something—something that we can make
better in ES7.

Leggett’s post received 119 predominantly positive responses over three days. It listed a set of “abso-
lute minimal requirements” that was essentially the same as Dave Herman’s list from the previous
summer. Leggatt’s contribution was the safety school metaphor. Allen Wirfs-Brock immediately
expressed his support and created a new “maximally minimal” version [Wirfs-Brock 2012d] of
Herman’s Minimal Classes proposal reframed using that metaphor. The most significant technical
change was to remove constructor properties from the proposal.96 It was too late to officially place
the “max-min” proposal on the agenda for March 2012 TC39 meeting, but Allen Wirfs-Brock and
Alex Russell led an informal discussion at the end of the meeting [TC39 2012a]. The reception was
generally positive, but a few members expressed concerns that the proposal might be too minimal
to bother with or that it might be hostile to future extensions that they contemplated. There was no
attempt to reach a consensus on the proposal, but Wirfs-Brock and Russell expressed the opinion
that anything more elaborate was unlikely to make it into ES.next.
The max-min proposal was officially on the agenda for the May 2012 meeting and a similar

discussion with similar results took place [TC39 2012b]. Those present were inching toward
consensus on the proposal but some key individuals were absent. Because of schedule pressure,
there was agreement that it was acceptable to work on prototypes and preliminary specification
drafts. By the time of the July meeting [TC39 2012c], Allen Wirfs-Brock had written specification
text for max-min classes and prepared a presentation deck [Wirfs-Brock 2012b] that enumerated
every design decision he encountered. He walked the committee through a review of each decision
and recorded either acceptance or consensus on an alternative. This approach sidestepped the
question of consensus on the entire proposal but got the committee engaged in consensus formation
at the detailed design level. The next draft [Wirfs-Brock et al. 2012b,c] of the ES.next specification
incorporated the complete max-min class design including the decisions made at the July meeting.
Nobody objected.
However, in the summer of 2014, as browser JavaScript engine developers started working on

implementations of ES6 classes, a significant objection did appear. A long standing goal of the ES6
effort was to provide a means of “subclassing” built-in Classes such as Array [Kangax 2010] and
the Web platform DOM Classes. Allen Wirfs-Brock [2012c; 2012e] wrote a Harmony Strawman
that describes why traditional JavaScript approaches to subclassing built-in constructors were
95Russell Leggett was making an analogy with a “safety-school,” which a perspective college student applies to as a backup
in case they are not admitted to any of their preferred schools.
96Constructor methods were eventually added back to the design using the static keyword.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 119

problematic. Built-in constructors are typically defined using an implementation language such as
C++. They allocate and initialize private object representations whose unique structure is known
to the associated built-in methods which are also defined using the implementation language. This
works when a built-in constructor is directly invoked using the new operator, but when “subclassing”
such constructors using JavaScript’s ad hoc prototype inheritance scheme, the new operator is
applied to the subclass constructor (typically coded in JavaScript) which allocates an ordinary
object rather than the private object representation expected by the inherited built-in methods.
Wirfs-Brock [2013] attempted to avoid this problem when specifying the max-min class semantics.
The semantics of new was split into separable allocation and initialization phases. Object allocation
was performed by new first invoking a specially named @@create method that would typically be
provided by a built-in superclass and not overridden by subclasses. Object initialization occurred
after allocation and was orchestrated by the subclass constructor. It would typically make a super
call to its superclass constructor to perform any necessary superclass-specific initialization and then
perform any subclass-specific initialization. When properly coded, this enables a built-in superclass
to allocate its unique private object structure before passing the object to the subclass constructor
which can use its initialization code to add subclass properties to the superclass-provided object.

The problem that was identified in 2014 was that the objects created by @@create methods
are uninitialized, and a buggy or malicious class constructor might invoke a built-in superclass
method (likely implemented in C++) on an uninitialized object—probably with catastrophic results.
Wirfs-Brock had assumed that all such objects would internally keep track of their initialization
state and that the corresponding built-in methods would be required to check if they were being
applied to an uninitialized object. Mozilla’s Boris Zbarsky [2014] pointed out that browsers have
thousands of such methods, and the two phase approach would require updating for each method
the DOM specifications and implementations for every browser. This motivated development
of a single phase allocation/initialization approach [Wirfs-Brock et al. 2014c,d] and another pro-
posal [Herman and Katz 2014] which retained the two phases but passed the constructor arguments
to both the @@create method and the constructor. These and other alternatives were hotly debated
throughout the remainder of 2014, and for awhile it appeared that a lack of consensus might either
delay the planned June 2015 publication of ES6 or force complete removal of classes from that
edition. However, in January 2015 a TC39 consensus formed around a variation of the single phase
approach [TC39 2015a; Wirfs-Brock 2015b]. This experience reïnforced TC39’s resolve to require
more and earlier implementor feedback on post-ES6 new features.

21.3.4 Modules. A complex aspect of the ES4 designs had been the package and namespace
constructs for structuring large programs and libraries. By the time ES42 was abandoned, significant
problems had been identified [Dyer 2008b; Stachowiak 2008b] with those mechanisms, and it was
clear that they would not be suitable for Harmony. At that time, ad hoc modularity solutions based
on the module pattern (§13.2) were being adopted by influential JavaScript developers [Miraglia
2007; Yahoo! Developer Network 2008]. In January 2009, Kris Kowal and Ihab Awad presented a
module-pattern–inspired design [Awad and Kowal 2009; Kowal and Awad 2009a] to TC39 [2009c].
Their design eventually evolved to become the CommonJS module system used by Node.js.

Kris Kowal and and Ihab Awad, in their original proposal and a subsequent revision [Kowal 2009b;
Kowal and Awad 2009b], included syntactic-sugaring alternatives that might overlay their module
design without changing the proposal’s dynamic semantics. Awad [2010a; 2010c] then developed
a different proposal that drew from both the CommonJS work and the Emaker modules of the E
Language [Miller et al. 2019] that were being used by the Secure ECMAScript Caja Project [2012].
Within TC39, these proposals were called “first-class module systems” because they manifest
modules as dynamically constructed first-class runtime entities that provide a new computational

Authors’ Corrections: March 2021

120 Allen Wirfs-Brock and Brendan Eich

abstraction mechanism. For example, in Awad’s proposal, multiple instances of a module may
simultaneously exist, each initialized with different parameter values.

Brendan Eich [2009c] described an alternative approach:
The alternative for Harmony is a syntactic special form, an import directive for example,
that can be analyzed when the program is parsed (not executed), so the implementation
can preload all dependencies before execution to avoid blocking on an import (or
a later data dependency), or else an awkward non-blocking import to preserve JS’s
run-to-completion execution model.

This alternative approach was called a “static” or “second-class module” system. A second-class
module system provides mechanisms for structuring application code rather than mechanisms for
defining new computational abstractions. Sam Tobin-Hochstadt [2010] explained:

. . . in a language with state, you want to be able to divide your program up into modules
without changing its behavior. If you have a stateful piece of code, and you move it
into its own module, that shouldn’t change things any more than any other refactoring.
If you need to repeatedly create fresh state, ES provides nice mechanisms for that as
well. Similarly, if you have one module that imports A, and you divide it into two, both
of which now import A, that refactoring shouldn’t change how your program works.

Dave Herman and Sam Tobin-Hochstadt developed a “Simple Modules” design [Herman 2010b,c,f;
Herman and Tobin-Hochstadt 2011; Tobin-Hochstadt and Herman 2010] for second-class Harmony
modules. The basic idea was that modules were units of code that could share lexical bindings.
Syntax was used to delimit the units of code and to identify which bindings would be shared. TC39
extensively debated the merits of the two approaches until Awad [2010b] recommended that TC39
focus its efforts on the Herman/Tobin-Hochstadt proposal.

Their design had module declarations that assigned a lexical identifier to the module and either
included themodule code or identified an external resource containing the code. An export keyword
prefixed declarations whose binding were to be exposed outside of the module, for example:

module m1 { // an internal module
export var x = 0, y=0;
export function f() {/* ... */};

}
module m2 { // another internal module in same source file

export const pi = 3.1415926;
}
module mx = load "http :// example.com/js/x.js";

// String literal identifies an external module
// ... code that imports and uses bindings from m1, m2, and mx.

Original Harmony Simple Modules Proposal

Module declarations could also be nested. An external module such as x.js could consist of only
a module body without the surrounding module-declaration syntax. An import declaration is used
to make a binding exported by a module lexically accessible to an importing module. Code that
uses the above example modules might have imports like the following:

import m1.{x, f}; // import two exported bindings from m1
import m2.{pi: PI};// import a binding and rename it for local access
import mx.*; // import all of the bindings exported by mx
import mx as X; // Locally bind X to an object whose properties bind

//to the exports of mx

Original Harmony Simple Modules Proposal

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 121

Module declarations, string literal external module specifiers, and declarative export/import
definitions enable static determination of a closed set of interdependent modules whose shared
lexical bindings can be linked prior to the execution of any code. Circular dependencies are allowed.
When execution starts, modules are initialized in a specified deterministic order and temporal dead
zones ensure run-time errors if any circular dependencies are impossible to initialize.
The syntax evolved [Herman et al. 2013], but the basic idea of statically linkable modules with

shared lexical bindings remained. Amajor change was the elimination of explicit module declaration
syntax, module identifiers, and internal/nested modules. Harmony modules are defined one per
source file and are identified using literal string resource specifiers. The elimination of module
identifiers required changing the import syntax, and wildcard imports were eliminated as being too
error prone. Wildcard imports were replaced with an alternative form that exposes an open-ended
set of imports as properties of a single namespace object rather than as individual lexical bindings.
The above import examples expressed using the final syntax look like this:

import {x, f} from "m1.js"; // import two exported bindings from m1
import {pi as PI} from "m2.js";// import a binding. Rename it for local access
import * as X from "mx.js"; // Locally bind X to a namespace object whose

// properties (*) map to the exports of mx.js
// additional import forms
import from "my.js"; // import my.js only for initialization effects
import z from "mz.js"; // import the single default binding exported by mz.js

ES2015

The elimination of module declarations and the addition of the default binding import form
were a late change to the design. Node.js adoption had been unexpectedly rapid, and it had
widely exposed CommonJS modules to the JavaScript developer community. TC39 was getting
negative community feedback [Denicola 2014] and had concerns that de facto standardization
of CommonJS modules might overshadow the Harmony design. The export default form was
added to accommodate developers who were accustomed to the single export pattern97 used in
many CommonJS modules. TC39 module champions also began to evangelize [Katz 2014] Harmony
modules to Node.js developers.

The initial Simple Modules proposal had included the concept of a module loader [Herman 2010e]
which provided the semantics of incorporating modules into a running JavaScript program. The
intent was that the ECMAScript specification would define the language level syntax and semantics
of modules, the runtime semantics of module loading, and a module loader API which would
provide JavaScript programmers with mechanisms to control and extend the loader semantics. The
loading process was ultimately envisioned [Herman 2013b] to be a pipeline consisting of five stages:
normalize, resolve, fetch, translate, and link. The loader begins by normalizing a module identifier.
It then progresses through the retrieval and preprocessing of module source code, determining
module interdependencies, linking imports to exports, and finally initializing the interdependent
modules. The intent was that the module loader would be extremely flexible and fully support the
asynchronous I/O model of Web browsers. At JSConf 2011, Dave Herman demonstrated [Leung
2011] a proof-of-concept module loader which extended the translation stage to load CoffeeScript
and Scheme code as modules of a JavaScript-based Web page.
In order to fully understand the module loading process and how to specify it, Dave Herman

worked with Jason Orendorff at Mozilla to prototype a module loader reference implementa-
tion [Orendorff and Herman 2014] using JavaScript code. In December 2013, Herman [2013a]
completed an initial rewrite of Orendorff’s JavaScript code into specification pseudocode, and in
97CommonJS modules typically export a single object that is used as a namespace.

Authors’ Corrections: March 2021

122 Allen Wirfs-Brock and Brendan Eich

January 2014 Allen Wirfs-Brock [2014a] had a preliminary integration of the pseudocode into the
ES6 draft. Wirfs-Brock found that the asynchronous nature of the module loader added significant
new complexity and potential nondeterminism to the ECMAScript specification. This was made
worse by the loader API which allowed user programs to inject arbitrary JavaScript code into the
module loading process. By the middle of 2014, the additional complexity of asynchronous module
loading and a stream of difficult-to-resolve design issues with the API appeared to put the 2015
target release of ES6 in jeopardy.

Early in the development of the simple module proposal, Allen Wirfs-Brock [2010] had observed
that the semantics of module scoping and linking could be separated from the loader pipeline.
Previous editions of ECMA-262 had defined the syntax and semantics of JavaScript source code but
did not address how it was accessed. That was left as a responsibility of the environments that hosted
a JavaScript engine. At the September 2014 TC39 meeting [TC39 2014b], Wirfs-Brock argued that a
similar approach could be used for modules. ECMA-262 did not need to include the specification of
a module loading pipeline. If ECMA-262 assumed that the source code for modules was already
available, it would be sufficient to specify the syntax and semantics of individual modules and
the semantics of linking imported bindings to exported bindings. A host environment, such as a
browser, could provide an asynchronous loading pipeline but its definition would be decoupled from
the language specification. Removing the loader pipeline also implied the removal of the loader
API. TC39 accepted this argument, and Wirfs-Brock was able to incorporate a nearly complete
language-level specification of modules into the October 2014 specification draft [Wirfs-Brock et al.
2014b]. The separation of module semantics from the loader pipeline enabled the WHATWG to
focus on specifying how ECMAScript modules would integrate with the Web platform [Denicola
2016].

21.3.5 Arrow Functions. ES2015 introduces a concise form of function definition expressions
commonly called “arrow functions.” An arrow function is written as a formal parameter list followed
by the token => followed by a function body, for example:

(a, b) => {return a+b}

If there is only a single parameter, the parentheses may be omitted and if the body is a single
return statement, the braces and the return keyword may be omitted, for example:

x => x /* an identity function */

Unlike other function definition forms, arrow functions do not rebind this and other implicit
function-scoped bindings. This makes arrow functions convenient in situations where an inner
function needs full access to the implicit bindings of its outer function.
The primary motivation for arrow functions was the frequent need to code verbose func-

tion expressions as call-back arguments to platform and library API functions. In JavaScript 1.8,
Mozilla [2008b] had implemented98 “expression closures” which retained use of the function
keyword and permitted only a brace-free single expression body. TC39 discussed similar shorter for-
mulations, which replaced function with symbols such as 𝜆, f, \, or # [Eich 2010b; TC39 Harmony
2010c], but could not reach consensus on any of them.
There was also interest within TC39 [Herman 2008] in providing “lambda functions” with

streamlined semantics such as support for proper tail callsg and Tennent’s [1981] correspondence
principle.99 The proponents argued that such functions would be useful for implementing both
language- and library-defined control abstractions. In an es-discuss post early in the Harmony

98Based upon an ES42 proposal [TC39 ES4 2006c]
99Within a function, wrapping a code sequence with another function that is immediately called should produce the same
effect as directly executing the original code sequence.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 123

process, Brendan Eich [2008a] floated a suggestion originally made by Allen Wirfs-Brock for a con-
cise lambda-function syntax inspired by Smalltalk block syntax. For example, {|a, b| a+b} would
be equivalent to Herman’s lambda(a,b){a + b}. Eich’s post initiated a massive but inconclusive
electronic discussion covering all aspects of a possible concise function feature. Some key takeaways
were that many of the syntax ideas presented parsing or usability issues and that JavaScript’s
nonlocal control transfer statements—return, break, and continue—significantly complicated
mechanisms for writing control abstractions. Most TC39 members and es-discuss subscribers
seemed interested primarily in concise function syntax rather than in Tennent’s correspondence.

No significant progress was made made for 30 months until Brendan Eich [2011f; 2011g] wrote
two alternative strawman proposals. One was for “arrow functions” modeled on a similar feature
in CoffeeScript. This proposal had both -> and => functions with various syntactic and semantics
differences and options. The other proposal was for “block lambdas” modeled on Smalltalk and Ruby
blocks and supported Tennent’s correspondence. Over the following nine months both proposals
and alternatives were extensively discussed on es-discuss and at TC39 meetings. There were
concerns about whether existing JavaScript implementations could be easily updated to parse arrow
functions. The problem was that the arrow symbol occurs in the middle of the construct and is
preceded by a parameter list that could be ambiguously parsed as a parenthesized expression. For
the Block Lambda proposal there were concerns [Wirfs-Brock 2012a] that it did not adequately
support creating user-defined control structures that fully integrated with the built-in syntactic
control structures. Brendan Eich generally preferred the Block Lambda proposal but as the March
2012 TC39 meeting approached, he concluded that arrow functions were more likely to be accepted
by the committee. At the meeting [TC39 2012a] he walked the committee through a set of consensus
decisions on the essential characteristics of the final arrow function design [Eich 2012b].

21.3.6 Other Features. In addition to those already discussed, significant new language features
include:
• object literal enhancements including computed property names and concise method syntax
• object and array destructuring in declarations initializers and assignment operators
• formal parameter enhancements including rest parameter, optional parameter default values,
and argument destructuring
• iterators and generators—inspired by Python but with significant differences
• for-of statement and pervasive use of iterator protocol in new and retrofitted contexts
• full Unicode supported in strings and regular expressions
• template literals supporting embedded domain specific languages
• Symbol values for use as property keys
• binary and octal numeric literals
• Proper Tail Calls100

Library enhancements include:
• new Array methods
• of and from constructor method conventions for creating Arrays and other collection objects.
• Typed array Classes including DataView and ArrayBuffer for manipulating binary data;
all based on a Khronos Group [2011] specification previously implemented as browser host
objects but with better integration with the rest of the language; Typed Arrays now support
most Array methods
• Map and Set keyed collections and WeakMap and WeakSet

100PTC has proven to be a contentious feature. It has been successfully implemented by at least one major browser engine
but others have refused to support it.

Authors’ Corrections: March 2021

124 Allen Wirfs-Brock and Brendan Eich

• additional Math and Number functions
• Object.assign function for copying object properties
• Promise class for deferred access to asynchronously computed values
• Reflect functions reifying the internal metaobject protocol

21.3.7 Deferred and Abandoned Features. Over the course of ES6 development, many strawman
feature proposals were considered by TC39 but ultimately were not included as a feature of ES2015.
Many of these were rejected soon after their initial presentation, but others were the subject of
significant development work, and some even advanced to the status of accepted Harmony proposal
before ultimately being cut from the release. Of the cut features, some were abandoned and others
were deferred for additional work and possible consideration for inclusion in future editions. Major
features and development efforts cut shortly before the completion of ES2015 include the following:

Comprehensions [Herman 2010a,d, 2014a; TC39 2014a] Based upon a similar features in
Python and JavaScript 1.7/1.8, comprehensions would have provided a more concise, declara-
tive way to create an initialized array or to define a generator function.

Module loader API [Herman 2013b] The module loader API would have enabled a JavaScript
programmer to dynamically intercede in the processing performed by the Module Loader.
A program might use the API to do things such as inserting a transpiler into the loading
process or support the dynamic definition of modules. This API was deferred along with the
Module Loader.

Realms API The Realm API [Herman 2014b] would have enabled JavaScript programmers to
create, populate, and execute code in new Realms. It was closely related to the Module loader
API and deferred for additional design work.

Pattern matching [Herman 2011e; Rossberg 2013] A generalization of destructuring that
would have included Haskell-inspired refutable matching.

Object.observe [Arvidsson 2015; Klein 2015; Weinstein 2012] A complex data binding mecha-
nism that could generate events when properties of monitored objects were modified.

Parallel JavaScript Also known as River Trail [Hudson 2012, 2014]. A joint project of Intel and
Mozilla intended to enable JavaScript programmers to explicitly exploit the SIMD capabilities
of processors.

Value Objects [Eich 2013] Generalized support, including operator overloading, for defin-
ing primitive data types similar to Number and String. Potentially could allow libraries to
implement decimal numbers, large integers, etc.

Guards [Miller 2010c] Type-like annotations on declarations that would be dynamically vali-
dated.

21.4 Harmony Transpilers
Transpilers played an important role in the development, testing, and community socialization
of Harmony features. They enabled production use of new features prior to completion of the
standard or its full support in browsers. Transpilers were essential to the rapid adoption of ES2015
by the JavaScript developer community. Important transpilers supporting Harmony included the
following:

Narcissus [Eich et al. 2012] is a JavaScript-hosted JavaScript engine that was used by Mozilla
Research for ES6 language experimentation.

Traceur [Hallam and Russell 2011; Traceur Project 2011a] is a transpiler developed by Google
and used for experimenting with early ES6 features. Traceur provided a high-fidelity im-
plementation of ES6 semantics, but the resulting runtime overhead made it unattractive for
production use.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 125

Allen Wirfs-Brock (Project Editor) Microsoft, Mozilla
Brendan Eich Mozilla, invited expert
Mark S. Miller Google
Waldemar Horwat Google
Dave Herman Northeastern Univ, Mozilla
Douglas Crockford Yahoo!, PayPal
Erik Arvidsson Google

Fig. 47. TC39 technical contributors who were active throughout the ES2015 development effort. Each person
attended at least 30 of the 41 TC39 meetings during that period. Arvidsson first attended in May 2009.
Crockford last attended in April 2014. The rest participated from the beginning to the end of the project.

Babel [2015] originally named 6to5, was developed by Sebastian McKenzie, then a 17-year-
old developer living in rural Australia: “On September 28th 2014 I pushed my first commit
to GitHub for a JavaScript library I was working on while studying for my high school
exams.” [McKenzie 2016] Babel minimized runtime overhead by sacrificing complete semantic
conformance to the draft specification. It offered early access to ES2015 features and other
experimental JavaScript features enabling most ES2015-level JavaScript code to run on older
browsers or platforms that support only ES5. However, some developers using Babel became
dependent on experimental features, incorrect semantics, or obsolete variants of what later
become standard ECMAScript features. This made the transition to native implementations
harder and in a few cases has created a legacy that limits TC39’s design flexibility.

TypeScript [Microsoft 2019] is a free Microsoft language product that originally targeted
ES5 with ES6+ features and later added ES2015 as a compilation target. TypeScript’s most
important feature is an optional statically analyzable type system and type annotations which
compile into idiomatic dynamically typed JavaScript code. In 2020, TypeScript is the de facto
standard for writing type-annotated JavaScript [Greif and Benitte 2019].

The production use of transpilers, especially Babel and Typescript, was part of a large cultural
transformation within many JavaScript development teams. In those teams, JavaScript is treated
similarly to a conventional, ahead-of-time compiled language with development and deployment
build toolchains rather than as a dynamic execution environment that loads and directly executes a
programmer’s original source code.

21.5 Finishing ECMAScript 2015
At its March 2015 meeting, TC39 [2015b] approved the then-current candidate specification [Wirfs-
Brock et al. 2015b,c] and referred it to the Ecma General Assembly for final approval. The Ecma GA
voted to accept it [Ecma International 2015a] at its June 2015 meeting and immediately published
ECMA-262, 6th Edition, titled ECMAScript 2015 Language Specification101 [Wirfs-Brock 2015a].
It took nearly seven years to develop and release ECMAScript 2015 and hundreds of people

contributed to its development. There were 41 TC39 meetings starting with the July 2008 meeting
(where the Harmony effort began) through the March 2015 meeting (where the candidate spec-
ification was approved). These meetings were attended in person or via teleconference by 145
people with varying levels of participation. ES2015 development overlapped with development
of ES5/ES5.1, ECMA-402 The ECMAScript Internationalization API, ECMA-404 JSON Interchange
Format, and the Test262 validation test suite. The primary interest of some attendees was one or

101TC39 added the year to the title because it planned to follow Edition 6 with incremental yearly updates. The hope was
that the JavaScript community would begin to refer to specification revisions by year rather than by edition number.

Authors’ Corrections: March 2021

126 Allen Wirfs-Brock and Brendan Eich

Sam Tobin-Hochstadt (24) Andreas Rossberg (13) Rafael Weinstein (10) Chris Pine (7)
Alex Russell (21) Oliver Hunt (12) Jeff Dyer (8) Mike Samuel (6)
Luke Hoban (20) Norbert Lindenberg (12) David Fugate (8) Ihab Awad (5)
Cormac Flanagan (18) Sam Ruby (12) Domenic Denicola (7) Reid Burke (5)
Yehuda Katz (17) Brian Terlson (12) Rick Hudson (7) Andreas Gal (5)
Rick Waldron (17) Sebastian Markbage (11) Jafar Husain (7) Peter Jensen (5)
Eric Ferraiuolo (15) Jeff Morrison (11) Dimitry Lomov (7) Pratap Lakshman(5)
Tom Van Cutsem (14) Rob Sayre (10) Ben Newman (7) Nicholas Malsakic (5)
Nebojsa Ćirić (13) Matt Sweeney (10) Caridy Patino (7)

Fig. 48. Technical contributors who frequently participated in TC39 meetings during the development of
ES2015. The numbers reflect how many meetings they attended.

more of those efforts. Of the 145 meeting attendees, 62 individuals attended only a single meeting,
typically as observers.
TC39 chair John Neumann and Ecma Secretary-General István Sebestyén provided adminis-

trative support and ensured that meetings ran smoothly. The project editor, Allen Wirfs-Brock,
released 38 drafts of the specification [TC39 Harmony 2015] over the course of the project. Seven
people (Figure 47) were technical contributors over essentially the entire project. An additional 35
participants (Figure 48) attended between 5 and 24 meetings with most making significant technical
contributions to the project. Over the course of ES2015 development hundreds of members of the
JavaScript developer community posted over 36,000 messages to the es-discuss mailing list [TC39
et al. 2006]. Over 4,000 tickets relating to the ES2015 specification drafts were opened in the TC39
bug tracking system [TC39 et al. 2016].
Interest and participation in TC39 grew dramatically during the development of ES6 and con-

tinued after its completion. TC39’s first Harmony meeting in July 2008 was attended by only 13
individuals representing 8 organizations. The July 2015 meeting, held a month after publication of
ES2015, had 34 individual participants (some remote) representing 15 organizations. The July 2019
TC39 meeting had 76 participants (46 local and 30 remote) representing 24 organizations.

21.5.1 Preparing for the Post-ES6 Future. In 2013 and 2014, as the conclusion of ES6 development
approached, TC39 started to consider how development of future editions should proceed. One
concern about the ES6 process was that the design of some features were completed several years
before they could appear in a published ECMAScript standard. This was in conflict with the concept
of “evergreen browsers” that was being adopted by most major browser developers. Evergreen
browsers are updated every few weeks, making bug fixes and new features available as soon as
possible. Most TC39 members felt that there was a need for a much faster update cycle for the
ECMAScript standards which would better match the rapid evolution of browsers.
A yearly publication cycle was proposed. This would allow individual new features to become

quickly available in a standard. Yearly releases would also allow specification bugs to be quickly
corrected and eliminate the need to maintain a long errata spanning many years. A yearly publica-
tion update cycle was extremely fast by the norms of standards organizations, but was a schedule
that Ecma agreed to accommodate.
Yearly updates would require TC39 to be more disciplined in how it developed new language

features. Some design efforts would still require multiple years to complete, so a process was
needed that could accommodate feature development projects that spanned multiple yearly release
cycles and could coordinate overlapping development cycles for different features. There were also
concerns that ES6 had depended too much on a single editor to do most of the specification writing.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 127

To succeed with yearly releases, champions would need to do most of the specification writing for
their features.

Rafael Weinstein and Dimitry Lomov presented a proposal [TC39 2013c; Weinstein and Lomov
2013] for a development process where new feature proposals progressed through five maturity
stages. Weinstein then worked with Allen Wirfs-Brock to further define and document the pro-
cess [Weinstein and Wirfs-Brock 2013]. Appendix P is the description of the new process and the
development stages. Starting in 2014, TC39 followed this process for all of its post-ES6 efforts. As
of the June 2020 publication of this paper, TC39 has successfully published an updated edition of
the ECMAScript specification each June.

22 CONCLUSION
JavaScript was a language created with low expectations. It was originally intended to be a sidekick
to Java within browsers, suitable for beginner Web page developers and part-time programmers. Yet,
in short order, it surpassed Java as the primary language for interactive Web pages. Even though
JavaScript’s first 20 years is littered with failed attempts to enhance, improve, redesign, or replace it,
by the end of that period JavaScript was the world’s most widely used programming language—and
not only for Web pages. In addition to server applications built using Node.js and other hosts,
JavaScript is being used to build desktop applications, mobile device applications, fitness trackers,
robots, and numerous embedded systems. It is even part of the James Webb Space Telescope which
uses Nombas’ ES1 level embedded JavaScript as part of its on-board control software [Dashevsky
and Balzano 2008].

Was the rise of JavaScript inevitable? The interoperability requirements of the Web and Browser
Game Theory may favor a single dominant Web page programming language, but there was no
singular reason that the language had to be JavaScript. Other languages could have filled that role.
Indeed, there are many places in the history of JavaScript where the outcome could have been
different:

What if Marc Andreessen had not championed development of a browser scripting language?
What if Sun’s Bill Joy had not supported the initial Mocha effort as complementary to Java?
What if the task of developing Mocha had be given to someone other than Brendan Eich?
What if Eich had been a more experienced language designer or implementor, and concluded

that the 10-day demo was an impossible task?
What if Eich had failed in creating the 10-day Mocha demo, either because he was a less

capable programmer or too ambitious in his language design?
What if JavaScript’s original design had not included first class functions?
What if Sun or Netscape had put effort into better integrating Java with HTML, instead of

hosting Java as an isolated environment?
What if Microsoft had not implemented JScript, but instead more strongly promoted its Visual

Basic alternative?
What if Microsoft had continued investing in browser language technologies after achieving

over 90% browser market share?
What if Macromedia/Adobe had pushed to make ActionScript 2 or 3 an official browser stan-

dard, rather than participating in the ES42 redesign?
What if opposition to ES42 had not emerged within TC39?

What if, what if, what if. . . but none of these things actually happened. Instead, sometimes facing stiff
criticism and even ridicule, a generation of browser implementors, engine developers, framework
designers, standards contributors, tool builders, andWeb application programmers found pragmatic
ways to use and enhance JavaScript, usually without breaking the Web.

Authors’ Corrections: March 2021

128 Allen Wirfs-Brock and Brendan Eich

Brendan Eich characterized JavaScript in a 2011 conference talk titled “JSLOL” [Eich 2011e]:
• First they said JS couldn’t be useful for building “rich Internet applications”
• Then they said it couldn’t be fast
• Then they said it couldn’t be fixed
• Then they said it couldn’t do multicore/GPU
• Wrong every time!
My advice: Always bet on JS

ACKNOWLEDGMENTS
Members of the HOPL-IV program committee assisted the authors (Figure 49) with shepherding,
LATEX hacking, detailed reviews, and valuable feedback on drafts of this paper.
The following colleagues, who participated in the development of JavaScript and ECMAScript,

provided information on events and technologies discussed in this paper: Douglas Crockford, Jeff
Dyer, Richard Gabriel, Bill Gibbons, Gary Grossman, Lars T. Hansen, Dave Herman, Graydon Hoare,
Yehuda Katz, Shon Katzenberger, Peter Kukol, Pratap Lakshman, Mark S. Miller, István Sebestyén,
Mike Shaver, Brian Terlson, Tom Van Cutsem, Herman Venter, Rick Waldron, and Robert Welland.

Beta readers who provided editorial feedback on some or all of the manuscript at various stages
of its development are: Jory Burson, Douglas Crockford, Jeff Dyer, Richard Gabriel, Lars T. Hansen,
Dave Herman, Pratap Lakshman, Mathias Bynens, Axel Rauschmayer, Jonathan Sampson, Jon
Steinhart, Tom Van Cutsem, Herman Venter, Rick Waldron, Rebecca Wirfs-Brock, and Joseph Yoder.

Richard Gabriel, Rebecca Wirfs-Brock, and Joseph Yoder all participated in exhausting multi-day
workshopping sessions where we used comprehensive read-throughs to fine tune the structure and
language of the paper.

Memories are fallible, so an accurate history depends on access to primary source documents. The
Internet Archive and the Ecma Internationals internal archives provided essential source material
for this paper. In particular, this paper could not have been done without the enthusiastic support
of Ecma’s now-former Secretary General István Sebestyén. Dr. Sebestyén not only ensured that we
had access to the private Ecma archives but agreed with us that most of Ecma’s document archives
relating to TC39 and ECMAScript needed be made publicly accessible via the Web. Ecma’s Patrick
Charollais assisted in the creation of the https://www.ecma-international.org/archive/ecmascript
Web pages.

Finally, Allen Wirfs-Brock wishes to thank Pratap Lakshman for writing that email in January
2007. It was the beginning of the path that led to this paper.

Fig. 49. Brendan Eich and Allen Wirfs-Brock, 2011. Photo Art courtesy Richard P. Gabriel.

Authors’ Corrections: March 2021

https://www.ecma-international.org/archive/ecmascript

JavaScript: The First 20 Years 129

A DRAMATIS PERSONÆ

Name Affiliation Role / Contribution
Marc Andreessen NCSA Developer of Mosaic Web browser

Netscape Cofounder of Netscape; championed Mocha
Jeremy Ashkenas Created CoffeeScript programming language
Ihab Awad Google Contributed to CommonJS module system design
Jan van den Beld Ecma Secretary-General 1992–2007
Tim Berners-Lee CERN, W3G Inventor of World Wide Web
Eric Bina NCSA Developer of Mosaic Web browser

Netscape Cofounder of Netscape
Leo Balter Bocoup Led Test262 development after ES6 completion
Norris Boyd Netscape Early SpiderMonkey developer
Robert Cailliau CERN HTML scripting advocate; JavaScript critic
Carl Cargill Netscape Standardista; TC39 Vice-Chair 1997
Jim Clark Netscape Founder of Silicon Graphics and Netscape
Andrew Clinick Microsoft TC39Vice-Chair 1998–1999; proposed conditional compilation
Donna Converse Netscape Contributed to the first draft ES1 specification
Mike Cowlishaw IBM Project Editor ES2&ES3; decimal arithmetic proponent
Douglas Crockford Yahoo!, PayPal JavaScript evangelist, ES42 resister; “discovered” JSON
Kevin Dangoor Khan Academy Started the ServerJS/CommonJS project
Ryan Dahl Joyent Original developer of Node.js
Chris Dollin HP Spice language designer
Patrick Dussud Microsoft Digital sanitation engineer; JScript garbage collector
Jeff Dyer Nombas/self ES4 proponent; ES3&ES41 constributor

Macromedia/Adobe Developed ActionScript 3 compiler; initial ES42 Editor
Brendan Eich Netscape Designer and implementer of original JavaScript

Mozilla Mozilla CTO; restarted ES4 effort; Harmony contributor
Cormac Flanagan Univ Cal Santa Cruz Hybrid type systems expert; ES42 design team
David Fugate Microsoft Led the initial ES5 phase of Test262 development
Richard P. Gabriel Sun Lisper, poet; wrote ECMA-262 Language Overview section
Andreas Gal Mozilla Added TraceMonkey optimizer to SpiderMonkey
Michael Gardner Borland Co-Editor for first ES1 working draft
Jonathan Gay Macromedia Created Flash
Bill Gibbons Netscape ES3 working drafts editor
Richard Gillam IBM I18N Working Group chair (1998–2000)
Gary Grossman Macromedia/Adobe ActionScript designer
Peter Hallam Google Traceur transpiler developer
Lars Thomas Hansen Opera, Adobe ES42 editor
Dave Herman Northeastern Univ PhD candidate, PL semanticist; ES42 design team

Mozilla Champion of many ES6 proposals including modules
Graydon Hoare Mozilla ES42 design team
Luke Hoban Microsoft Led Microsoft TC39 delegation starting in 2011
Waldemar Horwat Netscape JS2/ES41 designer and editor

Google Contributor to ES5&ES6
Chris Houck Netscape Second member JavaScript team; named SpiderMonkey
Mr. Huffadone Callscan Excused from attending the first TC39 meeting
Oliver Hunt Apple ES5&ES6 contributor
Scott Isaacs Microsoft DHTML developer, MS Live framework architect
Bill Joy Sun Hacker, cofounder of Sun; executive sponsor of JavaScript

work with Netscape
Yahuda Katz jQuery Fdn/Tilde Became a module champion; influenced ES6 classes design

Authors’ Corrections: March 2021

130 Allen Wirfs-Brock and Brendan Eich

Name Affiliation Role / Contribution
Shon Katzenberger Microsoft Developed many pseudocode algorithms for ES1
Kris Kowal CommonJS Module system designer
Peter Kukol Microsoft Wrote JScript parser
Pratap Lakshman Microsoft ES42 resister; ES5 Editor; originated ES5conform test suite
Russell Leggett <es-discuss> Suggested a “safety syntax” for classes
Norbert Lindenberg Mozilla Editor of ECMA-402 1st edition
Julia Liuson Microsoft Visual Basic GM; Wirfs-Brock’s boss
Steve Leach HP Spice language designer
Clayton Lewis Netscape First manager of Netscape JavaScript team
David McAllister Adobe Standardista; Ecma CC member 2008–2011
Tom McFarland HP Internationalization expert
Sam McKelvie Microsoft Early JScript interpreter developer
Sebastian McKenzie Emmerich Manual HS High school student; developed Babel transpiler
C. Rand McKinny Netscape Technical writer assigned to 1st JavaScript specification
Mark S. Miller Google OCAP expert; ES5&ES6 contributor; Proxy co-champion
Neil Mix <es-discuss> Suggested new ES5 property attribute names
Anup Murarka Spyglass Tentatively appointed Assistant Editor at 1st TC39 meeting
John Neumann Ecma Standardista; TC39 Chair 2008–2015
Anh Nguyen Netscape Represented Netscape at 1st TC39 meeting
Brent Noorda Nombas Developed an embedded systems ECMAScript dialect
Bob Nystrom Google Traceur transpiler developer
Jason Orendorff Mozilla Prototyped module loader for ES6
Adam Peller IBM ES5 contributor
Dave Raggett HP/W3C Spice originator
Thomas Reardon Microsoft Leader of Internet Explorer development
Sam Ruby IBM ES5&ES6 contributor; prototyped decimal arithmetic
Alex Russell Dojo Foundation ES5 contributor

Google Google Chrome Web standards lead; ES6 contributor
William Schulze Macromedia TC39-TG1 Convener 2004–2005
István Sebestyén Ecma Secretary-General 2007–2019
Dan Smith Macromedia/Adobe Director of Engineering Flash Runtime
Edwin Smith Macromedia/Adobe Developed AVM2 virtual machine for ActionScript 2&3
Walter Smith Microsoft Apple NewtonScript veteran; JScript spec all-nighter
Randy Solton Borland Co-editor for 1st ES1 working draft
Maciej Stachkowiak Apple Safari/WebKit developer
Guy L. Steele Jr. Sun The original Schemer; ES1 Project Editor
David Stryker Netscape VP of Core Technologies
Brian Terlson Microsoft Led Test262 development for ES6;

ECMA-262 editor starting July 2015
Lee Thornason Macromedia Developed JVM-hosted Flash prototype
Sam Tobin-Hochstadt Northeastern Univ ES6 modules co-champion
Jim Tressa Oracle Introduced TC39 to component models
Isabelle Valet-Harper Microsoft Standardista; Ecma Co-Ordinating committee member
Tom Van Cutsen Vrije Universiteit ES6 contributor; Proxy co-champion
Herman Venter Microsoft ES3&ES41 contributor; JScript.NET developer
Richard Wagner NetObjects Started JavaScript Components project within TC39
Rafael Weinstein Google Proposed four-stage TC39 development process
Rick Waldron jQuery Fdn/Bocoup Systematized TC39 note taking; Editor ECMA-402, 2nd edition
Robert Welland Microsoft First JScript developer; JScript spec all-nighter
Chris Wilson Microsoft IE Platform Architect

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 131

Name Affiliation Role / Contribution
Scott Wiltamuth Microsoft TC39 Vice-Chair; ES1 Technical WG rapporteur
Allen Wirfs-Brock Microsoft ES42 resister; ES5/5.1 Editor

Mozilla ES6 Editor
Rok Yu Microsoft JScript program manager, TC39-TG1 Convener 2004
Alon Zakai Mozilla Developed Emscripten
Boris Zbarsky Mozilla Engineer for DOM bindings and browser standards
Kris Zyp Dojo Foundation ES5 contributor

B DRAMATIS CORPORATIONES

Name Role
Adobe Graphic tools software company. Acquired Macromedia in 2005.
America Online (AOL) Acquired Netscape Communications Corp in 1998.
Apple Computer and mobile device manufacturer. Developed Safari browser.
Borland International A leading developer of software development tools and compilers.
CERN Physics reseaerch center where World Wide Web was initially created.
Dojo Foundation A non-profit that promoted the open source Dojo Toolkit.
Ecma International Swiss-based computing-related standards organization.
General Magic Developer of an innovative but commercially unsuccessful software

platform for mobile devices.
Google Internet search and advertising behemoth. Developed Chrome browser.
Hewlett-Packard (HP) Very large manufacturer of PCs, workstations, servers, and printers.
IEFT Internet Engineering Task Force, creates Internet standards.
IBM Very large software services and legacy mainframe computers company.
ISO/IEC International Standards Organization.
Joyent Initial corporate host for Node.js development.
Macromedia Developer of Flash. Acquired by Adobe 2006.
Microsoft Corporation The dominant personal computer systems and applications software

company.
MicroUnity In early 1990s, a well-funded startup developing video media processors.
Mozilla Foundation Open-source developer of Firefox browser. Spin-off from Netscape.
NCSA National Center for Supercomputing Applications at UIUC.
Nombas Developed scripting languages. Supported embedded JavaScript.
Netscape Communications Corp Developer of the Netscape Browser, acquired by AOL in 1998.
Object Management Group(OMG) Consortium founded to develop standards for distributed object systems.
Opera Software Developer of the Opera familiy of Web browsers.
PayPal Developed an electronic payment system. eBay subsidiary 2002–2014.
Silicon Graphics Inc. (SGI) High-performance graphic workstation manufacturer.
Spyglass Illinois software company licensed by NCSA to commercialize Mosaic.
Sun Microsystems Inc. Computer manufacturer. Developer of Java. Acquired by Oracle in 2009.
SunSoft A division of Sun Microsystems.
TC39 The Ecma International technical committee responsible for JavaScript

standardization.
UIUC University of Illinois at Urbana-Champaign.
Yahoo! Developer of an early widely used Web portal and search engine.
WHATWG Web Hypertext Application Technology Working Group, an ad hoc

group developing HTML-related standards.
W3C World Wide Web Consortium, Tim Berners-Lee led organization that

creates WWW standards.

Authors’ Corrections: March 2021

132 Allen Wirfs-Brock and Brendan Eich

C GLOSSARY

ActionScript n. the ECMAScript dialect that is the programming language of Adobe Flash.
attribute n. 1. in the ECMAScript specification, a configurable characteristic of a property.

2. in HTML, a behavioral modifier within an opening tag.
AWK n. a domain-specific text processing language [Aho et al. 1988] originally for Unix.
binding n. an association mapping a name to a variable or to a constant value.
breaking-change n. a change to a programming language or platform that causes existing programs to

be rejected or to malfunction.
browser wars n. periods of intense competition among browser vendors for market dominance.
Chrome n. a Web browser developed and distributed by Google.
Chromium n. the open-source core of the Chrome browser.
class n. a programming language concept corresponding to a mechanism for defining the common

interface and implementation shared by a group of objects.
classical inheritance n. an inheritance mechanism whereby objects acquire their state and behavior

from chains of class definitions.
CoffeeScript n. a programming language created by Jeremy Ashkenas that compiles to JavaScript.
CommonJS n. a project started by Kevin Dangoor to develop JavaScript technologies for non-browser

environments.
compiler n. an engine that translates a program into (typically) machine language for direct execution

by a processor.
constructor n. cf constructor function.
constructor function n. a JavaScript function that allocates and initializes an object and which may be

invoked using the new operator.
cyclic garbage collection v. a memory management process that is able to reclaim the space allocated

to isolated circular structures.
Dart n. a class-based object-oriented programming language developed by Google with the original intent

of supplanting JavaScript in Web browsers.
declarative adj. a computational approach based on describing the characteristics of a desired result.
delegation n. a mechanism whereby an object may acquire some or all of its state and behavior from

other objects rather than from class definitions.
discriminated union n. a data record with multiple alternative internal structures wherein the actual

structure is indicated via an explicit tag value.
destructuring n. referring to the properties of an array or object using syntax similar to array or object

literals.
desugar v. to decompose a programming language statement or operation into more fundamental state-

ments and operations.
DevDiv n. Microsoft’s Developer Tools Division.
dynamic language n. a programming language that requires little or no analysis of programs prior to

execution; most language-mandated error-checking occurs during execution, and typically programs
may be constructed or modified as they execute; cf. static language.

dynamically typed adj. a programming language where enforcement of data-type–safety constraints is
primarily performed during program execution.

es-discuss n. public email forum for discussing ECMAScript evolution.
ECMA-262 n. the ECMAScript Language Specification.
ECMA-402 n. the ECMAScript Initialization API Specification.
engine n. a mechanism for executing a program.
es4-discuss n. original name of es-discuss email forum.
ES.next n. sometimes used within TC39 to refer to the next version of ECMA-262.
exotic object n. a JavaScript object lacking the default behavior for one or more of the essential internal

methods that must be supported by all objects; cf. ordinary object.
expando property n. a property that is dynamically added to an object after its creation.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 133

factory function n. a function that returns a new object.
Firefox n. a Web browser developed and distributed by Mozilla.
first-class adj. a programming language runtime entity that can be used as a data value; for example,

assigned to variables, used as function arguments, returned from functions, or stored in data structures.
Flash n. Adobe’s multimedia software platform supporting Rich Internet Applications and other uses.
free variable n. a binding that is referenced but not defined in the local scope.
function n. a subroutine; a parameterized subpart of a program.
hackathon n. an event where programmers gather for a few days to collaborate on a project.
Harmony n. TC39’s code name for ongoing ECMA-262 development after abandoning ES42.
host object n. an object or Class of objects, provided by a JavaScript engine, which provide access to

facilities of a host application or platform .
imperative adj. a computational approach based on describing a sequence of steps to be performed to

achieve a desired result.
inherit v. in an object-oriented language, to indirectly acquire characteristics.
inheritance n. in object-oriented languages, a mechanism whereby an object inherits some or all of its

data and behavior.
inherited property n. a property of a JavaScript object that is inherited from a prototype.
internal method n. a mechanism not part of the language that defines part of the semantics of an object.
internal property n. an aspect of an object that internal methods use to store state needed to define part

of the semantics of the object.
interpreter n. an engine that executes a program by traversing a representation of the program and

performing each operation as it is encountered.
internationalization n. the process of enabling a program to process multiple human languages, scripts,

and writing conventions.
Internet Explorer n. a Web browser developed and distributed by Microsoft.
Java n. a class-based object-oriented programming language developed by Sun Microsystems.
JavaScript engine n. an implementation of the JavaScript language.
JScript n. a dialect of JavaScript implemented by Microsoft.
lambda expression n. a defined function not bound to an identifier, especially the expression that defines

expected arguments and steps of execution or evaluation; from the lambda calculus and Lisp.
leaky abstraction n. an abstraction that unintentionally reveals details about the abstraction that should

be hidden or private.
mashup n. a Web page that dynamically combines JavaScript code and content from independently

managed servers.
membrane n. a mechanism used in object-capability systems for tamper-proof sharing of objects between

security contexts.
metaobject protocol n. in an object-oriented language, a well-specified interface for defining and ac-

cessing the fundamental language-level behaviors of an object.
method n. a function that is a component part of an object.
Netscape Navigator n. a Web browser developed and distributed by Netscape Communications.
Mocha n. the code name of the language that became JavaScript; also, the name of Netscape’s original

JavaScript engine.
Mosaic n. a Web browser developed at NCSA by Marc Andreessen and Eric Bina.
Node.js n. a JavaScript-based server platform initially developed by Ryan Dahl in 2009.
nominal type system n. a type system where each type definition introduces a unique data type; in

some object-oriented languages a class definition is treated as a nominal type definition.
non-normative adj. a portion of a standards document that does not define any requirements.
no-op n. an operation that does nothing.
normative adj. a portions of a standards document that defines requirements.
object n. a computational device that groups data and behavior into a first-class composite entity; the

mechanics of defining and manipulating objects varies among programming languages.
Opera n. a Web browser developed and distributed by Opera Software.

Authors’ Corrections: March 2021

134 Allen Wirfs-Brock and Brendan Eich

own property n. a property of a JavaScript object that is an integral part of the object rather than
inherited.

ordinary object n. a JavaScript object having the default behavior for the essential internal methods that
must be supported by all objects; cf. exotic object.

profile n. a set of capabilities tailored to the requirements of specific devices, platforms, or applications.
polyfill n. a library that provides APIs that should be provided by a browser but which are missing.
proper tail call n. a tail call that never returns control to the calling function.
property n. a component part of a JavaScript object.
property key n. a string or symbol used to identify a specific property of an object.
prototype n. an object that provides inherited state and behavior to other objects.
prototypal inheritance n. an inheritance mechanism whereby an object acquires some or all of its state

and behavior from chains of prototypes.
Safari n. a Web Browser developed by Apple.
sandbox n. a mechanism for isolating a program or a portion of a program so that it can not directly

access data from or interfere with the host environment and other programs.
Secure ECMAScript n. an ECMAScript dialect that removes features that could be used by security

exploits.
self-hosting n. implementing portions of a programming language engine using code written in that

same language.
shadow v. to override but not redefine an inherited characteristic.
Silverlight n. a Microsoft platform for Rich Internet Applications.
scope n. the region of a program in which a variable (or any declared binding) may be referenced.
scope contour n. the representation of a single scope within a group of nested scopes.
scripting language n. a typically simple programming language for orchestrating the operations of a

computing system, applications, or the computational abstractions defined using other languages.
SpiderMonkey n. the JavaScript engine used by all Netscape and Mozilla browsers developed after 1996.
static language n. a programming language that requires some or substantial analysis of programs prior

to execution; most language-mandated error-checking occurs prior to execution, and typically programs
may not be modified as they execute; cf. dynamic language.

statically typed adj. a programming language where enforcement of data-type–safety constraints is
primarily performed prior to program execution.

tail call n. in a method, a method or function invocation that is the final action of the method; the
implementation of such calls may, but need not, return of control to the calling method; cf. proper tail
call.

transpiler n. a language processor that compiles a program in one language into a program in another
language.

type n. a category of values whose elements share common characteristics such as representation and
available operations.

type annotation n. a syntactic form used to associate a type with a variable or other binding.
URL n. the address of a World Wide Web page (Uniform Resource Locator).
value n. a unit of information manipulated by programs; in a typed programming language values are

categorized into various types.
V8 n. the JavaScript engine used by the Chrome browser.
WebKit n. the open-source browser core used by Apple Safari and some other browsers.
Web 2.0 n. a Web application style that focuses on user-generated content; often highly interactive and

built using AJAX techniques.
Web Reality n. the technical aspects and characteristics of the World Wide Web as it exists and is used

by existing Web pages and applications; extensions to Web infrastructure typically must allow those
existing aspects and characteristics to remain as they are.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 135

D ABBREVIATIONS AND ACRONYMS

AJAX Asynchronous JavaScript and XML
API Application Program Interface
CC Co-Ordinating Committee—Ecma International’s management committee
CLR Common Language Runtime component of Microsoft .NET
CSP Content Security Policy
CSS Cascading Style Sheets
DHTML Dynamic HTML
DOM Document Object Model
GA General Assembly—Semi-annual meeting of all Ecma members
GCC GNU C Compiler
GWT Google Web Toolkit
HTML Hypertext Markup Language
IE Microsoft’s Internet Explorer browser
IIFE Immediately Invoked Function Expression
I18N Internationalization (18 letters between “I” and “n”)
JIT Just In Time compiler
JVM Java Virtual Machine
MOP Metaobject Protocol
NCSA National Center for Supercomputing Applications
OCAP Object Capability
OMG Object Management Group
POSIX Portable Operating System Interface modeled on UNIX
RFP Request For Proposal
SES Secure ECMAScript
TC A Technical Committee of Ecma International
TDZ Temporal Dead Zone
TG A Task Group within an Ecma International TC
VM Virtual Machine
WG A Working Group—an ad hoc group within an Ecma TC or TG

Authors’ Corrections: March 2021

136 Allen Wirfs-Brock and Brendan Eich

E TIMELINES
E.1 Timeline for Part 1: The Origins of JavaScript

1989 At CERN, Tim Berners-Lee begins working on a hypertext project
1990 December 25 Tim Berners-Lee’s first Web browser is completed
1991 August 6 Tim Berners-Lee’s public announcement of the “WorldWideWeb”
1992 Brendan Eich leaves Silicon Graphics, joins MicroUnity

December Marc Andreessen and Eric Bina start development of NCSA Mosaic browser
1993 June Alpha release of Mosaic for Unix

November 11 Mosaic released for Microsoft Windows
1994 April Jim Clark and Marc Andreessen found company eventually named Netscape

Communications Corporation
September First public beta of Netscape’s browser
December Production release of Netscape’s browser (Navigator 1.0)

1995 Q1 Brendan Eich recruited by Netscape to “do Scheme in the browser”
April Alpha release of Java 1.0 by Sun
April 3 Brendan Eich starts work at Netscape, assigned to server team
April–May Strategizing and debate within Netscape about a browser scripting language
May 6–15(?) Brendan Eich’s 10-day sprint to implement “Mocha”
May 16(?) Demo of Mocha to Netscape engineering staff
May 16–31(?) Decision made to include Mocha in Netscape 2.0
May 23 Sun announces Java, and Netscape announces licensing of Java for inclusion in

its browser
May 26 Bill Gates distributes his “Internet Tidal Wave” memo
Summer Eich works on Mocha/browser integration, JavaScript features, and bugs
August 9 Netscape IPO
August 16 Microsoft Internet Explorer 1.0 released

Netscape 2.0 feature freeze
September 18 Netscape 2.0 beta 1 released, includes both LiveScript and Java 1.0
October Robert Welland joins Microsoft “to put scripting into Internet Explorer”
Q4 AtMicrosoft, RobertWelland, SamMcKelvie, Peer Kukol are reverse engineering

beta LiveScript and incubating an interpreter to run it
November 22 Microsoft Internet Explorer 2.0 released for Windows 95 and NT
December 4 Netscape/Sun press release announcing JavaScript
December 5 Microsoft says it intends for Visual Basic to be a standard for Web applications

1996 Q1 Shon Katzenberger takes over JScript interpreter and adds VBScript support
1996 March 18 Netscape 2.0 with JavaScript 1.0 ships

Netscape LiveWire Server with JavaScript 1.0 ships
May 29 Internet Explorer 3.0 beta 1 released with JScript and VBScript
August 13 Internet Explorer 3.0 with JScript 1.0 ships
August 19 Netscape 3.0 with JavaScript 1.1 ships
Q3 Brendan Eich builds SpiderMonkey engine to replace Mocha, starts designing

JavaScript 1.2
Clayton Lewis becomes manager of Netscape JavaScript and grows team

November 21–22 Ecma TC39 startup meeting
December Netscape 4 beta 1 ships with SpiderMonkey and initial JavaScript 1.2 features

Microsoft ships Active Server Pages (ASP 1.0) with JScript and VBScript
1997 January JScript 2.0 update for Internet Explorer 3 ships

April Netscape 4 beta 3 ships, adds regular expression support to JavaScript 1.2
June Netscape 4.0 ships with JavaScript 1.2
September First edition of the ECMAScript standard is completed and released
October Internet Explorer 4.0 ships with JScript 3.0

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 137

E.2 Timeline for Part 2: Creating a Standard

1995 December 4 Netscape and Sun announce intent to propose JavaScript to the W3C and IETF
as an open standard

1996 March Netscape 2.0 with JavaScript 1.0 ships
Q1–Q2 Informal contacts between Netscape and Ecma Secretary-General
August Netscape 3.0 with JavaScript 1.1 ships

Internet Explorer 3.0 with JScript 1.0 ships
Q3 Brendan Eich starts implementing JavaScript 1.2
September Ecma Co-Ordinating Committee approves JavaScript standard startup meeting
October 10 Netscape applies for Ecma Associate Membership
October 30 Ecma issues open invitation to a “start-up meeting on a project on Java Script”
November 21–23 Ecma TC39 startup meeting, “ECMAScript” is placeholder name

Netscape and Microsoft contribute preliminary JavaScript specifications
Michael Gardner of Borland appointed interim TC39 editor

December Netscape 4 beta 1 ships with SpiderMonkey and initial JavaScript 1.2 features
Gardner works with Eich, Katzenberger, et al on common 1st-draft specification

December 18 Microsoft applies for Ecma Ordinary Membership
December 19–20 Ecma GA creates TC39 as the Web Languages Technical Committee and ap-

proves a program of work
1997 January JScript 2.0 (JavaScript 1.1 features) update for Internet Explorer 3 ships

January 10 First draft of JavaScript specification distributed to TC39 members
January 14–15 2nd TC39 meeting, Scott Wiltamuth’s list of possible language names

Technical Working Group (WG) formed with weekly meetings/teleconferences
January 15 First Technical WG meeting

Agreed that standard will exclude post JavaScript 1.1 features and host APIs
January 15–22(?) Borland will not join Ecma so Gardner withdraws as editor
January 31 Guy Steele becomes TC39 editor
Q1 Weekly Technical WG meetings
March 12 12th draft of specification distributed
March 18–19 3rd TC39 meeting, Technical WG authorized to complete specification and

submit it for GA approval
Still searching for a name, Netscape teases LiveScript availability

May 5 18th draft specification submitted to Ecma Secretariat for GA review
June Netscape 4.0 ships with JavaScript 1.2
June 26–27 Ecma General Assembly approves JavaScript standard as ECMA-262

Defers publication until editorial corrections and resolution of naming issue
July 15–16 4th TC39 meeting. Naming: cannot use LiveScript, name still unresolved

Preliminary discussions of “Version 2” goals, process, and features
September 16–17 TC39 agrees on ECMAScript name and releases ECMA-262 for publication

Agreement that “V2” would be backward compatible with 1st edition
September 23–24 Ecma submits ECMA-262 into the ISO/IEC fast-track process
October Internet Explorer 4.0 ships with JScript 3.0—claims ECMA-262 compliance

Guy Steele resigns as TC39 editor, replaced by Mike Cowlishaw
Technical WG starts meeting monthly

October 9 6 month ISO/IEC ballot period begins
October 10 Technical WG drafts first feature list for “Version 2”

1998 Q1 Nearly complete turnover of TC39 technical contributors
Brendan Eich joins project to open source Netscape browser code

February 18 TC39 meeting sets June 1999 as “V2” publication target

Authors’ Corrections: March 2021

138 Allen Wirfs-Brock and Brendan Eich

1998 February 19 Technical WG meeting
Brendan Eich, last recorded attendance; first attendance:
Waldemar Horwat (Mozilla), Herman Venter (Microsoft), Rok Yu (Microsoft)
Exception handling proposals from Netscape and Microsoft

March 31 Netscape open sources browser source code at mozilla.org
April 9 ISO/IEC ballot ends, 27 pages of comments submitted
April 22 First draft “V2” specification, based on ES1 specification
May Bill Gibbons becomes “V2” working draft editor

Technical WG starts using “Status Document” to track progress
HP submits comments about I18N support requirements

May 18 US Department of Justice files browser related antitrust suit against Microsoft
June 15 ISO Disposition of Comments meeting resolves all ballot issues
July Updated specification submitted to ISO for publication as ISO/IEC 16262:1998
August Ecma publishes ECMA-262 2nd Edition

Netscape 4.06 ships with JavaScript 1.3—claims ECMA-262 compliance
September ES2 changes merged into “V2” working draft
September 16 I18N WG established
November 18 I18N meeting: Richard Gillam of IBM to chair I18N WG

Only minimal localization hooks planned for next ECMA-262 specification
Majority of I18N functionality should be in separate library/specification

November 19 Technical WG meeting
IBM proposes including decimal arithmetic
“Futures List” reviewed and updated, many items deferred until post “V2”
Global binding for undefined added
Concern that browsers may ship different exception hierarchies before “V2”

November 28 AOL announces agreement to acquire Netscape Communications Corp
1999 Q1 Much work on nested functions and closures

Scoping differences between Netscape and Microsoft implementations
Regular Expressions: should they include Perl 5 features?
TC39 shifts to referring to next release as “E3” instead of “V2”

February 19 Waldemar Horwat reveals JavaScript 2.0 design
March 17 AOL completes acquisition of Netscape
March 29 TC39 meeting: slips schedule by 6 months. New target December 1999
March 30 Technical WG does another triage of “E3” features list
Q2 Intensive work to resolve issues and finish specification
July 12–13 Technical WG detailed section-by-section review of working draft
August 8 E3 Status document shows “content agreed” or unchanged for all clauses
August 20 Bill Gibbons completes “Edition 3 Final Draft Candidate”
September 23–24 Final Technical WG “E3” meeting, Bill Gibbons has left for new job

Herman Venter and Waldemar Horwat will complete specification
“Joined functions” added to specification
Final agreement on exception classes
Agreement on scoping of the identifier in a named FunctionExpression

September 24 TC39 votes to refer ECMA-262, 3rd Edition to Ecma GA
October 13 Final Draft sent to Ecma Secretariat
November 15–16 Minor corrections applied to Final Draft

Microsoft discovered that String.replace, as specified, breaks websites; final
draft changed to match Microsoft’s previous behavior

December 16–17 Ecma General Assembly approves ECMA-262, 3rd Edition
2000 March 25 Waldemar Horwat creates a public ES3 Errata Web page

July Microsoft ships IE 5.5 with ES3 compliant JScript 5.5
November Netscape ships Netscape 6 with ES3 compliant JavaScript 1.5

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 139

E.3 Timeline for Part 3: Failed Reformations

1997 July Oracle presentation on ECMAScript as a component scripting language
1998 Q1 Waldemar Horwat and Herman Venter start participating on TC39

February Dave Raggett’s Spice proposal submitted to TC39
May 4–5 Dave Raggett cochairs W3C Shaping the Future of HTML Workshop

W3C decides to freeze HTML and “make a fresh start with the next generation
of HTML based upon a suite of XML tag-sets”

May 15 Jeff Dyer’s first TC39 meeting attendance
June NetObjects 1st draft of ECMAScript Components specification
November Dave Raggett presents revised Spice proposal to TC39

TC39 interested in classes, numeric units, tuples, and modules
TC39 Spice Working Group established

December Spice WG teleconference followed by new Raggett proposal
1999 Q1 Spice WG discussions, disagreements about static versus dynamic approaches

February 19 Waldemar Horwat reveals Netscape JavaScript 2.0 specification
March Spice WG becomes Modularity Subgroup
March 30 TC39 creates a “Futures List” for Edition 4 and beyond
May Macromedia Flash ships with simple JavaScript-like scripting language
June ECMA-290 ECMAScript Components Specification approved by Ecma GA
Q4 TC39’s attention turns to ES41
October 14 Modularity Subgroup meeting at HP Labs, Bristol England
November TC39 drafts ES41 provisional features list
December 16–17 Ecma General Assembly approves ECMA-262, 3rd Edition

2000 January Microsoft wants “Edition 4” finished by December, wants to cut features
Microsoft circulates proposed ES3 specification changes for type annotations

June 22 Microsoft announces the .NET framework
July 11 Microsoft distributes .NET preview including early version of JScript.NET
July 13 Herman Venter discusses JScript.NET design at TC39 meeting
August Macromedia Flash 5 ships with ActionScript—an ECMAScript dialect
August 17 ES41 Netscape proposal split from JavaScript 2.0 proposal
August 22 Herman Venter and Waldemar Horwat meet and try to align JavaScript 2 and

JScript.NET; discuss 43 points of disagreement
2001 Douglas Crockford starts evangelizing JavaScript

January Scope of TC39 expanded to include .NET; ECMAScript workmoves to TC39-TG1
June ECMA-327 ECMAScript 3rd Edition Compact Profile Approved by Ecma GA
August 27 Internet Explorer 6 released
November 17 Waldemar Horwat JS2.0 paper at MIT Lightweight Languages Workshop

2002 March Target date for ES41 completion moved to December 2003
June BEA proposes project to add XML extensions to ECMAScript (E4X)

Herman Venter attends his last TC39-TG1 meeting
August Work starts on E4X specification
September 22 Phoenix 0.1 (proto-Firefox) browser released
December Douglas Crockford introduces the world to JSON, sets up json.org website

2003 January Apple announces WebKit and Safari Browser
March TG1 discusses postponing ES41 to focus on E4X, but doesn’t do it
May Jeff Dyer joins Macromedia, works on developing ActionScript 3
July 15 AOL shuts down Netscape operations, lays off most of staff

Waldemar Horwat resigns as ES41 editor
TG1 suspends work on ES41 to focus on E4X
Independent Mozilla Foundation launched

September Macromedia releases ActionScript 2, loosely based on ES41 syntax

Authors’ Corrections: March 2021

140 Allen Wirfs-Brock and Brendan Eich

2003 November Macromedia joins Ecma to participate in TC39-TG1
December ECMA-357 ECMAScript for XML specification approved by Ecma GA

2004 May Mozilla Foundation joins Ecma as a Not For Profit member
June Brendan Eich helps organize WHATWG

Brendan Eich attends his first TC39 (TG1) meeting since February 1998
TG1 decides to abandon ES41 specification for “something less complex”
Jeff Dyer appointed ES4 editor

Q3–Q4 TG1 primarily working on E4X 2nd edition
November 9 Firefox 1.0 browser released

2005 Dojo framework released
Q1–Q3 TG1 primarily working on E4X 2nd edition
February Jesse James Garrett coins the term “AJAX”
Q2–Q4 Brendan Eich blogging and speaking about ES42 issues and goals
April Adobe announces agreement to acquire Macromedia
September Brendan Eich appointed TC39-TG1 convener

Eich focuses TG1 on developing ES42
Schedule targets: feature agreement 6 months, draft in 1 year
ES42 specification notation will be an “Operational semantic language”

September 26 Brendan Eich keynote at ICFP: “JavaScript at Ten Years”
October Brendan Eich in blog post, interested in a formal “checkable specification”
November Macromedia contributes ActionScript 3 specification to TG1

Graydon Hoare’s first TG1 meeting, representing Mozilla
November 30 Firefox 1.5 with JavaScript 1.6 ships
December ECMA-357 2nd Edition E4X approved by Ecma GA

Adobe completes acquisition of Macromedia
2006 JQuery and MooTools frameworks released

TG1 collects and discusses ES42 proposals using private wiki
January Adobe contributes AS3-derived draft “Ecmascript 4 Language Specification”
February Lars Hansen’s first TG1 meeting, representing Opera

Dave Herman’s first TG1 meeting
Dave Herman TG1 presentation on formal specification techniques
Maciej Stachowiakof’s first TG1 meeting, representing Apple

March Cormac Flanagan’s first TG1 meeting
Q2-Q3 Dave Herman explores various available formal specification languages
April Pratap Lakshman’s first TG1 meeting, representing Microsoft

TG1 target is ES42 validated and ready for GA submission, end Q1 2007
June Adobe announces Flash ActionScript 3

Public ES4 wik export and es4-discuss mailing list publicly accessible
Douglas Crockford’s first TG1 meeting, representing Yahoo!
Crockford raises ES3 compatibility concerns regarding ES42
Pratap Lakshman says Microsoft intends to implement ES4 after IE7

July 27–28 TG1 meeting, Douglas Crockford stresses backward compatibility importance
Pratap Lakshman says backward compatibility is Microsoft’s highest priority

October 18 Internet Explorer 7 released
October 19–20 TG1 decides to use ML-based reference implementation to specify ES42
remainder Q4 Initial work on reference implementation using SML
October 24 Firefox 2.0 with JavaScript 1.7 released, includes various Python and ES42

inspired experimental features
November 6 Tamarin: Adobe contributes of AS3VM to Mozilla (open source)
November 15 Douglas Crockford holds a Browser Security Summit at Yahoo!
November 16 Mike Cowlishaw attends TG1, IBM wants decimal arithmetic in ES42

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 141

2006 December Jeff Dyer experiments with integrating ML code with specification text
TG1 ES42 WG holds weekly teleconference and monthly meetings/hackathons
Ongoing work on hybrid structural type system and other new semantics
Ongoing work on building ES42 ML Reference Implementation

2007 January Pratap Lakshman emails Microsoft DevDiv managers asking direction on ES42
Allen Wirfs-Brock recommends that Microsoft oppose ES42

February TG1 meeting, Pratap Lakshman announces Microsoft opposition to ES42 effort
Wirfs-Brock & Crockford agree to develop joint proposal for ES3 maintenance

March 15 Joint Microsoft/Yahoo! proposal to refocus TG1 on maintaining ES3
March 21–23 TG1 meeting at Microsoft, Allen Wirfs-Brock’s first TG1 meeting

Contentious discussions about ES42 effort and TG1 goals
Agreement that Microsoft and Yahoo! could start ES3.1 project

March 29 Crockford & Wirfs-Brock meet, draft ES3.1 Goals and Design Principles
April Lars Hansen goes to work for Adobe, continues to work on ES42
April 4 Douglas Crockford updates his recommended modifications to ECMAScript
April 15 Initial ES3.1 wiki proposal largely derived from Crockford recommendations
April 18–20 TG1 meeting, ES3.1 WG resists basing 3.1 on ML reference implementation

Adam Peller’s first TG1 meeting, representing IBM
Summer Pratap Lakshman analyzes JavaScript interoperability between major browsers
June 8 Announcement of public “M0” release of the ES42 Reference Implementation
June 21 Alex Russell’s first TG1 meeting, representing Dojo Foundation
June 22 Call-to-action to start ES42 specification writing, for completion by September
Q3–Q4 Public disputes regarding ES3.1 and ES42 in blog posts and conference panels
September 7 ES42 specification completion target reset to September 2008

Lars Hansen appointed ES42 editor
September 26 Pratap Lakshman releases “JScript Deviations from ES3” report
September 27–28 TG1 meeting to winnow ES42 wiki proposals

Approves 54 proposals, 26 proposals rejected or deferred
Jeff Dyer pushes to reject “Maintenance of ES3” proposal
Decision to remove ES3.1 as ES42 proposal and give it its own wiki namespace
Waldemar Horwat’s first TG1 meeting since 2003 (guest of convener)

October 16 Google becomes Ecma Ordinary Member, Waldemar Horwat represents Google
October 21 Lars Hansen completes 40 page “ECMAScript 4 Language Overview”
October 23–24 Concerns about discord within TC39-TG1 raised at Ecma CC meeting
November Lars Hansen releases three reports on various aspects of ES42
November 8–9 TG1 meeting attended by Ecma President John Neumann

Neumann recommends elevating TG1 to full TC status; more Ecma supervision
Douglas Crockford proposes new “Secure ECMAScript (SES)” project
Straw poll shows significant TG1 interest in ES3.1, ES42, and SES

December Adobe and Microsoft agree to co-sponsor John Neumann as new TC39 chair
2008 TC39-TG1 is again simply TC39, other former TC39 TGs transferred to TC49

Q1-Q2 ES3.1 WG gets organized and working on new specification derived from ES3
February Jeff Dyer publishes a new ES44 work plan

Dyer & Hansen propose deferring “strange, unproven, or costly” ES42 features
May Douglas Crockford publishes his book: JavaScript: The Good Parts
May 29–30 TC39 meeting draft specifications for ES3.1 and ES42 introduced
June Adobe withdraws from ES42 project
June 17 Firefox 3.0 with JavaScript 1.8 released
July 23–25 TC39 meeting in Oslo ends ES42. TC39 to focus on ES3.1 and “Harmony”
August Public announcement of termination of ES42 and start of Harmony project

2009 December 3 ECMA-290 ECMAScript Components withdrawn as an Ecma standard
2015 June 17 ECMA-327 Compact Profile and Ecma-357 E4X withdrawn as Ecma standards

Authors’ Corrections: March 2021

142 Allen Wirfs-Brock and Brendan Eich

E.4 Timeline for Part 4: Modernizing JavaScript

2006 May Google releases GWT (Java to JavaScript transpiler)
2007 December Apple releases SunSpider JavaScript benchmark suite

October Google Caja Project (secure JavaScript) publicly announced
2008 January 24 Mark Miller’s first TC39 meeting, representing Google

Kris Zyp’s first TC39 meeting, representing Dojo Foundation
February 21 Start of twice-weekly ES3.1 WG design teleconferences
February 26 Revised ES3.1 goals with 3 out of 4 browser feature adoption rule
March Pratap Lakshman is ES3.1 specification editor

ES3.1 base document created from ES3 specification plus errata
Writing tasks assigned to seven ES3.1 WG participants

April 22 es3.1-discuss email forum opens
Allen Wirfs-Brock posts design sketch for Object.defineProperty

April 24 Strict mode concepts and "use strict"; directive discussed
May 29–30 ES3.1 draft specification introduced at TC39 meeting and posted to wiki
June Adobe withdraws from ES42 project
June 10 Mark Miller updates ES3.1 draft to use structured pseudocode
June 17 Firefox 3.0 with JavaScript 1.8 includes “expression closures”
July 4 ES3.1 draft uses lexical environments instead of activation objects

Block-scoped const declarations
July 15 Allen Wirfs-Brock posts “Static Object Functions: Use Cases and Rationale”
July 23–25 TC39 meeting in Oslo ends ES42, new focus is ES3.1 and “Harmony”

Harmony discussion includes desugaring classes to lexical closures
August Public announcement of termination of ES42 and start of Harmony project

Harmony Strawman page created on TC39 wiki
August 28 First meeting of TC39 Secure ECMAScript (SES) WG
September 1 ES3.1 draft includes initial support for decimal arithmetic
September 2 Google preview release of Chrome browser with V8 JavaScript engine
October 13 Waldemar Horwat on es-discuss lists four binding “dead zone” alternatives

Dave Herman strawman proposal for “Lambdas”
November Cormac Flanagan posts first Harmony strawman relating to classes
November 19–20 TC39 meeting, ES3.1 final feature review

Decimal arithmetic and const declarations deferred to Harmony
November 21 Wiki Strawman page has 7 entries
November 29 Brendan Eich proposal for Wirfs-Brock’s Smalltalk-like “Block Lambdas”
December 11 Google Chrome 1.0 released

2009 January CommonJS project starts
Kris Kowal and Ihab Awad present CommonJS modules precursor to TC39
Douglas Crockford launches ADsafe

January 28 TC39 meeting, Pratap Lakshman demonstrates Microsoft ES3.1 prototype in IE
March 19 Internet Explorer 8 released with partial support for ES3.1 features
March 24 Last meeting of SES WG
March 25–26 Pratap Lakshman resigns as ES3.1 editor, Allen Wirfs-Brock assumes role

ES3.1 renamed to ES5; “ES4” designation permanently retired
April 7 “Final Draft” of ES5 specification posted to TC39 wiki
May First public version of Node.js

Eric Arvidsson’s first TC39 meeting, representing Google
Brendan Eich “catchalls” Harmony strawman proposal

June Microsoft contributes ES5 new features test suite to Ecma
Google releases open-source Sputnik ES3 test suite

June 17 Apple Safari updated with Nitro JavaScript engine

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 143

2009 June 24 Firefox 3.5 with TraceMonkey JavaScript optimization released
July Harmony Goal Statement posted on TC39 wiki
August Harmony Strawman wiki page has lists 21 proposals
August 17 Apple discovers that ES5 argument object changes break websites
August 27 ES5 Release Candidate 1 posted
September 23 TC39 votes to forward ES5 to Ecma GA for its approval
October 28 ECMA-262 5th Edition sent to Ecma GA for review
December Jeremy Ashkenas starts developing CoffeeScript

Tom Van Cutsem es-discuss post: “Catch-all proposal based on proxies”
November 5 Sam Tobin-Hochstadt’s first TC39 meeting, Northeastern University
November 7 Brendan Eich says Harmony needs a second-class module system
December 3 Ecma GA approves and publishes ECMA-262 5th Edition

2010 Remy Sharp coins the term “polyfill”
Ben Alman coins the term “IIFE”

Q1 Dave Herman joins Mozilla
Dave Herman and Sam Tobin-Hochstadt develop “Simple Modules” design

January ISO fast track process started for ES5
Tom Van Cutsen’s first TC39 meeting, Vrije Universiteit

February Ihab Awad presents “Emaker Style” module proposal
April Feature themes added to Harmony Goals wiki page
May TC39 starts Test262 project, combines Microsoft ES5conform & Google Sputnik

Ihab Awad recommends that TC39 focus on Simple Modules proposal
September Alon Zakai releases Emscripten for compiling C code to JavaScript

TC39 split on whether classes are primarily for “high integrity abstractions”
December Allen Wirfs-Brock leaves Microsoft, joins Mozilla

Harmony Strawman wiki page lists 66 proposals
2011 Four ES6 specification drafts released in 2011

January Brendan Eich publishes “Harmony of My Dreams” blog post
March Wirfs-Brock proposes extending object literals to support class-like abstractions

Loose consensus that classes should support construct/prototype/instance triad
Simplified “Simple Module” proposal presented

March 14 Internet Explorer 9 released with Chakra JavaScript engine; fully supports ES5
March 22 Firefox 4.0 and JavaScript 1.8.5 released; fully supports ES5
May Brendan Eich alternative proposals: Block Lambda Revival & Arrow Functions

Google Traceur transpiler project announced
May 6 Dave Herman demos multi-language Harmony module loader at JSConf
May 10 Allen Wirfs-Brock, Mark Miller, others meet on joint class proposal
May 24–26 TC39 Harmony “feature freeze” strawman winnowing

Classes accepted for Harmony based upon new joint class proposal
Following meeting wiki shows approximately 45 accepted Harmony proposals

June ECMA-262 Edition 5.1 and identical ISO/IEC 16262:2011 published
June 22 Allen Wirfs-Brock clones the ES5.1 specification re-titled as “Draft Edition 6”
June 27 Dave Herman says Miller’s classes too complex, suggests a minimal class design
July 12 Allen Wirfs-Brock posts first Harmony (ES6) specification working draft
October Tom Van Cutsem and Mark Miller evolve Proxies into Direct Proxies
November 11 Dave Herman posts a Minimal Classes strawman
December Dave Herman proposes “ES6 doesn’t need opt-in” on es-discuss

2012 Nine ES6 specification drafts released in 2012
January Dave Herman “One JavaScript” presentation adopted by TC39
March 19 Russell Leggett on es-discuss calls for a “safety syntax” for classes
March 25 Allen Wirfs-Brock inspired by Leggett proposes “Maximally Minimal Classes”
March 28–29 Brendan Eich guides TC39 to consensus on adopting Arrow Functions

Authors’ Corrections: March 2021

144 Allen Wirfs-Brock and Brendan Eich

2012 May Ordinary and exotic object terminology adopted for use in ES6 specification
TC39 agrees to allow specification work on Maximally Minimal Classes
Yahuda Katz and Rick Waldron attend their first TC39 meeting representing
jQuery Foundation
Rick Waldron takes meeting notes, begins to systematize capture of technical
meeting notes

Q3–4 Jason Orndorff & Dave Herman prototype Harmony modules+loader in Firefox
September 27 ES6 specification draft released that includes Maximally Minimal Classes
October Microsoft introduces TypeScript transpiler
December ECMA-402, 1st Edition ECMAScript Internationalization API published

2013 Eight ES6 specification drafts released in 2013
TC39 primarily addressed approved proposals feature and specification issues

September Rafael Weinstein & Dmitry Lomov propose a new TC39 development process
October ECMA-404 The JSON Data Interchange Format published

Promises added to ES6 to avoid them being subsumed into HTML specification
November Dave Herman posts first drafts of the Realm API

2014 Nine ES6 specification drafts released in 2014
Node.js community criticizing TC39 for not adopting CommonJS module design
TC39 starts using new multi-stage process to develop post ES6 features

January Preliminary version of module&loader pseudocode in draft ES6 specification
April Douglas Crockford’s last TC39 meeting
Summer Yehuda Katz creates jsmodules.io website introducing ES6 modules to Node.js

programmers
June Browser developers raise concerns about ES6 class semantics for subclassing

built-in constructors
July Array and generator comprehensions dropped from draft ES6 specification
September Module loader dropped from draft ES6 specification
September 24 Two competing redesigns presented for the subclassing built-ins problem
October Module specification (without loader) completed in draft ES6 specification

2015 Eight ES6 specification drafts released in 2015
January 27 TC39 reaches final consensus on outstanding ES6 issues including subclassing

constructors
February Babel (aka 6to5) transpiler introduced
March TC39 approves ECMAScript 2015 specification for referral to Ecma GA
April 14 Final Draft of ES2015 posted to TC39 wiki
Q2–4 TC39 following new process working on ES2016 and longer term proposals
June 17 ECMA-262 6th Edition ECMAScript 2015 Language Specification and ECMA-402

2nd Edition ECMAScript Internationalization API approved as Ecma standards
July Brian Terlson succeeds Allen Wirfs-Brock as ECMA-262 project editor

2016 June 14 ECMA-262 7th Edition ECMAScript 2016 Language Specification and ECMA-402
3rd Edition ECMAScript Internationalization API approved as Ecma standards

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 145

F DECEMBER 4, 1995 JAVASCRIPT ANNOUNCEMENT
[Netscape and Sun 1995, Page 1–2]

Netscape and Sun Announce Javascript, the Open, Cross-Platform Object
Scripting Language For Enterprise Networks and the Internet

28 Industry Leading Companies to Endorse Javascript as a Complement to Java for Easy Online
Application Development

MOUNTAIN VIEW, Calif. (December 4, 1995) – Netscape Communications Corporation (NASDAQ: NSCP) and
Sun Microsystems, Inc. (NASDAQ:SUNW), today announced JavaScript, an open, cross-platform object script-
ing language for the creation and customization of applications on enterprise networks and the Internet. The
JavaScript language complements Java, Sun’s industry-leading object-oriented, cross-platform programming
language. The initial version of JavaScript is available now as part of the beta version of Netscape Navigator
2.0, which is currently available for downloading from Netscape’s Web site.

In addition, 28 industry-leading companies, including America Online, Inc., Apple Computer, Inc., Architext
Software, Attachmate Corporation, AT&T;, Borland International, Brio Technology, Inc., Computer Associates,
Inc., Digital Equipment Corporation, Hewlett-Packard Company, Iconovex Corporation, Illustra Information
Technologies, Inc., Informix Software, Inc., Intuit, Inc., Macromedia, Metrowerks, Inc., Novell, Inc., Oracle
Corporation, Paper Software, Inc., Precept Software, Inc., RAD Technologies, Inc., The Santa Cruz Operation,
Inc., Silicon Graphics, Inc., Spider Technologies, Sybase, Inc., Toshiba Corporation, Verity, Inc., and Vermeer
Technologies, Inc., have endorsed JavaScript as an open standard object scripting language and intend to
provide it in future products. The draft specification of JavaScript, as well as the final draft specification of Java,
is planned for publishing and submission to appropriate standards bodies for industry review and comment
this month.

JavaScript is an easy-to-use object scripting language designed for creating live online applications that link
together objects and resources on both clients and servers. While Java is used by programmers to create new
objects and applets, JavaScript is designed for use by HTML page authors and enterprise application developers
to dynamically script the behavior of objects running on either the client or the server. JavaScript is analogous
to Visual Basic in that it can be used by people with little or no programming experience to quickly construct
complex applications. JavaScript’s design represents the next generation of software designed specifically for
the Internet and is:
• designed for creating network-centric applications
• complementary to and integrated with Java
• complementary to and integrated with HTML
• open and cross-platform.

Java, developed by Sun, is an object-oriented programming language that operates independent of any
operating system or microprocessor. Java programs called applets can be transmitted over a network and run
on any client, providing the multimedia richness of a CD-ROM over corporate networks and the Internet. Java
has been widely hailed by programmers because it eliminates the need to port applications, and by managers
of information systems for its potential to lower the costs of distributing and maintaining applications across
the network.

With JavaScript, an HTML page might contain an intelligent form that performs loan payment or currency
exchange calculations right on the client in response to user input. A multimedia weather forecast applet
written in Java can be scripted by JavaScript to display appropriate images and sounds based on the current
weather readings in a region. A server-side JavaScript script might pull data out of a relational database
and format it in HTML on the fly. A page might contain JavaScript scripts that run on both the client and
the server. On the server, the scripts might dynamically compose and format HTML content based on user
preferences stored in a relational database, and on the client, the scripts would glue together an assortment of

Authors’ Corrections: March 2021

146 Allen Wirfs-Brock and Brendan Eich

Java applets and HTML form elements into a live interactive user interface for specifying a net-wide search
for information.

Java programs and JavaScript scripts are designed to run on both clients and servers, with JavaScript
scripts used to modify the properties and behavior of Java objects, so the range of live online applications that
dynamically present information to and interact with users over enterprise networks or the Internet is virtually
unlimited. Netscape will support Java and JavaScript in client and server products as well as programming
tools and applications to make this vision a reality.

“Programmers have been overwhelmingly enthusiastic about Java because it was designed from the ground
up for the Internet. JavaScript is a natural fit, since it’s also designed for the Internet and Unicode-based
worldwide use,” said Bill Joy, co-founder and vice president of research at Sun. “JavaScript will be the most
effective method to connect HTML-based content to Java applets.”

Netscape’s authoring and application development tools – Netscape Navigator Gold 2.0, Netscape LiveWire
and Netscape LiveWire Pro – are designed for rapid development and deployment of JavaScript applications.
Netscape Navigator Gold 2.0 enables developers to create and edit JavaScript scripts, while Netscape LiveWire
enables JavaScript programs to be installed, run and managed on Netscape servers, both within the enterprise
and across the Internet. Netscape LiveWire Pro adds support for JavaScript connectivity to high-performance
relational databases from Illustra, Informix, Microsoft, Oracle and Sybase. Java and JavaScript support are
being built into all Netscape products to provide a unified, front-to-back, client/server/tool environment for
building and deploying live online applications.

Java is available to developers free of charge. The Java Compiler and Java Developer’s Kit as well as the
HotJava browser and related documentation are available from Sun’s Web site at http://java.sun.com. In addi-
tion, the Java source code can be licensed for a fee. Details on licensing are also available via the java.sun.com
Web page. To date, Sun has licensed Java to a number of leading technology companies, including Borland,
Macromedia, Mitsubishi, Netscape, Oracle, Silicon Graphics, Spyglass, and Toshiba. Sun’s Workshop for Java
toolkit is scheduled for release in Spring 1996. Sun’s NEO product family, the first complete development,
operating and management environment for object-oriented networked applications, will also use Java-enabled
browsers as front-ends to the NEO environment.

Netscape and Sun plan to propose JavaScript to the W3 Consortium (W3C) and the Internet Engineering
Task Force (IETF) as an open Internet scripting language standard. JavaScript will be an open, freely licensed
proposed standard available to the entire Internet community. Existing Sun Java licensees will receive a
license to JavaScript. In addition, Sun and Netscape intend to make a source code reference implementation of
JavaScript available for royalty-free licensing, further encouraging its adoption as a standard in a wide variety
of products.

Netscape Communications Corporation is a premier provider of open software for linking people and
information over enterprise networks and the Internet. The company offers a full line of Netscape Navigator
clients, Netscape servers, development tools and Netscape Internet Applications to create a complete plat-
form for next-generation, live online applications. Traded on Nasdaq under the symbol “NSCP”, Netscape
Communications Corporation is based in Mountain View, California.

With annual revenues of $6 billion, Sun Microsystems, Inc. provides solutions that enable customers to
build and maintain open network computing environments. Widely recognized as a proponent of open
standards, the company is involved in the design, manufacture and sale of products, technologies and services
for commercial and technical computing. Sun’s SPARC(TM) workstations, multiprocessing servers, SPARC
microprocessors, Solaris operating software and ISO-certified service organization each rank No. 1 in the
UNIX(R) industry. Founded in 1982, Sun is headquartered in Mountain View, Calif., and employs more than
14,000 people worldwide.

Additional information on Netscape Communications Corporation is available on the Internet at , by
sending email to info@netscape.com or by calling 415-528-2555. Additional information on Sun Microsystems
is available on the Internet at http://www.sun.com or, for Java information, http://java.sun.com Netscape
Communications, the Netscape Communications logo, Netscape, and Netscape Navigator are trademarks of
Netscape Communications Corporation. JavaScript and Java are trademarks of Sun Microsystems, Inc. All
other product names are trademarks of their respective companies.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 147

G ISSUES LIST FROM FIRST TC39 MEETING
The following list of issues to be resolved for the first version of the standard is from the Minutes
of the November 21-22 TC39 organizing meeting [TC39 1996].

1. Unicode support (Feature)
2. Semantics of delete (Semantics)
3. Semantic of indexing (S)
4. Binding contexts: Inheritance properties - scope for “. . . ” - Host object model versus language

(S)
5. No unified discussion of a storage model (S)
6. The argument array; semantics implication of the semantics of arrays (argument becomes a

keyword); important in recursive functions
7. Arguments are currently very costly - performance related
8. EVAL on every object does not sound like a good idea
9. Caller should be optional
10. Block sharing scope - an issue when program becomes large
11. Implicit Globals are bad. It would be nice to clarify to programmers the differences between

local and global variables
12. Object prototypes in user defined constructors. What is the intent of prototype ? It is unclear

and needs better definition. Netscape says that this is a bug.
13. Support of CTL Z as a wide space character
14. Is NULL a type or a distinct object reference
15. 1Array length = 0 is illegal
16. Slot vs property
17. “this is” (sic) undefined or well-defined in function
18. Whether there is a global object
19. “this” in method call
20. Type and value of &&/|| operators
21. “For/in” loop enumerates properties in well-defined order
22. Run-time & compile time
23. Pointers: where are they defined ?
24. Versioning
25. Why reserve Java keywords ?
26. Identifier redefinition Error or last definition wins ?
27. f.prototype before new f() ?
28. Grammar per constructor not allowed for new f ?
29. Top level evaluation order
30. Can ‘\0’ occur within a string ?
31. Bytes vs characters (a general length-issue)

Authors’ Corrections: March 2021

148 Allen Wirfs-Brock and Brendan Eich

H INITIAL PROPOSED ECMASCRIPT VERSION 2 NEW FEATURE LIST
On October 1997 the TC39 technical working group met and produced these lists of features that
were candidates for inclusion in “Version 2” of the ECMAScript Specification. The minutes of
the October meeting are lost. The meeting notes [TC39 1998c] for February 19, 1998, identify the
following as propagated and updated from the 1997.10.10 notes.

Agreed items for Version 2
caller (omitted from V1)
do while
break to label
continue to label
switch
regexp
=== operator (strict equality)
conditional compilation
literal notation
function closures (expression, nesting)
reveal __parent__ , __photo__ [sic]
arguments object
exception handling
toSource (people want a way to make objects persistent)
Function.prototype.apply
instanceof

Other Items in consideration for V2
binary object
Date (as presented by Borland in 1997)
generic sequence operations on a string or an array
threading issues
undefined literal, not reserved
parse {int, float} step point result
toString extensions
date to string
toBoolean (object)
Hide proto.property
meta object protocol (MOP)
package concept

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 149

I A PARTIAL E3 DRAFT STATUS REPORT
[Cowlishaw 1999b]

Authors’ Corrections: March 2021

150 Allen Wirfs-Brock and Brendan Eich

J JANUARY 11, 1999 CONSENSUS ON MODULARITY FUTURES
At the January 11–12, 1999, TC39 working groups meeting there was a long discussion of the goals
and technical challenges for supporting “programming in the large” in a future edition of ECMA-
Script. A record of the following points of agreement were recorded in the meeting notes [Raggett
1999b].

Agreed Goals
• Robust libraries and programming in the large
• No interference between libraries/different units of code
• Reasonable efficiency - precompilation feasible
• Continuity with existing ECMAScript and its users (don’t break existing code)
• Audience - suits naive users and experienced scripters e.g. a fairly heavy duty forms validation
package.
• Language extensibility
• Ease of use

Classes
• Inheritance (at least single)
• A class is a type
• Class syntax declares fields, methods, inheritance
• Slot access syntax is same as zero argument method call syntax
• Herman would call slots properties (decide to call them fields)
• A method is not a slot that contains a function
• Encapsulation (private, public, package scope etc.)
• Expando
• "new" constructors for instances
• "implements"

Interfaces
• Syntax for defining interfaces similar to classes
• Methods includng getters and setters
• Interfaces are types
• exposing one function as another in an interface

Types
• primitive types
• describe constraints on local vars, fields, args and results
• "any" type
• type annotations optional

Packages & Namespaces/Versions
• A syntax for defining packages
• Namespace control - hide things inside a package
• Qualify identifiers by their source packages
• Imports

Stuff we want to discuss but haven’t yet agreed on
• Syntax for everything
• Events?
• Expando turn on/off default

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 151

• *Member scoping rules
• Multiple inheritance?
• Can interfaces include fields/slots?
• Interface inheritance
• Interface member default
• *Static type-dependent name lookup
• Syntax for type annotations
• *Casting: assert or coerce?
• Operator overloading?
• Method overloading
• Declared types: assert or coerce?
• How many kinds of namespaces are there?
• *Is there a way to robustly add methods, slots
• *and globals to a previously released package?
• Can packages have versions?
• *Global variables and their interaction with packages
• Language versioning (e.g. this package uses style rules)
• Package Interfaces

* These items were identified as show stopper issues

K ES4 REFERENCE IMPLEMENTATION ANNOUNCEMENT
The following announcement was posted by Dave Herman [2007] to the Lambda the Ultimate
weblog on June 8, 2007:

ECMAScript Edition 4 Reference Implementation

ECMAScript specification and reference implementation. You can download source and
binary forms of the reference implementation.

As we’ve discussed before here on LtU, the reference implementation of ECMAScript is
being written in Standard ML. This choice should have many benefits, including:
• to make the specification more precise than previous pseudocode conventions
• to give implementors an executable framework to test against
• to provide an opportunity to find bugs in the spec early
• to spark interest and spur feedback from the research and user communities
• to provide fodder for interesting program analyses to prove properties of the
language (like various notions of type soundness)
• to use as a test-bed for interesting extensions to the language

This pre-release is just our first milestone, i.e., the first of many "early and often"
releases. Neither the specification nor the reference implementation is complete, and
this early implementation has plenty of bugs. We encourage anyone interested to
browse the bug database and report additional bugs.

We’re happy to hear your feedback, whether it’s bug reports or comments here on LtU
or on the es4-discuss mailing list.

Authors’ Corrections: March 2021

152 Allen Wirfs-Brock and Brendan Eich

L ES42 APPROVED PROPOSALS SEPTEMBER 2007
[TC39 ES4 2007e]

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 153

Authors’ Corrections: March 2021

154 Allen Wirfs-Brock and Brendan Eich

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 155

M ECMASCRIPT HARMONY ANNOUNCEMENT
[Eich 2008b]

From brendan at mozilla.org Wed Aug 13 14:26:56 2008
From: brendan at mozilla.org (Brendan Eich)
Date: Wed, 13 Aug 2008 14:26:56 -0700
Subject: ECMAScript Harmony
Message-ID: <C4FE90A0-2762-4061-872B-3E5F174AEACE@mozilla.org>

It's no secret that the JavaScript standards body, Ecma's Technical
Committee 39, has been split for over a year, with some members
favoring ES4, a major fourth edition to ECMA-262, and others
advocating ES3.1 based on the existing ECMA-262 Edition 3 (ES3)
specification. Now, I'm happy to report, the split is over.

The Ecma TC39 meeting in Oslo at the end of July was very productive,
and if we keep working together, it will be seen as seminal when we
look back in a couple of years. Before this meeting, I worked with
John Neumann, TC39 chair, and ES3.1 and ES4 principals, especially
Lars Hansen (Adobe), Mark Miller (Google), and Allen Wirfs-Brock
(Microsoft), to unify the committee around shared values and a common
roadmap. This message is my attempt to announce the main result of
the meeting, which I've labeled "Harmony".

Executive Summary

The committee has resolved in favor of these tasks and conclusions:

1. Focus work on ES3.1 with full collaboration of all parties, and
target two interoperable implementations by early next year.
2. Collaborate on the next step beyond ES3.1, which will include
syntactic extensions but which will be more modest than ES4 in both
semantic and syntactic innovation.
3. Some ES4 proposals have been deemed unsound for the Web, and are
off the table for good: packages, namespaces and early binding. This
conclusion is key to Harmony.
4. Other goals and ideas from ES4 are being rephrased to keep
consensus in the committee; these include a notion of classes based
on existing ES3 concepts combined with proposed ES3.1 extensions.

Detailed Statement

A split committee is good for no one and nothing, least of all any
language specs that might come out of it. Harmony was my proposal
based on this premise, but it also required (at least on the part of
key ES4 folks) intentionally dropping namespaces.

This is good news for everyone, both those who favor smaller changes
to the language and those who advocate ongoing evolution that
requires new syntax if not new semantics. It does mean that some of
the ideas going back to the first ES4 proposals in 1999, implemented
variously in JScript.NET and ActionScript, won't make it into any ES

Authors’ Corrections: March 2021

156 Allen Wirfs-Brock and Brendan Eich

standard. But the benefit is collaboration on unified successor
specifications to follow ES3, starting with ES3.1 and continuing
after it with larger changes and improved specification techniques.

One of the use-cases for namespaces in ES4 was early binding (use
namespace intrinsic), both for performance and for programmer
comprehension -- no chance of runtime name binding disagreeing with
any earlier binding. But early binding in any dynamic code loading
scenario like the web requires a prioritization or reservation
mechanism to avoid early versus late binding conflicts.

Plus, as some JS implementors have noted with concern, multiple open
namespaces impose runtime cost unless an implementation works
significantly harder.

For these reasons, namespaces and early binding (like packages before
them, this past April) must go. This is final, they are not even a
future possibility. To achieve harmony, we have to focus not only on
nearer term improvements -- on "what's in" or what could be in -- we
must also strive to agree on what's out.

Once namespaces and early binding are out, classes can desugar to
lambda-coding + Object.freeze and friends from ES3.1. There's no need
for new runtime semantics to model what we talked about in Oslo as a
harmonized class proposal (I will publish wiki pages shortly to show
what was discussed).

We talked about desugaring classes in some detail in Oslo. During
these exchanges, we discussed several separable issues, including
classes, inheritance, like patterns, and type annotations. I'll avoid
writing more here, except to note that there were clear axes of
disagreement and agreement, grounds for hope that the committee could
reach consensus on some of these ideas, and general preference for
starting with the simplest proposals and keeping consensus as we go.

We may add runtime helpers if lambda-coding is too obscure for the
main audience of the spec, namely implementors who aim to achieve
interoperation, but who may not be lambda-coding gurus. But we will
try to avoid extending the runtime semantic model of the 3.1 spec, as
a discipline to guard against complexity.

One possible semantic addition to fill a notorious gap in the
language, which I sketched with able help from Mark Miller: a way to
generate new Name objects that do not equate as property identifiers
to any string. I also showed some sugar, but that is secondary at
this point. Many were in favor of this new Name object idea.

There remain challenges, in particular getting off of the untestable
and increasingly unwieldy ES1-3.x spec formalism. I heard some
generally agree, and no one demur, about the ES4 approach of using an
SML + self-hosted built-ins reference implementation (RI).

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 157

We are going to look into stripping the RI of namespaces and early
binding (which it uses to ensure normative self-hosted behavior, not
susceptible to "user code" modifying the meaning of built-ins),
simplifying it to implement ES3.1plus or minus (self-hosted built-ins
may require a bit more magic). More on that effort soon.

ES3.1 standardizes getters and setters that were first implemented at
Mozilla and copied by Apple and Opera. More such de-facto
standardization is on the table for a successor edition in the
harmonized committee.

I heard good agreement on low-hanging "de-facto standard" fruit,
particularly let as the new var, to match block-scoped const as still
proposed (IIRC) in 3.1. Also some favorable comments about simple
desugarings such as expression closures and destructuring assignment,
and other changes in JS1.7 and 1.8 that do not require new runtime
semantic models.

Obviously, these require new syntax, which is appropriate for a major
post-3.1 "ES-harmony" edition. Syntax is user interface, there's no
reason to avoid improving it. What's more, the intersection semantics
of extended ES3 implementations conflict and choke off backward-
compatible *semantics* for syntax that may even parse in all top four
browsers (e.g., functions in blocks).

Both the appropriateness of new syntax, and the need to make
incompatible (with ES3 extensions) semantic changes, motivate opt-in
versioning of harmonized successor edition. I believe that past
concerns about opt-in versioning requiring server file suffix to MIME
type mapping maintenance were assuaged (browsers in practice, and
HTML5 + RFC 4329, do not consider server-sent Content-Type -- the web
page author can write version parameters directly in script tag type
attributes).

Some expressed interest in an in-language pragma to select version;
this would require immediate version change during parsing. It's a
topic for future discussions.

The main point, as important as cutting namespaces in my view, is
that the committee has a vision for extending the language
syntactically, not trying to fit new semantics entirely within some
combination of existing "three of four top browsers" syntax and
standard library extensions.

As Waldemar Horwat (Google) said on the final day, the meeting was
seminal, and one of the most productive in a long while. Much work
remains on 3.1 and Harmony, but we are now on a good footing to make
progress as a single committee.

/be

Authors’ Corrections: March 2021

158 Allen Wirfs-Brock and Brendan Eich

N HARMONY STRAWMAN PROPOSALS MAY 2011
[TC39 Harmony 2011c]

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 159

Authors’ Corrections: March 2021

160 Allen Wirfs-Brock and Brendan Eich

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 161

O HARMONY PROPOSALS WIKI PAGE FOLLOWING MAY 2011 TRIAGE
[TC39 Harmony 2011b]

Authors’ Corrections: March 2021

162 Allen Wirfs-Brock and Brendan Eich

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 163

P TC39 POST ES6 PROCESS DEFINITION
[Weinstein and Wirfs-Brock 2013]

TC‐39 Process

The ECMA TC­39 committee is responsible for evolving the ECMAScript programming language and authoring the specification. The
committee operates by consensus and has discretion to alter the specification as it sees fit. However, the general process for making
changes to the specification is as follows.

Development
Changes to the language are developed by way of a process which provides guidelines for evolving an addition from an idea to a fully
specified feature, complete with acceptance tests and multiple implementations. There are four “maturity” stages. The TC­39
committee must approve acceptance for each stage.

Maturity Stages

Stage Purpose Criteria Acceptance
signifies

Spec quality Post­acceptance
changes
expected

Implementation
types expected

0 Strawman ● Allow input into the
specification.

● None N/A N/A N/A N/A

1 Proposal ● Make the case for
the addition

● Describe the
shape of a
solution

● Identify potential
challenges

● Identified “champion”
who will advance the
addition

● Prose outlining the
problem or need and the
general shape of a
solution.

● Illustrative examples of
usage

● High­level API
● Discussion of key
algorithms, abstractions
and semantics

● Identification of potential
“cross­cutting” concerns
and implementation
challenges/complexity.

The committee
expects to devote
time to examining
the problem
space, solutions
and cross­cutting
concerns

None Major Polyfills / demos

2 Draft ● Precisely describe
the syntax and
semantics using
formal spec
language

● Above
● Initial spec text

The committee
expects the
feature to be
developed and
eventually
included in the
standard

Draft: all major
semantics, syntax
and API are
covered, but
TODOs,
placeholders and
editorial issues
are expected

Incremental Experimental

3 Candidate ● Indicate that
further refinement
will require
feedback from
implementations

● Above
● Complete spec text
● Designated reviewers
have signed off on the
current spec text.

● The ECMAScript editor
has signed off on the
current spec text.

The solution is
complete and no
further work is
possible without
implementation
experience,
significant usage
and external
feedback.

Complete: all
semantics, syntax
and API are
completed
described

Limited: only those
deemed critical
based on
implementation
experience

Spec compliant

4 Finished ● Indicate that the
addition is ready
for inclusion in the
formal
ECMAScript
standard

● Above
● Test 262 acceptance
tests have been written
for mainline usage
scenarios.

● Two compatible
implementations which
pass the acceptance
tests.

● The ECMAScript editor
has signed off on the
current spec text.

The addition will
be included in the
soonest practical
standard revision

Final: All changes
as a result of
implementation
experience are
integrated.

None Shipping

Input into the process
Ideas for evolving the ECMAScript language are accepted in any form. Any discussion, idea or proposal for a change or addition
which has not been submitted as a formal proposal is considered to be a “strawman” (stage 0) and has no acceptance requirements.
Such submissions must either come from members of TC­39 or from non­members who have registered via ECMA International.

Spec revisions and scheduling
TC­39 may deliver to ECMA international a new revision of the ECMAScript language in March and September of every year.
Additions which have been accepted by the committee as “finished” (stage 4) may be included in a new revision.

Status of in‐process additions
TC­39 will maintain a list of in­process additions, along with the current maturity stage of each, on its website.

Spec Text
At stages “draft” (stage 2) and later, the semantics, API and syntax of an addition must be described as edits to the latest published
ECMAScript standard, using the same language and conventions. The quality of the spec text expected at each stage is described

Authors’ Corrections: March 2021

164 Allen Wirfs-Brock and Brendan Eich

above.

Calls for implementation and feedback
When an addition is accepted at the “candidate” (stage 3) maturity level, the committee is signifying that it believes design work is
complete and further refinement will require implementation experience, significant usage and external feedback.

Reviewers
Anyone can be a reviewer and submit feedback on an in­process addition. The committee may identify designated reviewers for
acceptance at the “candidate” maturity stage. Designated reviewers should not be authors of the spec text for the addition and should
have expertise applicable to the subject matter.

Eliding the process
The committee may elide the process based on the scope of a change under consideration as it sees fit.

Role of the editor
In­process additions will likely have spec text which is authored by a champion or a committee member other than the editor although
in some case the editor may also be a champion with responsibility for specific features. The editor is responsible for the overall
structure and coherence of the ECMAScript specification. It is also the role of the editor to provide guidance and feedback to spec
text authors so that as an addition matures, the quality and completeness of its specification improves. It is also the role of the editor
to integrate additions which have been accepted as “finished” (stage 4) into the a new revision of the specification.

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 165

Q THE EVOLUTION OF ECMASCRIPT PSEUDOCODE
Starting with ES1, ECMA-262 was specified using pseudocode algorithms consisting of
numbered steps. For example, here is how the semantics of the conditional operator was
specified in ES1:

The production ConditionalExpression : LogicalORExpresion ?AssignmentExpression :AssignmentExpresion
is evaluated as follows:
1. Evaluate LogicalORExpression.
2. Call GetValue(Result(1)).
3. ToBoolean(Result(2)).
4. If Result(3) is false, go to step 8.
5. Evaluate the first AssignmentExpression.
6. Call GetValue(Result(5)).
7. Return Result(6).
8. Evaluate the second AssignmentExpression.
9. Call GetValueResult(8)).
10. Return Result(9).

ES1–ES3 Pseudocode

The form is an introductory header followed by numbered steps. It can be characterized
as machine-language–style pseudocode. It had all the same usability problems as coding
in machine code. The goto control style and use of numeric labels for intermediate results
made it difficult to understand and hard to maintain. This had not been a problem in ES1
where most of the algorithms were shorter than this example. It became a problem in ES3
which added several complex library functions that required longer algorithms, some with
complex control flow.
Both attempts at ES4 abandoned the ES1–ES3 pseudocode for new formalisms. Waldemar

Horwat for ES41 invented a more elaborate specification language. His version [Horwat
2003a] of the ConditionalExpression semantics was:

proc Eval[ConditionalExpression𝛽] (env: Environment, phase: Phase): ObjOrRef

[ConditionalExpression𝛽 ⇒ LogicalOrExpression𝛽 ? AssignmentExpression𝛽1 : AssignmentExpression𝛽2] do
a: Object← readReference(Eval[LogicalOrExpression𝛽](env, phase), phase);
if objectToBoolean(a) then

return readReference(Eval[AssignmentExpression𝛽1](env, phase), phase)

else return readReference(Eval[AssignmentExpression𝛽1](env, phase), phase)
end if

end proc;

ES41 Pseudocode

Authors’ Corrections: March 2021

166 Allen Wirfs-Brock and Brendan Eich

ES42 did not progress to the point of specifying the ConditionalExpression production.
However, ConditionalExpression was used by David Herman and Cormac Flanagan [2007]
when they explained the intended ECMAScript specification usage of SML, using this
example:

fun evalCondExpr (regs:REGS)
(cond:EXPR)
(thn:EXPR)
(els:EXPR)

: VAL =
let

val v = evalExpr regs cond
val b = toBoolean v

in
if b
then evalExpr regs thn
else evalExpr regs els

end

ES42 ML Code

The ES5 working group wanted its specification to build upon and incrementally im-
prove the notation and conventions used in ES1–ES3. However, for ES5 they needed to
specify several additional complicated library functions. For better interoperability, they
needed to write algorithms, some quite complex, for sections of the specification that
had previously been inadequately described using incomplete or imprecise prose. Over
several drafts they developed what Allen Wirfs-Brock called “structured programming”
style pseudocode. The first major change was to introduce a “let statement” that allowed
the naming of intermediate computational results. This convention had actually been used
in two ES1 algorithms and in the ES3 regular expression matching algorithms but was not
formally defined as part of the pseudocode conventions or applied pervasively throughout
the specifications. Mark Miller introduced the second major change, which was to use
structured control-flow statements and an outline indentation style to indicate nested
control flows. In ES5, the ConditionalExpression semantics were expressed as:

The production ConditionalExpression : LogicalORExpresion ?AssignmentExpression :AssignmentExpresion
is evaluated as follows:
1. Let lref be the result of evaluating LogicalORExpression.
2. If ToBoolean(GetValue(lref)) is true, then

a. Let trueRef be the result of evaluating the first AssignmentExpression.
b. Return GetValue(trueRef).

3. Else
a. Let falseRef be the result of evaluating the second AssignmentExpression.
b. Return GetValue(falseRef).

ES5 Pseudocode

The step labels exist only to make it easy to reference individual steps in commentary.
The algorithm conventions clause of the specification was revised to require use of the

Authors’ Corrections: March 2021

JavaScript: The First 20 Years 167

new style. All new algorithms were written using that style and over the course of the
project the ES editors rewrote all preëxisting algorithms to follow the new conventions.
The ES5 pseudocode conventions were used as the foundation for subsequent editions.

ES6 used a simplified introductory header andmade the semantics of exception propagation
more explicit. The ES6 version of the ConditionalExpression semantics adds a single line to
the algorithm, step 2:

Runtime Semantics: Evaluation
ConditionalExpression : LogicalORExpresion ?AssignmentExpression :AssignmentExpresion
1. Let lref be the result of evaluating LogicalORExpression.
2. ReturnIfAbrupt(lref)
3. If ToBoolean(GetValue(lref)) is true, then

a. Let trueRef be the result of evaluating the first AssignmentExpression.
b. Return GetValue(trueRef).

4. Else
a. Let falseRef be the result of evaluating the second AssignmentExpression.
b. Return GetValue(falseRef).

ES2015/ES6 Pseudocode

A goal of the ECMAScript specification is to be precise enough that a ECMAScript
program cannot observe any differences in their behavior when run on different conforming
implementations. One possible observable difference is the sequence in which an exception
is propagated relative to other semantic actions that might have observable side effects.
Starting with ES3, the propagation of exceptions was modeled in the specification using

a Completion Record abstraction. Completion Records were used in most specification
algorithms and represent either a Normal Completionwith a value or anAbrupt Completion
such as a thrown exception. Prior to ES2015, the generation and discrimination of most
Completion Records were implicit in the pseudocode. Returning a value from an algorithm
implicitly generated a Normal Completion Record containing that value, and when the
pseudocode that called such an algorithm accessed the return value it implicitly unwraps
the value in a Normal Completion Record. But the specification did not explicitly define
what happens when an Abrupt Completion is returned to a calling algorithm. Is an Abrupt
Completion immediately propagated and the calling algorithm terminated or is the calling
algorithm allowed to continue until it actually needs to use the returned value? Different
implementations of ECMAScriptmade different choices. However, if an algorithm continues
and performs operations with visible side effects this difference is observable by JavaScript
programs. In the ES2015 specification this was clarified using additional steps such as step 2
in the ES2015 version of ConditionalExpression. ReturnIfAbrupt in step 2 is explicitly testing
whether the evaluation of LogicalORExpression in step 1 produced an Abrupt Completion
Record and if so it immediately returns that Abrupt Completion as the Completion Record
for ConditionalExpression. If the result was a Normal Completion its value is unwrapped
and assigned to lref. A ReturnIfAbrupt test is not needed for steps 3.a and 4.a because when
GetValue is passed an Abrupt Completion as its argument it simply returns the Abrupt
Completion as its own Completion Record.

Authors’ Corrections: March 2021

168 Allen Wirfs-Brock and Brendan Eich

ES2016 eliminates that extra line by consistently using a prefix question mark as a
pseudocode operator that has semantics similar to ReturnIfAbrupt. It either propagates an
Abrupt Completions or returns the unwrapped value of a Normal Completion:

Runtime Semantics: Evaluation
ConditionalExpression : LogicalORExpresion ?AssignmentExpression :AssignmentExpresion
1. Let lref be the result of evaluating LogicalORExpression.
2. If ToBoolean(?GetValue(lref)) is true, then

a. Let trueRef be the result of evaluating the first AssignmentExpression.
b. Return ?GetValue(trueRef).

3. Else
a. Let falseRef be the result of evaluating the second AssignmentExpression.
b. Return ?GetValue(falseRef).

ES2016 Pseudocode

REFERENCES
Adobe. 2007. ActionScript Virtual Machine 2 (AVM2) Overview. Adobe Systems Incorporated., 45 Park Avenue San Jose,

CA 95110 (May). non-archival http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/actionscript/articles/
avm2overview.pdf (broken; also at Internet Archive 11 Aug. 2014 23:15:28).

Adobe. 2013. Flash Player penetration. Web page. non-archival http://solutionpartners.adobe.com/products/player_
census/flashplayer/ (broken; also at Internet Archive 15 March 2013 11:45:33). Original date of the Web page is unknown.
The data is from 2011.

ADsafe. 2007. Making JavaScript Safe for Advertising. Web site. non-archival http://adsafe.org/ (also at Internet Archive
5 Jan. 2009 15:53:30, this is the earliest archived version of this site. Subsequent archived versions include additional
information).

A.V. Aho, B.W. Kernighan, and P.J. Weinberger. 1988. The AWK Programming Language. Addison-Wesley Publishing
Company. 9780201079814 lc87017566 Archived at https://archive.org/download/pdfy-MgN0H1joIoDVoIC7/The_AWK_
Programming_Language.pdf

Jeremy Allaire. 2002. Macromedia Flash MX—A next-generation rich client. Macromedia white paper. March 2002. non-
archival https://download.macromedia.com/pub/flash/whitepapers/richclient.pdf (also at Internet Archive 2 Sept. 2018
12:14:22). This white paper contains the earliest known use of the term “Rich Internet Application”.

Ben Alman. 2010. Immediately-Invoked Function Expression (IIFE). Blog post. 15 Nov. 2010. non-archival http://benalman.
com/news/2010/11/immediately-invoked-function-expression/ (also at Internet Archive 18 Nov. 2010 03:54:34).

Tim Anderson. 2007. Mark Anders Remembers Blackbird, and Other Microsoft Hits and Misses. Blog post on Tim Anderson’s
ITWriting Blog. 15 Oct. 2007. non-archival http://www.itwriting.com/blog/363-mark-anders-remembers-blackbird-
and-other-microsoft-hits-and-misses.html (also at Internet Archive 4 Oct. 2008 23:31:15).

ANSI X3. 1989. American National Standard for Information Systems–programming language–C: ANSI X3.159–1989. American
National Standards Institute, NewYork, NewYork. Also ISO/IEC 9899:1990.

ANSI X3J20. 1998. American National Standard for Information Technology–Programming Languages–Smalltalk: ANSI INCITS
319-1998. American National Standards Institute, NewYork, NewYork.

Apple Computer. 1988. Hypercard Script Language Guide: The Hypertalk Language. Addison Wesley Publishing Company.
Erik Arvidsson. 2015. ECMAScript Object.observe spec. GitHub project repository. 14 Sept. 2015. non-archival

http://arv.github.io/ecmascript-object-observe/ (also at Internet Archive 20 Nov. 2015 01:02:05).
Jeremy Ashkenas. 2009. CoffeeScript, a little language that compiles to JavaScript. Happy Holidays, HN. Posting to Hacker

News discussion forum. 24 Dec. 2009. non-archival http://news.ycombinator.com/item?id=1014080 (also at Internet
Archive 27 Dec. 2009 02:36:51).

Jeremy Ashkenas. 2010. CoffeeScript 1.0. Online manual. 24 Dec. 2010. non-archival http://jashkenas.github.com/coffee-
script/ (broken; also at Internet Archive 30 Dec. 2010 11:17:19).

Jeremy Ashkenas. 2011. jashkenas / minimalist-classes.js. GitHub Gist. 31 Oct. 2011. non-archival https://gist.github.
com/jashkenas/1329619 (also at Internet Archive 13 Dec. 2013 04:17:13).

Jeremy Ashkenas et al. 2011. List of languages that compile to JS. Github Wiki Page. 6 Jan. 2011. non-
archival https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS (superseded). Archived

Authors’ Corrections: March 2021

https://web.archive.org/web/20140811231528/http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/actionscript/articles/avm2overview.pdf
https://web.archive.org/web/20130315114533/http://solutionpartners.adobe.com/products/player_census/flashplayer/
http://adsafe.org/
https://web.archive.org/web/20090105155330/http://adsafe.org/
https://web.archive.org/web/20090105155330/http://adsafe.org/
https://archive.org/download/pdfy-MgN0H1joIoDVoIC7/The_AWK_Programming_Language.pdf
https://archive.org/download/pdfy-MgN0H1joIoDVoIC7/The_AWK_Programming_Language.pdf
https://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
https://web.archive.org/web/20180902121422/http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
https://web.archive.org/web/20180902121422/http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
http://benalman.com/news/2010/11/immediately-invoked-function-expression/
http://benalman.com/news/2010/11/immediately-invoked-function-expression/
https://web.archive.org/web/20101118035434/http://benalman.com/news/2010/11/immediately-invoked-function-expression/
http://www.itwriting.com/blog/363-mark-anders-remembers-blackbird-and-other-microsoft-hits-and-misses.html
http://www.itwriting.com/blog/363-mark-anders-remembers-blackbird-and-other-microsoft-hits-and-misses.html
https://web.archive.org/web/20081004233115/http://www.itwriting.com/blog/363-mark-anders-remembers-blackbird-and-other-microsoft-hits-and-misses.html
http://arv.github.io/ecmascript-object-observe/
https://web.archive.org/web/20151120010205/http://arv.github.io/ecmascript-object-observe/
http://news.ycombinator.com/item?id=1014080
https://web.archive.org/web/20091227023651/http://news.ycombinator.com/item?id=1014080
https://web.archive.org/web/20091227023651/http://news.ycombinator.com/item?id=1014080
https://web.archive.org/web/20101230111719/http://jashkenas.github.com/coffee-script/
https://gist.github.com/jashkenas/1329619
https://gist.github.com/jashkenas/1329619
https://web.archive.org/web/20131213041713/https://gist.github.com/jashkenas/1329619

JavaScript: The First 20 Years 169

at https://web.archive.org/web/20190327012411/https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-
compile-to-JS/eaca17540d9b66289dcc5f9bb8b6368f868c1e0a (this is the first version of the list).

Jeremy Ashkenas et al. 2018. List of languages that compile to JS. Github Wiki Page. 10 July
2018. non-archival https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-
JS/b14e7ef4c9963d50d39ed5443b5baa6ed0f63645 (link to current list; also at Internet Archive 27 March 2019
01:32:27, list as of July 2018).

Ihab A.B. Awad. 2010a. EMaker style modules for ECMAScript. Ecma/TC39/2010/004. 28 Feb. 2010. https://www.ecma-
international.org/archive/ecmascript/2010/TC39/tc39-2010-004.pdf Presentation at TC39 meeting.

Ihab A.B. Awad. 2010b. Module proposals status. es-discuss mailing list. 18 May 2010. non-archival https://mail.mozilla.
org/pipermail/es-discuss/2010-May/011220.html (also at Internet Archive 5 June 2014 01:09:25).

Ihab A.B. Awad. 2010c. Strawman: Modules Emaker Style. ecmascript.org wiki. 27 Jan. 2010. non-archival http:
//wiki.ecmascript.org/doku.php?id=strawman:modules_emaker_style (broken; also at Internet Archive 6 Feb. 2010
04:42:45).

Ihab A.B. Awad and Kris Kowal. 2009. Presentation on Modules. Ecma/TC39/2009/012. 29 Jan. 2009. https://www.ecma-
international.org/archive/ecmascript/2009/TC39/tc39-2009-012.pdf

Babel Project. 2015. babeljs.io. Web site. 15 Feb. 2015. non-archival https://babeljs.io/ (current site; also at Internet
Archive 15 Feb. 2015 18:16:40, original site contents).

Adam Barth, Joel Weinberger, and Dawn Song. 2009. Cross-Origin JavaScript Capability Leaks: Detection, Exploitation, and
Defense. In 18th USENIX Security Symposium, Montreal, Canada, August 10-14, 2009, Proceedings, Fabian Monrose (Ed.).
USENIX Association, 187–198. non-archival https://www.usenix.org/legacy/events/sec09/tech/full_papers/barth.pdf
(also at Internet Archive 14 Aug. 2017 10:41:16).

Jon Bentley. 1986. Programming Pearls: Little Languages. Commun. ACM 29, 8 (Aug.), 711–721. 0001-0782 https:
//doi.org/10.1145/6424.315691

Tim Berners-Lee. 2003. A Brief History of the Web. W3C web page. non-archival https://www.w3.org/DesignIssues/
TimBook-old/History.html (also at Internet Archive 15 Nov. 2019 11:53:52).

Nino Bilic. 2007. Happy 10th birthday, Outlook Web Access! Microsoft Exchange Team Blog. 13 June 2007. non-
archival https://techcommunity.microsoft.com/t5/Exchange-Team-Blog/Happy-10th-birthday-Outlook-Web-Access/
ba-p/593150 (also at Internet Archive 8 July 2019 21:43:19).

John Borland. 2003. Browser wars: High price, huge rewards. ZDNet.com (15 April). non-archival http://www.zdnet.com/
article/browser-wars-high-price-huge-rewards/ (also at Internet Archive 21 Dec. 2014 07:45:10).

Borland International. 1996. Proposed JavaScript Extensions. Ecma/TC39/1996/006. 22 Nov. 1996. https://www.ecma-
international.org/archive/ecmascript/1996/TC39/96-006.pdf

Bert Bos. 2005. “JavaScript, the worst invention ever”. Web page. 8 May 2005. non-archival http://www.phonk.net/
Gedachten/JavaScript (also at Internet Archive 30 April 2006 04:12:47).

Jon Byous. 1998. Happy 3rd Birthday! java.sun.com website. 23 May 1998. non-archival http://java.sun.com:80/features/
1998/05/birthday.html (broken; also at Internet Archive 24 Feb. 1999 05:34:07). This article was later renamed to Java
Technology: An Early History.

Caja Project. 2012. Google Caja. developers.google.com website. 28 Feb. 2012. non-archival https://developers.google.
com/caja/ (also at Internet Archive 15 Nov. 2012 02:37:36).

Jonathan Cardy. 2011. A Collection of JavaScript Gotchas. The Code Project website. 2 Dec. 2011. non-archival
http://www.codeproject.com/Articles/182416/A-Collection-of-JavaScript-Gotchas (also at Internet Archive 3 Feb. 2012
00:35:12).

Patrick J. Caudill and Allen Wirfs-Brock. 1986. A Third Generation Smalltalk-80 Implementation. In Conference Proceedings
on Object-oriented Programming Systems, Languages and Applications (Portland, Oregon, USA) (OOPSLA ’86). ACM, New
York, NY, USA, 119–130. 0-89791-204-7 https://doi.org/10.1145/28697.28709

Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, and Carolyn Talcott.
2003. The Maude 2.0 System. In Proceedings of the 14th International Conference on Rewriting Techniques and Applications
(Valencia, Spain) (RTA’03). Springer-Verlag, Berlin, Heidelberg, 76–87. 3-540-40254-3 http://dl.acm.org/citation.cfm?id=
1759148.1759156

Andrew Clinick. 1997. Proposal for Conditional Compile Support in ECMAScript. Ecma/TC39/1997/033. 11 July 1997.
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-033.pdf

Andrew Clinick. 1999. ECMA TC39 and Working Group meetings – 29/30 March 1999. Ecma TC39wg tcn9903. 30 March
1999. https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/tcn9903.htm

Andrew Clinick. 2000. Introducing JScript .NET. Micrsoft Scripting Clinic column. 14 July 2000. non-
archival https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/scripting-
articles/ms974588(v=msdn.10) (also at Internet Archive 30 Aug. 2018 11:06:29).

Authors’ Corrections: March 2021

https://web.archive.org/web/20190327012411/https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS/eaca17540d9b66289dcc5f9bb8b6368f868c1e0a
https://web.archive.org/web/20190327012411/https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS/eaca17540d9b66289dcc5f9bb8b6368f868c1e0a
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS/b14e7ef4c9963d50d39ed5443b5baa6ed0f63645
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS/b14e7ef4c9963d50d39ed5443b5baa6ed0f63645
https://web.archive.org/web/20190327013227/https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS/b14e7ef4c9963d50d39ed5443b5baa6ed0f63645
https://web.archive.org/web/20190327013227/https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS/b14e7ef4c9963d50d39ed5443b5baa6ed0f63645
https://www.ecma-international.org/archive/ecmascript/2010/TC39/tc39-2010-004.pdf
https://www.ecma-international.org/archive/ecmascript/2010/TC39/tc39-2010-004.pdf
https://mail.mozilla.org/pipermail/es-discuss/2010-May/011220.html
https://mail.mozilla.org/pipermail/es-discuss/2010-May/011220.html
https://web.archive.org/web/20140605010925/https://mail.mozilla.org/pipermail/es-discuss/2010-May/011220.html
https://web.archive.org/web/20100206044245/http://wiki.ecmascript.org/doku.php?id=strawman:modules_emaker_style
https://web.archive.org/web/20100206044245/http://wiki.ecmascript.org/doku.php?id=strawman:modules_emaker_style
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-012.pdf
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-012.pdf
https://babeljs.io/
https://web.archive.org/web/20150215181640/https://babeljs.io/
https://web.archive.org/web/20150215181640/https://babeljs.io/
https://www.usenix.org/legacy/events/sec09/tech/full_papers/barth.pdf
https://web.archive.org/web/20170814104116/https://www.usenix.org/legacy/events/sec09/tech/full_papers/barth.pdf
https://doi.org/10.1145/6424.315691
https://doi.org/10.1145/6424.315691
https://www.w3.org/DesignIssues/TimBook-old/History.html
https://www.w3.org/DesignIssues/TimBook-old/History.html
https://web.archive.org/web/20191115115352/https://www.w3.org/DesignIssues/TimBook-old/History.html
https://techcommunity.microsoft.com/t5/Exchange-Team-Blog/Happy-10th-birthday-Outlook-Web-Access/ba-p/593150
https://techcommunity.microsoft.com/t5/Exchange-Team-Blog/Happy-10th-birthday-Outlook-Web-Access/ba-p/593150
https://web.archive.org/web/20190708214319/https://techcommunity.microsoft.com/t5/Exchange-Team-Blog/Happy-10th-birthday-Outlook-Web-Access/ba-p/593150
http://www.zdnet.com/article/browser-wars-high-price-huge-rewards/
http://www.zdnet.com/article/browser-wars-high-price-huge-rewards/
https://web.archive.org/web/20141221074510/http://www.zdnet.com/article/browser-wars-high-price-huge-rewards/
https://www.ecma-international.org/archive/ecmascript/1996/TC39/96-006.pdf
https://www.ecma-international.org/archive/ecmascript/1996/TC39/96-006.pdf
http://www.phonk.net/Gedachten/JavaScript
http://www.phonk.net/Gedachten/JavaScript
https://web.archive.org/web/20060430041247/http://www.phonk.net/Gedachten/JavaScript
https://web.archive.org/web/19990224053407/http://java.sun.com:80/features/1998/05/birthday.html
https://developers.google.com/caja/
https://developers.google.com/caja/
https://web.archive.org/web/20121115023736/https://developers.google.com/caja/
http://www.codeproject.com/Articles/182416/A-Collection-of-JavaScript-Gotchas
https://web.archive.org/web/20120203003512/http://www.codeproject.com/Articles/182416/A-Collection-of-JavaScript-Gotchas
https://web.archive.org/web/20120203003512/http://www.codeproject.com/Articles/182416/A-Collection-of-JavaScript-Gotchas
https://doi.org/10.1145/28697.28709
http://dl.acm.org/citation.cfm?id=1759148.1759156
http://dl.acm.org/citation.cfm?id=1759148.1759156
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-033.pdf
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/tcn9903.htm
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/scripting-articles/ms974588(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/scripting-articles/ms974588(v=msdn.10)
https://web.archive.org/web/20180830110629/https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/scripting-articles/ms974588(v=msdn.10)

170 Allen Wirfs-Brock and Brendan Eich

CommonJS Project. 2009. Modules/1.0. CommonJS Wiki. 22 April 2009. non-archival http://wiki.commonjs.org/index.
php?title=Modules/1.0&oldid=489 (also at Internet Archive 7 April 2019 19:26:43).

William R. Cook. 2007. AppleScript. In Proceedings of the Third ACM SIGPLAN Conference on History of Programming
Languages (San Diego, California) (HOPL III). ACM, New York, NY, USA, 1–1–1–21. 978-1-59593-766-7 https://doi.org/
10.1145/1238844.1238845

Mike Cowlishaw (Ed.). 1998. ECMA-262, 2nd Edition: ECMAScript Language Specification. Ecma International, Geneva,
Switzerland (Aug.). https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%202nd%
20edition,%20August%201998.pdf

Mike Cowlishaw (Ed.). 1999a. ECMA-262, 3rd Edition: ECMAScript Language Specification. Ecma International, Geneva,
Switzerland (Dec.). https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%
20edition,%20December%201999.pdf

Mike Cowlishaw. 1999b. ECMAScript E3 draft status [1999.04.08]. Ecma/TC39/1999/003. 8 April 1999. https://www.ecma-
international.org/archive/ecmascript/1999/TC39/9t39-003.pdf

Mike Cowlishaw. 1999c. ECMAScript E3 draft status [1999.08.03]. Ecma TC39wg 990803-e3status. 3 Aug. 1999. https:
//www.ecma-international.org/archive/ecmascript/1999/TC39WG/990803-e3status.htm

Mike Cowlishaw et al. 1998. ECMAScript Language Specification, Version 2 Working Draft (with change bars). Ecma TC39
working document. 22 April 1998. https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/es2D9804.pdf

Douglas Crockford. 2001a. JavaScript: The World’s Most Misunderstood Programming Language. Web page. non-archival
http://www.crockford.com/javascript/javascript.html (also at Internet Archive 10 Aug. 2002 19:25:30).

Douglas Crockford. 2001b. JSLINT The JavaScript Verifier. Web page. non-archival http://www.crockford.com:80/
javascript/lint.html (superseded; also at Internet Archive 1 May 2002 09:03:02). page relocated in 2005: non-archival
http://www.jslint.com/lint.html

Douglas Crockford. 2001c. JSMIN The JavaScript Minifier. Web page. 11 Sept. 2001. non-archival http://www.crockford.
com/javascript/jsmin.html (current version; also at Internet Archive 5 April 2002 14:04:16, original version).

Douglas Crockford. 2001d. Private Members in JavaScript. Web page. non-archival http://www.crockford.com/javascript/
private.html (also at Internet Archive 10 Aug. 2002 19:33:24).

Douglas Crockford. 2001e. A Survey of the JavaScript Programming Language. Web page. non-archival http:/www.
crockford.com:80/javascript/survey.html (also at Internet Archive 5 June 2002 05:31:45).

Douglas Crockford. 2002a. Classical Inheritance in JavaScript. Web page. Sept. 2002. non-archival http://www.crockford.
com:80/javascript/inheritance.html (also at Internet Archive 16 Oct. 2002 17:12:01).

Douglas Crockford. 2002b. Introducing JSON. Web page. Dec. 2002. non-archival http://www.crockford.com/JSON/index.
html (broken; also at Internet Archive 28 Feb. 2003 03:41:47).

Douglas Crockford. 2002c. JSON in JavaScript. Web page. Dec. 2002. non-archival http://www.crockford.com:80/JSON/js.
html (broken). Archived at hhttps://web.archive.org/web/20030111194120/http://www.crockford.com:80/JSON/js.html

Douglas Crockford. 2002d. Recommendations for Modifications to the ECMAScript Language Specification. Web page.
4 Jan. 2002. non-archival http://www.crockford.com:80/javascript/recommend.html (superseded; also at Internet
Archive 5 April 2002 14:32:50).

Douglas Crockford. 2003. The Little JavaScripter. Web page. non-archival http://www.crockford.com/javascript/little.html
(superseded; also at Internet Archive 8 April 2003 00:03:36).

Douglas Crockford. 2006. Prototypal Inheritance in JavaScript. Web page. 7 June 2006. non-archival http://www.crockford.
com/javascript/prototypal.html (updated 7 March 2008; also at Internet Archive 20 Oct. 2008 05:59:23). Original version
archived on 16 June 2006 https://web.archive.org/web/20060616111939/http://javascript.crockford.com/prototypal.html

Douglas Crockford. 2007a. Re: ECMAScript 4 Language Overview White Paper (21 Oct. 2007, 11:31 AM). Message to
TC39-TG1 private mailing list. Archived by Ecma International.

Douglas Crockford. 2007b. Recommendations for Modifications to the ECMAScript Language Specification (2007-4-21).
Web page. 21 April 2007. non-archival http://www.crockford.com:80/javascript/recommend.html (superseded; also at
Internet Archive 7 June 2007 17:26:21).

Douglas Crockford. 2007c. Recommendations for Modifications to the ECMAScript Language Specification (2007-4-4).
Web page. 4 April 2007. non-archival http://www.crockford.com:80/javascript/recommend.html (superseded; also at
Internet Archive 6 April 2007 06:37:23).

Douglas Crockford. 2007d. Recommendations for Modifications to the ECMAScript Language Specification (2007-6-21).
Web page. 21 June 2007. non-archival http://www.crockford.com:80/javascript/recommend.html (also at Internet
Archive 14 Aug. 2007 04:51:17).

Douglas Crockford. 2008a. es3.1 goals. ecmascript.org wiki. 26 Feb. 2008. non-archival http://wiki.ecmascript.org/doku.
php?id=es3.1:es3.1_goals (broken; also at Internet Archive 13 Oct. 2016 19:48:29).

Douglas Crockford. 2008b. JavaScript: The Good Parts. O’Reilly Media, Inc. 0596517742

Authors’ Corrections: March 2021

http://wiki.commonjs.org/index.php?title=Modules/1.0&oldid=489
http://wiki.commonjs.org/index.php?title=Modules/1.0&oldid=489
https://web.archive.org/web/20190407192643/http://wiki.commonjs.org/index.php?title=Modules/1.0&oldid=489
https://doi.org/10.1145/1238844.1238845
https://doi.org/10.1145/1238844.1238845
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%202nd%20edition,%20August%201998.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%202nd%20edition,%20August%201998.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-003.pdf
https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-003.pdf
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/990803-e3status.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/990803-e3status.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/es2D9804.pdf
http://www.crockford.com/javascript/javascript.html
https://web.archive.org/web/20020810192530/http://www.crockford.com/javascript/javascript.html
https://web.archive.org/web/20020501090302/http://www.crockford.com:80/javascript/lint.html
http://www.jslint.com/lint.html
http://www.crockford.com/javascript/jsmin.html
http://www.crockford.com/javascript/jsmin.html
https://web.archive.org/web/20020405140416/http://www.crockford.com/javascript/jsmin.html
http://www.crockford.com/javascript/private.html
http://www.crockford.com/javascript/private.html
https://web.archive.org/web/20020810193324/http://www.crockford.com/javascript/private.html
http:/www.crockford.com:80/javascript/survey.html
http:/www.crockford.com:80/javascript/survey.html
https://web.archive.org/web/20020605053145/http:/www.crockford.com:80/javascript/survey.html
http://www.crockford.com:80/javascript/inheritance.html
http://www.crockford.com:80/javascript/inheritance.html
https://web.archive.org/web/20021016171201/http://www.crockford.com:80/javascript/inheritance.html
https://web.archive.org/web/20030228034147/http://www.crockford.com/JSON/index.html
hhttps://web.archive.org/web/20030111194120/http://www.crockford.com:80/JSON/js.html
https://web.archive.org/web/20020405143250/http://www.crockford.com:80/javascript/recommend.html
https://web.archive.org/web/20020405143250/http://www.crockford.com:80/javascript/recommend.html
http://www.crockford.com/javascript/little.html
https://web.archive.org/web/20030408000336/http://www.crockford.com/javascript/little.html
http://www.crockford.com/javascript/prototypal.html
http://www.crockford.com/javascript/prototypal.html
https://web.archive.org/web/20081020055923/http://www.crockford.com/javascript/prototypal.html
https://web.archive.org/web/20060616111939/http://javascript.crockford.com/prototypal.html
https://web.archive.org/web/20070607172621/http://www.crockford.com:80/javascript/recommend.html
https://web.archive.org/web/20070406063723/http://www.crockford.com:80/javascript/recommend.html
http://www.crockford.com:80/javascript/recommend.html
https://web.archive.org/web/20070814045117/http://www.crockford.com:80/javascript/recommend.html
https://web.archive.org/web/20070814045117/http://www.crockford.com:80/javascript/recommend.html
https://web.archive.org/web/20161013194829/http://wiki.ecmascript.org/doku.php?id=es3.1:es3.1_goals

JavaScript: The First 20 Years 171

Douglas Crockford. 2008c. The Only Thing We Have To Fear Is Premature Standardization. Yahoo! User Interface Blog. 14
Aug. 2008. non-archival http://yuiblog.com/blog/2008/08/14/premature-standardization/ (also at Internet Archive 17
Aug. 2008 15:15:45).

Douglas Crockford. 2008d. Secure ECMAScript. Ecma/TC39/2008/086. Aug. 2008. https://www.ecma-international.org/
archive/ecmascript/2008/TC39/tc39-2008-086-sesintro.pdf

Douglas Crockford. 2019a. json.org. Website. May 2019. non-archival https://json.org/ Archived at https://web.archive.
org/web/20200216094715/https://www.json.org/json-en.html

Douglas Crockford. 2019b. Minify. Blog post. 5 May 2019. non-archival https://www.crockford.com/minify.html (also at
Internet Archive 11 May 2019 18:59:04).

Douglas Crockford, Pratap Lakshman, and Allen Wirfs-Brock. 2007. Proposal to Refocus TC39-TG1 On the Maintenance of
the ECMAScript 3rd Edition Specification. ecmascript.org wiki. 16 March 2007. https://ecma-international.org/archive/
ecmascript/2007/misc/proposal_to_refocus_tc39-tg1.pdf

Ryan Dahl. 2009. (Non-archival) Node.js. Video of presentation at the European JavaScript Conference. 7 Nov. 2009.
non-archival https://youtu.be/ztspvPYybIY (retrieved 7 March 2019)

Kevin Dangoor. 2009. What Server Side JavaScript needs. Blog post. 29 Jan. 2009. non-archival http://www.blueskyonmars.
com/2009/01/29/what-server-side-javascript-needs/ (also at Internet Archive 31 Jan. 2009 20:07:16).

Kevin Dangoor. 2010. CommonJS: the First Year. Blog post. 29 Jan. 2010. non-archival http://www.blueskyonmars.com/
2010/01/29/commonjs-the-first-year/ (also at Internet Archive 1 Feb. 2010 03:18:49).

Olivier Danvy. 2005. Transcript of Q&A following Brendan Eich ICFP 2005 keynote. Comment on blog post. 27 Oct. 2005.
non-archival http://brendaneich.com/2005/10/recap-and-prelude/#comment-336 (also at Internet Archive 5 March
2011 18:57:51).

Ilana Dashevsky and Vicki Balzano. 2008. James Webb Space Telescope ground to flight interface design. In 2008 IEEE
Aerospace Conference. IEEE, IEEE, 1–7.

Domenic Denicola. 2014. ModuleImport. es-discuss mailing list. 19 June 2014. non-archival https://mail.mozilla.org/
pipermail/es-discuss/2014-June/037951.html (also at Internet Archive 23 July 2014 23:15:52).

Domenic Denicola. 2016. Adding JavaScript modules to the web platform. Blog post on The WHATWG Blog. 13 April 2016.
non-archival https://blog.whatwg.org/js-modules (also at Internet Archive 14 April 2016 00:50:24).

Ken Dickey. 1992. Scheming with objects. AI Expert 7, 10, 24–33. non-archival http://ftp.cs.indiana.edu/pub/scheme-
repository/doc/pubs/swob.txt (broken; also at Internet Archive 16 Dec. 1999 14:28:10).

Darcy DiNucci. 1999. Fragmented Future. Print 53, 4. non-archival http://darcyd.com/fragmented_future.pdf (also at
Internet Archive 16 Nov. 2011 23:46:36).

Chris Dollin. 2002. Spice language manual. HP Labs Technical Report HPL-2002-229. 30 Oct. 2002. non-archival
http://www.hpl.hp.com/techreports/2002/HPL-2002-229.pdf (also at Internet Archive 31 Aug. 2003 04:58:04).

Jeff Dyer. 2008a. ES4 work. ES4-discuss mailing list. 15 Feb. 2008. non-archival https://mail.mozilla.org/pipermail/es-
discuss/2008-February/005335.html (also at Internet Archive 5 June 2014 05:48:10).

Jeff Dyer. 2008b. Packages must go. ES4-discuss mailing list. 17 April 2008. non-archival https://mail.mozilla.org/
pipermail/es-discuss/2008-April/006183.html (also at Internet Archive 5 June 2014 05:21:32).

Ecma International. 1996a. Invitation and venue for the start-up meeting on a project on Java Script. Ecma/TC39/1996/001.
19 Sept. 1996. https://www.ecma-international.org/archive/ecmascript/1996/TC39/96-001.pdf

Ecma International. 1996b. Minutes for the Ecma Co-ordinating Committee, Sept. 19-20, 1996. Ecma/GA/1996/083. 19 Sept.
1996. https://www.ecma-international.org/archive/ecmascript/1996/GA/96-083-excerpt.pdf

Ecma International. 1997. Minutes for the 73rd General Assembly, 26-27 June 1997. Ecma/GA/1997/063 (excerpts). 26 June
1997. https://www.ecma-international.org/archive/ecmascript/1997/GA/97-063-excerpt.pdf

Ecma International. 1999. Minutes for the 78th General Assembly, 16-17 Dec. 1997. Ecma/GA/1999/137 (excerpts). 16 Dec.
1999. https://www.ecma-international.org/archive/ecmascript/1999/GA/9ga-137-excerpts.pdf

Ecma International. 2004. Ecma International Approves ECMAScript for XML. Press Release Ecma/GA/2004/148. 20 July
2004. https://www.ecma-international.org/archive/ecmascript/2004/GA/ga-2004-148.pdf

Ecma International. 2007a. Minutes for the meeting of the Co-ordinating Committee, 23-24 October 2007. Ecma/GA/2007/202
(excerpts). 24 Oct. 2007. https://www.ecma-international.org/archive/ecmascript/2007/GA/ga-2007-202-excerpt.pdf

Ecma International. 2007b. Minutes for the meeting of the Co-ordinating Committee, 9-10 May 2007. Ecma/GA/2007/088
(excerpts). 10 May 2007. https://www.ecma-international.org/archive/ecmascript/2007/GA/ga-2007-088-excerpt.pdf

Ecma International. 2008. Press Release: TC39 coalesces on future direction of Web Programming Language. Ec-
ma/TC39/2008/073. 19 Aug. 2008. https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-073.pdf

Ecma International. 2009a. Ecma International approves major revision of ECMAScript. Press Release Ecma/GA/2009/204.
15 Dec. 2009. https://ecma-international.org/news/PressReleases/PR_Ecma%20approves%20major%20revision%20of%
20ECMAScript.htm Archived at https://www.ecma-international.org/archive/ecmascript/2009/GA/ga-2009-204.pdf

Authors’ Corrections: March 2021

http://yuiblog.com/blog/2008/08/14/premature-standardization/
https://web.archive.org/web/20080817151545/http://yuiblog.com/blog/2008/08/14/premature-standardization/
https://web.archive.org/web/20080817151545/http://yuiblog.com/blog/2008/08/14/premature-standardization/
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-086-sesintro.pdf
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-086-sesintro.pdf
https://json.org/
https://web.archive.org/web/20200216094715/https://www.json.org/json-en.html
https://web.archive.org/web/20200216094715/https://www.json.org/json-en.html
https://www.crockford.com/minify.html
https://web.archive.org/web/20190511185904/https://www.crockford.com/minify.html
https://ecma-international.org/archive/ecmascript/2007/misc/proposal_to_refocus_tc39-tg1.pdf
https://ecma-international.org/archive/ecmascript/2007/misc/proposal_to_refocus_tc39-tg1.pdf
https://youtu.be/ztspvPYybIY
http://www.blueskyonmars.com/2009/01/29/what-server-side-javascript-needs/
http://www.blueskyonmars.com/2009/01/29/what-server-side-javascript-needs/
https://web.archive.org/web/20090131200716/http://www.blueskyonmars.com/2009/01/29/what-server-side-javascript-needs/
http://www.blueskyonmars.com/2010/01/29/commonjs-the-first-year/
http://www.blueskyonmars.com/2010/01/29/commonjs-the-first-year/
https://web.archive.org/web/20100201031849/http://www.blueskyonmars.com/2010/01/29/commonjs-the-first-year/
http://brendaneich.com/2005/10/recap-and-prelude/#comment-336
https://web.archive.org/web/20110305185751/http://brendaneich.com/2005/10/recap-and-prelude/#comment-336
https://web.archive.org/web/20110305185751/http://brendaneich.com/2005/10/recap-and-prelude/#comment-336
https://mail.mozilla.org/pipermail/es-discuss/2014-June/037951.html
https://mail.mozilla.org/pipermail/es-discuss/2014-June/037951.html
https://web.archive.org/web/20140723231552/https://mail.mozilla.org/pipermail/es-discuss/2014-June/037951.html
https://blog.whatwg.org/js-modules
https://web.archive.org/web/20160414005024/https://blog.whatwg.org/js-modules
https://web.archive.org/web/19991216142810/http://ftp.cs.indiana.edu/pub/scheme-repository/doc/pubs/swob.txt
http://darcyd.com/fragmented_future.pdf
https://web.archive.org/web/20111116234636/http://darcyd.com/fragmented_future.pdf
http://www.hpl.hp.com/techreports/2002/HPL-2002-229.pdf
https://web.archive.org/web/20030831045804/http://www.hpl.hp.com/techreports/2002/HPL-2002-229.pdf
https://mail.mozilla.org/pipermail/es-discuss/2008-February/005335.html
https://mail.mozilla.org/pipermail/es-discuss/2008-February/005335.html
https://web.archive.org/web/20140605054810/https://mail.mozilla.org/pipermail/es-discuss/2008-February/005335.html
https://mail.mozilla.org/pipermail/es-discuss/2008-April/006183.html
https://mail.mozilla.org/pipermail/es-discuss/2008-April/006183.html
https://web.archive.org/web/20140605052132/https://mail.mozilla.org/pipermail/es-discuss/2008-April/006183.html
https://www.ecma-international.org/archive/ecmascript/1996/TC39/96-001.pdf
https://www.ecma-international.org/archive/ecmascript/1996/GA/96-083-excerpt.pdf
https://www.ecma-international.org/archive/ecmascript/1997/GA/97-063-excerpt.pdf
https://www.ecma-international.org/archive/ecmascript/1999/GA/9ga-137-excerpts.pdf
https://www.ecma-international.org/archive/ecmascript/2004/GA/ga-2004-148.pdf
https://www.ecma-international.org/archive/ecmascript/2007/GA/ga-2007-202-excerpt.pdf
https://www.ecma-international.org/archive/ecmascript/2007/GA/ga-2007-088-excerpt.pdf
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-073.pdf
https://ecma-international.org/news/PressReleases/PR_Ecma%20approves%20major%20revision%20of%20ECMAScript.htm
https://ecma-international.org/news/PressReleases/PR_Ecma%20approves%20major%20revision%20of%20ECMAScript.htm
https://www.ecma-international.org/archive/ecmascript/2009/GA/ga-2009-204.pdf

172 Allen Wirfs-Brock and Brendan Eich

Ecma International. 2009b. Minutes of the 98thmeerting of the EcmaGeneral Assembly, 3 December 2009. Ecma/GA/2009/203
(excerpts). 3 Dec. 2009. https://www.ecma-international.org/archive/ecmascript/2009/GA/ga-2009-203-excerpt.pdf

Ecma International. 2015a. At the June 17, 2015 Ecma General Assembly in Montreux, ECMA-262 6th edition - ECMAScript
2015 Language Specification and ECMA-402 2nd edition - ECMAScript 2015 Internationalization API have been adopted.
Press Release. 2 July 2015. https://www.ecma-international.org/news/Publication%20of%20ECMA-262%206th%20edition.
htm

Ecma International. 2015b. Minutes of the 98th meerting of the Ecma General Assembly, 17 June 2015. Ecma/GA/2015/065-
Rev1 (excerpts). June 2015. https://www.ecma-international.org/archive/ecmascript/2015/GA/ga-2015-068-Rev1-excerpt.
pdf

Brendan Eich. 2004. The non-world non-wide non-web. Blog post. 4 June 2004. non-archival http://brendaneich.com/
2004/06/the-non-world-non-wide-non-web/ (also at Internet Archive 11 April 2011 02:14:44).

Brendan Eich. 2005a. JavaScript 1, 2, and in between. Blog post. 13 June 2005. non-archival http://brendaneich.com/2005/
06/javascript-1-2-and-in-between/ (also at Internet Archive 7 Aug. 2011 19:55:50).

Brendan Eich. 2005b. JavaScript at Ten Years. ICFP’05 Keynote presentation slide deck. 26 Sept. 2005. non-archival
http://www-archive.mozilla.org/js/language/ICFP-Keynote.ppt (also at Internet Archive 25 July 2011 10:53:50).

Brendan Eich. 2005c. JS2 Design Notes. Blog post. 9 Nov. 2005. non-archival http://brendaneich.com/2005/11/js2-design-
notes/ (also at Internet Archive 7 Aug. 2011 19:56:35).

Brendan Eich. 2005d. Recap and Prelude. Blog post. 27 Oct. 2005. non-archival http://brendaneich.com/2005/10/recap-
and-prelude/ (also at Internet Archive 5 March 2011 18:57:51).

Brendan Eich. 2006a. JavaScript2 And The Future Of The Web. XTech 2006 presentation slide deck. 19 May 2006. non-
archival http://developer.mozilla.org:80/presentations/xtech2006/javascript/ (broken; also at Internet Archive 27 May
2006 21:59:09).

Brendan Eich. 2006b. Will there be a suggested file suffix for es4? es-discuss mailing list. 3 Oct. 2006. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2006-October/000133.html (also at Internet Archive 22 May 2011 17:00:37).

Brendan Eich. 2007a. New Projects. Brendan’s Roadmap Updates blog post. 25 July 2007. non-archival http://weblogs.
mozillazine.org/roadmap/archives/2007/07/new_projects.html (broken; also at Internet Archive 23 Aug. 2007 19:42:37).

Brendan Eich. 2007b. RE: Refocus (16 March 2007, 10:42 PM). Message to TC39-TG1 private mailing list. Archived by Ecma
International.

Brendan Eich. 2007c. RE: Refocus (16 March 2007, 4:22 PM). Message to TC39-TG1 private mailing list. Archived by Ecma
International.

Brendan Eich. 2007d. TG1 Convener’s Report to TC39. Ecma/TC39-TG1/2007/001. 7 Sept. 2007. https://www.ecma-
international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-001.pdf

Brendan Eich. 2008a. Allen’s lambda syntax proposal. es-discuss mailing list. 29 Nov. 2008. non-archival https:
//mail.mozilla.org/pipermail/es-discuss/2008-November/008216.html (also at Internet Archive 18 July 2010 15:22:18).

Brendan Eich. 2008b. ECMAScript Harmony. es-discuss mailing list. 13 Aug. 2008. non-archival https://mail.mozilla.org/
pipermail/es-discuss/2008-August/006837.html (also at Internet Archive 22 May 2011 17:16:41).

Brendan Eich. 2008c. Popularity. Blog post. April 2008. non-archival http://brendaneich.com/2008/04/ (also at Internet
Archive 4 Feb. 2015 16:07:55).

Brendan Eich. 2009a. harmony:harmony. ecmascript.org wiki. 27 July 2009. non-archival http://wiki.ecmascript.org:
80/doku.php?id=harmony:harmony (broken; also at Internet Archive 18 Aug. 2009 15:34:47).

Brendan Eich. 2009b. Improving ECMAScript as a compilation target. es-discuss mailing list. 4 May 2009. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009168.html (also at Internet Archive 5 June 2014 02:53:59).

Brendan Eich. 2009c. Presentation on modules. es-discuss mailing list. 7 Nov. 2009. non-archival https://mail.mozilla.org/
pipermail/es-discuss/2009-November/010155.html (also at Internet Archive 5 June 2014 02:18:05).

Brendan Eich. 2009d. Strawman: catchalls. ecmascript.org wiki. 4 May 2009. non-archival http://wiki.ecmascript.org/
doku.php?id=strawman:catchalls (broken; also at Internet Archive 29 Sept. 2009 03:34:07).

Brendan Eich. 2010a. harmony:harmony. ecmascript.org wiki. 28 April 2010. non-archival http://wiki.ecmascript.org:
80/doku.php?id=harmony:harmony (broken; also at Internet Archive 1 July 2010 21:41:35).

Brendan Eich. 2010b. three small proposals: the bikeshed cometh! es-discuss mailing list. 29 April 2010. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2010-April/011010.html (also at Internet Archive 5 June 2014 01:24:40).

Brendan Eich. 2011a. BrendanEich/minimalist-classes.js Less minimalism, richer leather. GitHub Gist. 1 Nov. 2011. non-
archival https://gist.github.com/BrendanEich/1332193 (also at Internet Archive 24 July 2014 03:50:15).

Brendan Eich. 2011b. Harmony of My Dreams. Blog post. Jan. 2011. non-archival http://brendaneich.com/2011/01/
harmony-of-my-dreams/ (also at Internet Archive 30 Jan. 2011 23:34:27).

Brendan Eich. 2011c. My JSConf.US Presentation. Blog post. 4 May 2011. non-archival http://brendaneich.com:
80/2011/05/my-jsconf-us-presentation (also at Internet Archive 8 May 2011 05:20:26).

Authors’ Corrections: March 2021

https://www.ecma-international.org/archive/ecmascript/2009/GA/ga-2009-203-excerpt.pdf
https://www.ecma-international.org/news/Publication%20of%20ECMA-262%206th%20edition.htm
https://www.ecma-international.org/news/Publication%20of%20ECMA-262%206th%20edition.htm
https://www.ecma-international.org/archive/ecmascript/2015/GA/ga-2015-068-Rev1-excerpt.pdf
https://www.ecma-international.org/archive/ecmascript/2015/GA/ga-2015-068-Rev1-excerpt.pdf
http://brendaneich.com/2004/06/the-non-world-non-wide-non-web/
http://brendaneich.com/2004/06/the-non-world-non-wide-non-web/
https://web.archive.org/web/20110411021444/http://brendaneich.com/2004/06/the-non-world-non-wide-non-web/
http://brendaneich.com/2005/06/javascript-1-2-and-in-between/
http://brendaneich.com/2005/06/javascript-1-2-and-in-between/
https://web.archive.org/web/20110807195550/http://brendaneich.com/2005/06/javascript-1-2-and-in-between/
http://www-archive.mozilla.org/js/language/ICFP-Keynote.ppt
https://web.archive.org/web/20110725105350/http://www-archive.mozilla.org/js/language/ICFP-Keynote.ppt
http://brendaneich.com/2005/11/js2-design-notes/
http://brendaneich.com/2005/11/js2-design-notes/
https://web.archive.org/web/20110807195635/http://brendaneich.com/2005/11/js2-design-notes/
http://brendaneich.com/2005/10/recap-and-prelude/
http://brendaneich.com/2005/10/recap-and-prelude/
https://web.archive.org/web/20110305185751/http://brendaneich.com/2005/10/recap-and-prelude/
https://web.archive.org/web/20060527215909/http://developer.mozilla.org:80/presentations/xtech2006/javascript/
https://web.archive.org/web/20060527215909/http://developer.mozilla.org:80/presentations/xtech2006/javascript/
https://mail.mozilla.org/pipermail/es-discuss/2006-October/000133.html
https://web.archive.org/web/20110522170037/https://mail.mozilla.org/pipermail/es-discuss/2006-October/000133.html
https://web.archive.org/web/20070823194237/http://weblogs.mozillazine.org/roadmap/archives/2007/07/new_projects.html
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-001.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-001.pdf
https://mail.mozilla.org/pipermail/es-discuss/2008-November/008216.html
https://mail.mozilla.org/pipermail/es-discuss/2008-November/008216.html
https://web.archive.org/web/20100718152218/https://mail.mozilla.org/pipermail/es-discuss/2008-November/008216.html
https://mail.mozilla.org/pipermail/es-discuss/2008-August/006837.html
https://mail.mozilla.org/pipermail/es-discuss/2008-August/006837.html
https://web.archive.org/web/20110522171641/https://mail.mozilla.org/pipermail/es-discuss/2008-August/006837.html
http://brendaneich.com/2008/04/
https://web.archive.org/web/20150204160755/http://brendaneich.com/2008/04/
https://web.archive.org/web/20150204160755/http://brendaneich.com/2008/04/
https://web.archive.org/web/20090818153447/http://wiki.ecmascript.org:80/doku.php?id=harmony:harmony
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009168.html
https://web.archive.org/web/20140605025359/https://mail.mozilla.org/pipermail/es-discuss/2009-May/009168.html
https://mail.mozilla.org/pipermail/es-discuss/2009-November/010155.html
https://mail.mozilla.org/pipermail/es-discuss/2009-November/010155.html
https://web.archive.org/web/20140605021805/https://mail.mozilla.org/pipermail/es-discuss/2009-November/010155.html
https://web.archive.org/web/20090929033407/http://wiki.ecmascript.org/doku.php?id=strawman:catchalls
https://web.archive.org/web/20100701214135/http://wiki.ecmascript.org:80/doku.php?id=harmony:harmony
https://mail.mozilla.org/pipermail/es-discuss/2010-April/011010.html
https://web.archive.org/web/20140605012440/https://mail.mozilla.org/pipermail/es-discuss/2010-April/011010.html
https://gist.github.com/BrendanEich/1332193
https://web.archive.org/web/20140724035015/https://gist.github.com/BrendanEich/1332193
http://brendaneich.com/2011/01/harmony-of-my-dreams/
http://brendaneich.com/2011/01/harmony-of-my-dreams/
https://web.archive.org/web/20110130233427/http://brendaneich.com/2011/01/harmony-of-my-dreams/
http://brendaneich.com:80/2011/05/my-jsconf-us-presentation
http://brendaneich.com:80/2011/05/my-jsconf-us-presentation
https://web.archive.org/web/20110508052026/http://brendaneich.com:80/2011/05/my-jsconf-us-presentation

JavaScript: The First 20 Years 173

Brendan Eich. 2011d. New JavaScript Engine Module Owner. Blog post. 21 June 2011. non-archival https://brendaneich.
com/2011/06/ (also at Internet Archive 20 March 2019 11:24:31).

Brendan Eich. 2011e. New JavaScript Engine Module Owner. Slide deck for presentation at CapitolJS conference. 18
Sept. 2011. non-archival https://www.slideshare.net/BrendanEich/jslol-9539395 (also at Internet Archive 9 Oct. 2011
04:23:38).

Brendan Eich. 2011f. Strawman: arrow function syntax. ecmascript.org wiki. 2 May 2011. non-archival http://wiki.
ecmascript.org/doku.php?id=strawman:arrow_function_syntax (broken; also at Internet Archive 9 May 2011 07:01:04).

Brendan Eich. 2011g. Strawman: block lambda revival. ecmascript.org wiki. 20 May 2011. non-archival http://wiki.
ecmascript.org/doku.php?id=strawman:block_lambda_revival (broken; also at Internet Archive 15 June 2011 16:18:17).

Brendan Eich. 2012a. Class declarations. es-discuss mailing list. 16 March 2012. non-archival https://mail.mozilla.org/
pipermail/es-discuss/2012-March/021259.html (also at Internet Archive 4 June 2014 18:01:55).

Brendan Eich. 2012b. Harmony: arrow function syntax. ecmascript.org wiki. 26 May 2012. non-archival http://wiki.
ecmascript.org/doku.php?id=harmony:arrow_function_syntax (broken; also at Internet Archive 7 June 2012 07:47:19).

Brendan Eich. 2012c. u. es-discuss mailing list. 15 March 2012. non-archival https://mail.mozilla.org/pipermail/es-
discuss/2012-March/021232.html (also at Internet Archive 4 June 2014 17:58:22).

Brendan Eich. 2013. Value Objects. Ecma/TC39/2013/040. 25 July 2013. https://www.ecma-international.org/archive/
ecmascript/2013/TC39/tc39-2013-040.pdf

Brendan Eich et al. 1998. SpiderMonkey JS 1.4 source code. Mozilla snapshot of SpiderMonkey JS 1.4 source code. Oct. 1998.
non-archival https://dxr.mozilla.org/classic/source/js/src (retrieved 5 June 2019; also at Internet Archive 5 June 2019
18:58:32).

Brendan Eich et al. 2008. TC39 coalesces on future direction of Web Programming Language. Ecma/TC39/2008/074. 19 Aug.
2008. https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-074.pdf

Brendan Eich et al. 2012. The Narcissus meta-circular JavaScript interpreter. GitHub repository. Feb. 2012. non-archival
https://github.com/mozilla/narcissus/ (also at Internet Archive 7 Aug. 2013 22:04:22).

Brendan Eich and C. Rand McKinney. 1996. JavaScript Language Specification. Ecma/TC39/1996/002. 18 Nov. 1996.
https://www.ecma-international.org/archive/ecmascript/1996/TC39/96-002.pdf

ES5conform. 2009. ECMAScript 5 Conformance Suite. Codeplex project. 22 June 2009. non-archival http://es5conform.
codeplex.com (also at Internet Archive 1 July 2009 02:26:40). Zip file of final ES5conform project artifacts includ-
ing source code https://web.archive.org/web/20180705194718/https://codeplexarchive.blob.core.windows.net/archive/
projects/ES5conform/ES5conform.zip

Erik Fair. 1998. JavaScript Must Be Eradicated From The Web. Web page. 4 Dec. 1998. non-archival http://www.clock.
org/~fair/opinion/javascript-is-evil.html (also at Internet Archive 25 May 2000 09:07:14).

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-order Functions. In Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional Programming (Pittsburgh, PA, USA) (ICFP ’02). ACM, New York, NY,
USA, 48–59. 1-58113-487-8 https://doi.org/10.1145/581478.581484

Cormac Flanagan. 2006. Hybrid Type Checking. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Charleston, South Carolina, USA) (POPL ’06). ACM, New York, NY, USA, 245–256.
1-59593-027-2 https://doi.org/10.1145/1111037.1111059

Cormac Flanagan. 2008. ES-Harmony Class System Proposal. ecmascript.org wiki. Nov. 2008. non-archival http:
//wiki.ecmascript.org:80/doku.php?id=strawman:classes (broken; also at Internet Archive 8 Sept. 2010 00:46:06).

Richard P Gabriel. 1990. Lisp: Good News, Bad News, How to Win Big (keynote), European Conference on the Practical
Applications of Lisp, Cambridge University, Cambridge, England, March 1990. reprinted in AI Expert, June 1991, pp.
31–39. March 1990. non-archival http://www.dreamsongs.com/WorseIsBetter.html (also at Internet Archive 2 July
2019 10:03:53).

Andreas Gal et al. 2009. Trace-based just-in-time type specialization for dynamic languages. Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and implementation - PLDI ’09. 9781605583921 https:
//doi.org/10.1145/1542476.1542528

Jesse James Garrett. 2005. Ajax: A New Approach to Web Applications. Feb. 2005. non-archival https://www.adaptivepath.
org/ideas/ajax-new-approach-web-applications/ (broken; also at Internet Archive 10 Sept. 2015 07:23:59).

Bill Gates. 1995. The Internet Tidal Wave. Internal Microsoft Memo published on Letters of Note web site. 26 May 1995.
non-archival http://www.lettersofnote.com/2011/07/internet-tidal-wave.html (also at Internet Archive 24 July 2011
18:44:30).

Jonathan Gay. 2006. History of Flash. Adobe Showcase. May 2006. non-archival http://www.adobe.com/macromedia/
events/john_gay/ (broken; also at Internet Archive 3 May 2006 17:53:13).

General Magic. 1995. Telescript Language Reference. General Magic Inc., Sunnyvale, CA (Oct.). non-archival http://
bitsavers.org/pdf/generalMagic/Telescript_Language_Reference_Oct95.pdf (also at Internet Archive 5 May 2010 12:51:10).

Authors’ Corrections: March 2021

https://brendaneich.com/2011/06/
https://brendaneich.com/2011/06/
https://web.archive.org/web/20190320112431/https://brendaneich.com/2011/06/
https://www.slideshare.net/BrendanEich/jslol-9539395
https://web.archive.org/web/20111009042338/https://www.slideshare.net/BrendanEich/jslol-9539395
https://web.archive.org/web/20111009042338/https://www.slideshare.net/BrendanEich/jslol-9539395
https://web.archive.org/web/20110509070104/http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
https://web.archive.org/web/20110615161817/http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
https://mail.mozilla.org/pipermail/es-discuss/2012-March/021259.html
https://mail.mozilla.org/pipermail/es-discuss/2012-March/021259.html
https://web.archive.org/web/20140604180155/https://mail.mozilla.org/pipermail/es-discuss/2012-March/021259.html
https://web.archive.org/web/20120607074719/http://wiki.ecmascript.org/doku.php?id=harmony:arrow_function_syntax
https://mail.mozilla.org/pipermail/es-discuss/2012-March/021232.html
https://mail.mozilla.org/pipermail/es-discuss/2012-March/021232.html
https://web.archive.org/web/20140604175822/https://mail.mozilla.org/pipermail/es-discuss/2012-March/021232.html
https://www.ecma-international.org/archive/ecmascript/2013/TC39/tc39-2013-040.pdf
https://www.ecma-international.org/archive/ecmascript/2013/TC39/tc39-2013-040.pdf
https://dxr.mozilla.org/classic/source/js/src
https://web.archive.org/web/20190605185832/https://dxr.mozilla.org/classic/source/js/src
https://web.archive.org/web/20190605185832/https://dxr.mozilla.org/classic/source/js/src
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-074.pdf
https://github.com/mozilla/narcissus/
https://web.archive.org/web/20130807220422/https://github.com/mozilla/narcissus/
https://www.ecma-international.org/archive/ecmascript/1996/TC39/96-002.pdf
http://es5conform.codeplex.com
http://es5conform.codeplex.com
https://web.archive.org/web/20090701022640/http://es5conform.codeplex.com
https://web.archive.org/web/20180705194718/https://codeplexarchive.blob.core.windows.net/archive/projects/ES5conform/ES5conform.zip
https://web.archive.org/web/20180705194718/https://codeplexarchive.blob.core.windows.net/archive/projects/ES5conform/ES5conform.zip
http://www.clock.org/~fair/opinion/javascript-is-evil.html
http://www.clock.org/~fair/opinion/javascript-is-evil.html
https://web.archive.org/web/20000525090714/http://www.clock.org/~fair/opinion/javascript-is-evil.html
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/1111037.1111059
https://web.archive.org/web/20100908004606/http://wiki.ecmascript.org:80/doku.php?id=strawman:classes
http://www.dreamsongs.com/WorseIsBetter.html
https://web.archive.org/web/20190702100353/http://www.dreamsongs.com/WorseIsBetter.html
https://web.archive.org/web/20190702100353/http://www.dreamsongs.com/WorseIsBetter.html
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1542476.1542528
https://web.archive.org/web/20150910072359/https://www.adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://www.lettersofnote.com/2011/07/internet-tidal-wave.html
https://web.archive.org/web/20110724184430/http://www.lettersofnote.com/2011/07/internet-tidal-wave.html
https://web.archive.org/web/20110724184430/http://www.lettersofnote.com/2011/07/internet-tidal-wave.html
https://web.archive.org/web/20060503175313/http://www.adobe.com/macromedia/events/john_gay/
http://bitsavers.org/pdf/generalMagic/Telescript_Language_Reference_Oct95.pdf
http://bitsavers.org/pdf/generalMagic/Telescript_Language_Reference_Oct95.pdf
https://web.archive.org/web/20100505125110/http://bitsavers.org/pdf/generalMagic/Telescript_Language_Reference_Oct95.pdf

174 Allen Wirfs-Brock and Brendan Eich

Bill Gibbons et al. 1999. ECMAScript Language Specification, Edition 3 Final Draft. Ecma TC39 working document. 25 Aug.
1999. https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/990825-e3-final.pdf

Richard Gillam. 1998. I18N meeting minutes. Ecma TC39 working document. 18 Nov. 1998. https://www.ecma-international.
org/archive/ecmascript/1998/TC39WG/981118-i18n9811.htm

Richard Gillam et al. 1999a. Proposal for Improving Internationalization Support in ECMAScript 2.0 (Version 0.3). Ecma
TC39 working document. 15 Jan. 1999. https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/990115-
i18n9901.pdf

Richard Gillam et al. 1999b. Proposal for Improving Internationalization Support in ECMAScript 2.0 (Version 1.0). Ecma
TC39 working document. 29 April 1999. https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/990429-
i18n9904.pdf

Google. 2006. Google Web Toolkit(Beta). Google Code Project Page. May 2006. non-archival http://code.google.
com/webtoolkit/ (superseded; also at Internet Archive 23 May 2006 14:13:21). non-archival http://code.google.com/
webtoolkit/ (current version).

Google. 2008a. V8 Benchmark Suite – version 1. Web page. Sept. 2008. non-archival http://code.google.com/apis/v8/run.
html (superseded; also at Internet Archive 4 Sept. 2008 20:13:17).

Google. 2008b. V8 JavaScript Engine: Design Elements. Web page. 4 Sept. 2008. non-archival http://code.google.com/
apis/v8/design.html (superseded; also at Internet Archive 4 Sept. 2008 20:17:14).

Google. 2012a. Chromium. Project website. Jan. 2012. non-archival https://www.chromium.org/Home (also at Internet
Archive 4 Jan. 2012 01:11:48).

Google. 2012b. Chromium with the Dart VM. Web page. Feb. 2012. non-archival http://www.dartlang.org:80/dartium/
index.html (superseded; also at Internet Archive 18 Feb. 2012 22:45:29).

J. Gosling, B. Joy, and G.L. Steele. 1996. The Java Language Specification. Addison-Wesley. 9780201634518 96031170
Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan Vitek, and Matthias Felleisen.

2019. How to evaluate the performance of gradual type systems. J. Funct. Program. 29, e4. https://doi.org/10.1017/
S0956796818000217

Sacha Greif and Raphaël Benitte. 2019. State of JavaScript Survey – JavaScript Flavors. Web page. non-archival
https://2019.stateofjs.com/javascript-flavors/ (also at Internet Archive 30 Jan. 2020 23:16:05). The archived pages
do not show the data visualizations visible on the original website. The two relevant visualizations are separately
archived ats https://web.archive.org/web/20200208164728/https://2019.stateofjs.com/images/captures/javascript_flavors_
experience_ranking.png and https://web.archive.org/web/20200208155436/https://2019.stateofjs.com/images/captures/
javascript_flavors_section_overview.png.

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai,
and JF Bastien. 2017. Bringing the web up to speedwithWebAssembly. Proceedings of the 38th ACM SIGPLANConference on
Programming Language Design and Implementation - PLDI 2017. 9781450349888 https://doi.org/10.1145/3062341.3062363

Peter Hallam and Alex Russell. 2011. The Future of JS and You. Video of presentation at NodeConf 2011. 12 May 2011.
non-archival https://youtu.be/ntDZa7ekFEA (retrieved 6 March 2019)

Christian Plesner Hansen. 2009. Launching Sputnik into Orbit. Chromium Blog. 29 June 2009. non-archival http:
//blog.chromium.org/2009/06/launching-sputnik-into-orbit.html (also at Internet Archive 1 July 2009 03:41:42).

Lars T Hansen. 2007a. Compatibility Between ES3 and Proposed ES4. Ecma/TC39-TG1/2007/046. 29 Nov. 2007. https:
//www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-046.pdf

Lars T Hansen. 2007b. ECMAScript 4 Language Overview White Paper (21 Oct. 2007, 10:32 AM). Message to TC39-TG1
private mailing list. Archived by Ecma International.

Lars T Hansen. 2007c. ECMAScript 4th Edition – Project Editor’s Report. Ecma/TC39-TG1/2007/044. 8 Nov. 2007. https:
//www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-044.pdf

Lars T Hansen. 2007d. Evolutionary Programming and Gradual Typing in ECMAScript 4. Ecma/TC39-TG1/2007/045. 30
Nov. 2007. https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-045.pdf

Lars T Hansen. 2007e. Proposed ECMAScript 4th Edition – Language Overview (Revised 23 October 2007). Originally
published at www.ecmpscript.org. 23 Oct. 2007. https://www.ecma-international.org/archive/ecmascript/2007/misc/
overview.pdf

Lars T Hansen. 2008. Proposed ES4 draft 1. ES4-discuss mailing list (16 May 2008. 16 May 2008. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2008-May/006312.html (also at Internet Archive 5 June 2014 04:58:43).

Lars T Hansen et al. 2008a. Proposed ECMAScript 4th Edition Specification, Core Language Draft 1. Ecma/TC39/2008/042.
16 May 2008. https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-042.pdf

Lars T Hansen et al. 2008b. Proposed ECMAScript 4th Edition Specification Draft 1. Ecma/TC39/2008/040. 16 May 2008.
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-040.pdf

Lars T Hansen et al. 2008c. Proposed ECMAScript 4th Edition Specification, Surface Syntax Draft 1. Ecma/TC39/2008/041.
16 May 2008. https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-041.pdf

Authors’ Corrections: March 2021

https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/990825-e3-final.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/981118-i18n9811.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/981118-i18n9811.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/990115-i18n9901.pdf
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/990115-i18n9901.pdf
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/990429-i18n9904.pdf
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/990429-i18n9904.pdf
https://web.archive.org/web/20060523141321/http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
https://web.archive.org/web/20080904201317/http://code.google.com/apis/v8/run.html
https://web.archive.org/web/20080904201714/http://code.google.com/apis/v8/design.html
https://www.chromium.org/Home
https://web.archive.org/web/20120104011148/https://www.chromium.org/Home
https://web.archive.org/web/20120104011148/https://www.chromium.org/Home
https://web.archive.org/web/20120218224529/http://www.dartlang.org:80/dartium/index.html
https://doi.org/10.1017/S0956796818000217
https://doi.org/10.1017/S0956796818000217
https://2019.stateofjs.com/javascript-flavors/
https://web.archive.org/web/20200130231605/https://2019.stateofjs.com/javascript-flavors/
https://web.archive.org/web/20200208164728/https://2019.stateofjs.com/images/captures/javascript_flavors_experience_ranking.png
https://web.archive.org/web/20200208164728/https://2019.stateofjs.com/images/captures/javascript_flavors_experience_ranking.png
https://web.archive.org/web/20200208155436/https://2019.stateofjs.com/images/captures/javascript_flavors_section_overview.png
https://web.archive.org/web/20200208155436/https://2019.stateofjs.com/images/captures/javascript_flavors_section_overview.png
https://doi.org/10.1145/3062341.3062363
https://youtu.be/ntDZa7ekFEA
http://blog.chromium.org/2009/06/launching-sputnik-into-orbit.html
http://blog.chromium.org/2009/06/launching-sputnik-into-orbit.html
https://web.archive.org/web/20090701034142/http://blog.chromium.org/2009/06/launching-sputnik-into-orbit.html
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-046.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-046.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-044.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-044.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-045.pdf
https://www.ecma-international.org/archive/ecmascript/2007/misc/overview.pdf
https://www.ecma-international.org/archive/ecmascript/2007/misc/overview.pdf
https://mail.mozilla.org/pipermail/es-discuss/2008-May/006312.html
https://web.archive.org/web/20140605045843/https://mail.mozilla.org/pipermail/es-discuss/2008-May/006312.html
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-042.pdf
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-040.pdf
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-041.pdf

JavaScript: The First 20 Years 175

Lars T Hansen and Jeff Dyer. 2008. Features to Defer From Proposed ECMAScript 4. ES4-discuss mailing list. 26 Feb. 2008.
non-archival http://mail.mozilla.org/pipermail/es-discuss/attachments/20080226/53160c4c/attachment-0002.obj (also
at Internet Archive 5 June 2014 05:52:40).

David Harel. 2007. Statecharts in the Making: A Personal Account. In Proceedings of the Third ACM SIGPLAN Conference on
History of Programming Languages (San Diego, California) (HOPL III). ACM, New York, NY, USA, 5–1–5–43. 978-1-59593-
766-7 https://doi.org/10.1145/1238844.1238849

David Herman. 2005. ClassicJavaScript CEKS semantics. Web page. July 2005. non-archival http://www.ccs.neu.edu/
home/dherman/javascript/ (also at Internet Archive 18 July 2007 12:44:22).

David Herman. 2007. ECMAScript Edition 4 Reference Implementation. Lambda the Ultimate weblog post. 8 June 2007.
non-archival http://lambda-the-ultimate.org/node/2289 (also at Internet Archive 11 June 2007 16:15:19).

David Herman. 2008. Strawman: lambdas. ecmascript.org wiki. 13 Oct. 2008. non-archival http://wiki.ecmascript.org/
doku.php?id=strawman:lambdas (broken; also at Internet Archive 15 Oct. 2008 12:56:19).

David Herman. 2010a. Harmony: Generator Expressions. ecmascript.org wiki. 25 June 2010. non-archival http:
//wiki.ecmascript.org/doku.php?id=harmony:generator_expressions (broken; also at Internet Archive 26 Sept. 2011
23:27:56).

David Herman. 2010b. modules proposal. es-discuss mailing list. 13 May 2010. non-archival https://mail.mozilla.org/
pipermail/es-discuss/2010-May/011122.html (also at Internet Archive 5 June 2014 01:06:35).

David Herman. 2010c. simple modules. es-discuss mailing list. 29 Jan. 2010. non-archival https://mail.mozilla.org/
pipermail/es-discuss/2010-January/010679.html (also at Internet Archive 5 June 2014 01:49:08).

David Herman. 2010d. Strawman: Array Comprehensions. ecmascript.org wiki. 25 June 2010. non-archival http:
//wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions (broken; also at Internet Archive 15 Feb. 2011
04:49:42).

David Herman. 2010e. Strawman: Module loaders. ecmascript.org wiki. 14 May 2010. non-archival http://wiki.ecmascript.
org/doku.php?id=strawman:module_loaders (broken; also at Internet Archive 3 Jan. 2011 06:21:11).

David Herman. 2010f. Strawman: Simple Modules. ecmascript.org wiki. 14 May 2010. non-archival http://wiki.ecmascript.
org:80/doku.php?id=strawman:simple_modules (broken; also at Internet Archive 18 Sept. 2010 03:53:07).

David Herman. 2011a. dherman/literal-classes.js. GitHub Gist. 1 Nov. 2011. non-archival https://gist.github.com/dherman/
1330478 (also at Internet Archive 14 March 2018 04:11:33).

David Herman. 2011b. ES6 doesn’t need opt-in. es-discuss mailing list. 31 Dec. 2011. non-archival https://mail.mozilla.
org/pipermail/es-discuss/2011-December/019112.html (also at Internet Archive 13 Oct. 2012 15:17:15).

David Herman. 2011c. minimal classes. es-discuss mailing list. 27 June 2011. non-archival https://mail.mozilla.org/
pipermail/es-discuss/2011-June/015559.html (also at Internet Archive 1 April 2014 03:50:40).

David Herman. 2011d. Strawman: minimal classes. ecmascript.org wiki. 11 Nov. 2011. non-archival http://wiki.ecmascript.
org/doku.php?id=strawman:minimal_classes (broken; also at Internet Archive 25 Dec. 2011 18:47:33).

David Herman. 2011e. Strawman: Pattern Matchings. ecmascript.org wiki. 28 Feb. 2011. non-archival http://wiki.
ecmascript.org/doku.php?id=strawman:pattern_matching (broken; also at Internet Archive 6 Dec. 2011 19:55:12).

David Herman. 2012. One JavaScript. Ecma/TC39/2012/005. 18 Jan. 2012. https://www.ecma-international.org/archive/
ecmascript/2012/TC39/tc39-2012-005.pdf Presentation at TC39 meeting.

David Herman. 2013a. es6-modules-2013-12-02.pdf. In jorendorff/js-loaders github repository. 2 Dec. 2013. non-archival
https://raw.githubusercontent.com/jorendorff/js-loaders/master/specs/es6-modules-2013-12-02.pdf (also at Internet
Archive 3 Sept. 2014 01:02:54).

David Herman. 2013b. Harmony: Module loaders. ecmascript.org wiki. 21 May 2013. non-archival http://wiki.ecmascript.
org:80/doku.php?id=harmony:module_loaders (broken; also at Internet Archive 27 July 2013 12:49:51).

David Herman. 2014a. A better future for comprehensions. Ecma/TC39/2014/021. 5 June 2014. https://www.ecma-
international.org/archive/ecmascript/2014/TC39/tc39-2014-021.pdf Presentation at TC39 meeting.

David Herman. 2014b. Realms API. GitHub Gist. 24 Feb. 2014. non-archival https://gist.github.com/dherman/7568885
(also at Internet Archive 14 Aug. 2014 22:21:22).

David Herman and Cormac Flanagan. 2007. Status Report: Specifying Javascript with ML. In Proceedings of the 2007
Workshop on Workshop on ML (Freiburg, Germany) (ML ’07). ACM, New York, NY, USA, 47–52. 978-1-59593-676-9
https://doi.org/10.1145/1292535.1292543

David Herman and Yehuda Katz. 2014. Problem: exposing uninitialized built-in objects. Ecma/TC39/2014/045. Sept. 2014.
https://ecma-international.org/archive/ecmascript/2014/TC39/tc39-2014-045.pdf

David Herman and Sam Tobin-Hochstadt. 2011. Modules for JavaScript: Simple, Compilable, and Dynamic Libraries on the
Web. May 2011. non-archival http://homes.sice.indiana.edu/samth/js-modules.pdf (also at Internet Archive 25 March
2019 18:38:37). Unpublished paper on author’s Web site.

David Herman, Sam Tobin-Hochstadt, and Yahuda Katz. 2013. Modules: Use Cases, Semantics. Presentation to TC39. 12
March 2013. https://www.ecma-international.org/archive/ecmascript/2013/misc/2013misc4.pdf

Authors’ Corrections: March 2021

http://mail.mozilla.org/pipermail/es-discuss/attachments/20080226/53160c4c/attachment-0002.obj
https://web.archive.org/web/20140605055240/http://mail.mozilla.org/pipermail/es-discuss/attachments/20080226/53160c4c/attachment-0002.obj
https://doi.org/10.1145/1238844.1238849
http://www.ccs.neu.edu/home/dherman/javascript/
http://www.ccs.neu.edu/home/dherman/javascript/
https://web.archive.org/web/20070718124422/http://www.ccs.neu.edu/home/dherman/javascript/
http://lambda-the-ultimate.org/node/2289
https://web.archive.org/web/20070611161519/http://lambda-the-ultimate.org/node/2289
https://web.archive.org/web/20081015125619/http://wiki.ecmascript.org/doku.php?id=strawman:lambdas
https://web.archive.org/web/20110926232756/http://wiki.ecmascript.org/doku.php?id=harmony:generator_expressions
https://web.archive.org/web/20110926232756/http://wiki.ecmascript.org/doku.php?id=harmony:generator_expressions
https://mail.mozilla.org/pipermail/es-discuss/2010-May/011122.html
https://mail.mozilla.org/pipermail/es-discuss/2010-May/011122.html
https://web.archive.org/web/20140605010635/https://mail.mozilla.org/pipermail/es-discuss/2010-May/011122.html
https://mail.mozilla.org/pipermail/es-discuss/2010-January/010679.html
https://mail.mozilla.org/pipermail/es-discuss/2010-January/010679.html
https://web.archive.org/web/20140605014908/https://mail.mozilla.org/pipermail/es-discuss/2010-January/010679.html
https://web.archive.org/web/20110215044942/http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions
https://web.archive.org/web/20110215044942/http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions
https://web.archive.org/web/20110103062111/http://wiki.ecmascript.org/doku.php?id=strawman:module_loaders
https://web.archive.org/web/20100918035307/http://wiki.ecmascript.org:80/doku.php?id=strawman:simple_modules
https://gist.github.com/dherman/1330478
https://gist.github.com/dherman/1330478
https://web.archive.org/web/20180314041133/https://gist.github.com/dherman/1330478
https://mail.mozilla.org/pipermail/es-discuss/2011-December/019112.html
https://mail.mozilla.org/pipermail/es-discuss/2011-December/019112.html
https://web.archive.org/web/20121013151715/https://mail.mozilla.org/pipermail/es-discuss/2011-December/019112.html
https://mail.mozilla.org/pipermail/es-discuss/2011-June/015559.html
https://mail.mozilla.org/pipermail/es-discuss/2011-June/015559.html
https://web.archive.org/web/20140401035040/https://mail.mozilla.org/pipermail/es-discuss/2011-June/015559.html
https://web.archive.org/web/20111225184733/http://wiki.ecmascript.org/doku.php?id=strawman:minimal_classes
https://web.archive.org/web/20111206195512/http://wiki.ecmascript.org/doku.php?id=strawman:pattern_matching
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-005.pdf
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-005.pdf
https://raw.githubusercontent.com/jorendorff/js-loaders/master/specs/es6-modules-2013-12-02.pdf
https://web.archive.org/web/20140903010254/https://raw.githubusercontent.com/jorendorff/js-loaders/master/specs/es6-modules-2013-12-02.pdf
https://web.archive.org/web/20140903010254/https://raw.githubusercontent.com/jorendorff/js-loaders/master/specs/es6-modules-2013-12-02.pdf
https://web.archive.org/web/20130727124951/http://wiki.ecmascript.org:80/doku.php?id=harmony:module_loaders
https://www.ecma-international.org/archive/ecmascript/2014/TC39/tc39-2014-021.pdf
https://www.ecma-international.org/archive/ecmascript/2014/TC39/tc39-2014-021.pdf
https://gist.github.com/dherman/7568885
https://web.archive.org/web/20140814222122/https://gist.github.com/dherman/7568885
https://doi.org/10.1145/1292535.1292543
https://ecma-international.org/archive/ecmascript/2014/TC39/tc39-2014-045.pdf
http://homes.sice.indiana.edu/samth/js-modules.pdf
https://web.archive.org/web/20190325183837/http://homes.sice.indiana.edu/samth/js-modules.pdf
https://web.archive.org/web/20190325183837/http://homes.sice.indiana.edu/samth/js-modules.pdf
https://www.ecma-international.org/archive/ecmascript/2013/misc/2013misc4.pdf

176 Allen Wirfs-Brock and Brendan Eich

David Herman, Aaron Tomb, and Cormac Flanagan. 2011. Space-efficient gradual typing. Higher-Order and Symbolic
Computation 23, 2 (21 Oct), 167. 1573-0557 https://doi.org/10.1007/s10990-011-9066-z

David Herman, Luke Wagner, and Alon Zakai. 2014. asm.js Specification Working Draft. asmjs.org web site. 18 Aug. 2014.
non-archival http://asmjs.org:80/spec/latest/ (also at Internet Archive 28 Aug. 2014 22:43:09).

Ian Hickson. 2004. WHAT open mailing list announcement. whatwg.org web page. June 2004. non-archival http:
//whatwg.org/news/start (retrieved 6 May 2019; also at Internet Archive 5 June 2004 21:31:55).

Graydon Hoare. 2010. Rust Language Wiki. Sept. 2010. non-archival http://github.com/graydon/rust/wiki (also at Internet
Archive 7 Oct. 2010 21:47:17).

Darren Hobbs. 2008. Chrome / V8 Javascript performance. Blog post. 2 Sept. 2008. non-archival http://darrenhobbs.com:
80/2008/09/02/chrome-v8-javascript-performance/ (also at Internet Archive 28 Feb. 2012 09:01:03).

Alex Hopmann. 2006. The story of XMLHTTP. Blog post. June 2006. non-archival http://www.alexhopmann.com:
80/xmlhttp.htm (broken; also at Internet Archive 17 June 2006 16:30:47).

Waldemar Horwat. 1998. Revised section 12. Ecma TC39 working document. Sept. 1998. https://www.ecma-international.
org/archive/ecmascript/1998/TC39WG/980930-horwat/12.pdf

Waldemar Horwat. 1999a. JavaScript 2.0 February 1999 Draft. Feb. 1999. non-archival http://mozilla.org:80/js/language/
js20-1999-02-18/index.html (also at Internet Archive 16 Aug. 2000 19:45:28).

Waldemar Horwat. 1999b. JavaScript 2.0 Member Lookup. March 1999. non-archival https://www-archive.mozilla.
org/js/language/js20-1999-03-25/member-lookup.html Archived at https://web.archive.org/web/20000823225517/http:
//mozilla.org:80/js/language/js20-1999-03-25/member-lookup.html Except fromMarch 1999 Draft JavaScript 2.0 proposal.

Waldemar Horwat. 2000. Notes from Aug. 22, 2000 meeting between Waldemar Horwat and Herman Venter. https:
//www.ecma-international.org/archive/ecmascript/2000/misc/2000misc-2.html

Waldemar Horwat. 2001. JavaScript 2.0: Evolving a Language for Evolving Systems. In LL1: Lightweight Languages
Workshop Proceedings. MIT Artificial Intelligence Lab (Nov.). non-archival https://www-archive.mozilla.org/js/
language/evolvingJS.pdf (also at Internet Archive 3 Oct. 2019 04:50:18).

Waldemar Horwat. 2003a. ECMAScript 4 Netscape Proposal. (17 Aug 2000, updated 30 June 2003). non-archival
http://www.mozilla.org:80/js/language/es4/index.html (broken; also at Internet Archive 3 Aug. 2003 01:55:58).

Waldemar Horwat. 2003b. ECMAScript Edition 3 Errata. Mozilla.org web page. 9 June 2003. non-archival http:
//www.mozilla.org:80/js/language/E262-3-errata.html (also at Internet Archive 14 Aug. 2003 00:12:05).

Waldemar Horwat. 2003c. JavaScript 2.0. Mozilla.org web page. 30 June 2003. non-archival //www.mozilla.org/js/
language/js20.html (broken). Archived at https://web.archive.org/web/20030803020856/http://www.mozilla.org/js/
language/js20.html

Waldemar Horwat. 2008a. return when desugaring to closure. es-discuss mailing list. 13 Oct. 2008. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2008-October/007807.html (also at Internet Archive 3 Nov. 2013 21:47:51).

Waldemar Horwat. 2008b. Substatement function definitions. Originally, a message to TC39-TG1 private mailing list. 21
March 2008. https://www.ecma-international.org/archive/ecmascript/2008/misc/FibHist.pdf

Waldemar Horwat. 2009. Full TC39 and SES meeting notes. es-discuss mailing list. 29 Jan. 2009. non-archival https:
//mail.mozilla.org/pipermail/es-discuss/2009-January/008711.html (also at Internet Archive 5 June 2014 03:39:18).

Waldemar Horwat. 2010. Sep 30 meeting notes. es-discuss mailing list. 30 Sept. 2010. non-archival https://mail.mozilla.
org/pipermail/es-discuss/2010-September/011880.html (also at Internet Archive 5 June 2014 00:47:33).

Waldemar Horwat et al. 2003. Epimetheus. Mozilla.org web page. Aug. 2003. non-archival http://www.mozilla.org/js/
language/Epimetheus.html (also at Internet Archive 14 Aug. 2003 00:20:31).

Waldemar Horwat et al. 2005. JS2 source code archive. Mozilla source code code repository. non-archival https:
//dxr.mozilla.org/js/source/mozilla/js2 (retrieved 11 Feb. 2020; also at Internet Archive 26 Feb. 2020 16:40:05).

Rick Hudson. 2012. River Trail. Ecma/TC39/2012/016. 28 March 2012. https://www.ecma-international.org/archive/
ecmascript/2012/TC39/tc39-2012-016.pdf

Rick Hudson. 2014. Strawman: Parallel EcmaScript (River Trail) API. ecmascript.org wiki. 20 Feb. 2014. non-archival
http://wiki.ecmascript.org/doku.php?id=strawman:data_parallelism (broken; also at Internet Archive 23 Feb. 2014
03:21:39).

Oliver Hunt. 2009. Problem with Arguments inheriting from Array. es5-discuss mailing list (17 Aug. 20098. 17 Aug. 2009.
non-archival https://mail.mozilla.org/pipermail/es5-discuss/2009-August/003112.html (also at Internet Archive 24 July
2014 03:18:11).

Marco Iansiti and Alan MacCormack. 1997. Developing products on Internet time. Harvard business review 75, 5, 108–118.
non-archival https://hbr.org/1997/09/developing-products-on-internet-time (also at Internet Archive 11 Feb. 2020
23:05:50).

IEEE. 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std. 754–2008. IEEE Computer Society, New York, NewYork.
JavaScript Jabber. 2014. The Origin of JavaScript with Brendan Eich. JavaScript Jabber Podcast Episode 124. 3 Sept. 2014.

non-archival http://devchat.tv/js-jabber/124-jsj-the-origin-of-javascript-with-brendan-eich (also at Internet Archive

Authors’ Corrections: March 2021

https://doi.org/10.1007/s10990-011-9066-z
http://asmjs.org:80/spec/latest/
https://web.archive.org/web/20140828224309/http://asmjs.org:80/spec/latest/
http://whatwg.org/news/start
http://whatwg.org/news/start
https://web.archive.org/web/20040605213155/http://whatwg.org/news/start
http://github.com/graydon/rust/wiki
https://web.archive.org/web/20101007214717/http://github.com/graydon/rust/wiki
https://web.archive.org/web/20101007214717/http://github.com/graydon/rust/wiki
http://darrenhobbs.com:80/2008/09/02/chrome-v8-javascript-performance/
http://darrenhobbs.com:80/2008/09/02/chrome-v8-javascript-performance/
https://web.archive.org/web/20120228090103/http://darrenhobbs.com:80/2008/09/02/chrome-v8-javascript-performance/
https://web.archive.org/web/20060617163047/http://www.alexhopmann.com:80/xmlhttp.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980930-horwat/12.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980930-horwat/12.pdf
http://mozilla.org:80/js/language/js20-1999-02-18/index.html
http://mozilla.org:80/js/language/js20-1999-02-18/index.html
https://web.archive.org/web/20000816194528/http://mozilla.org:80/js/language/js20-1999-02-18/index.html
https://www-archive.mozilla.org/js/language/js20-1999-03-25/member-lookup.html
https://www-archive.mozilla.org/js/language/js20-1999-03-25/member-lookup.html
https://web.archive.org/web/20000823225517/http://mozilla.org:80/js/language/js20-1999-03-25/member-lookup.html
https://web.archive.org/web/20000823225517/http://mozilla.org:80/js/language/js20-1999-03-25/member-lookup.html
https://www.ecma-international.org/archive/ecmascript/2000/misc/2000misc-2.html
https://www.ecma-international.org/archive/ecmascript/2000/misc/2000misc-2.html
https://www-archive.mozilla.org/js/language/evolvingJS.pdf
https://www-archive.mozilla.org/js/language/evolvingJS.pdf
https://web.archive.org/web/20191003045018/https://www-archive.mozilla.org/js/language/evolvingJS.pdf
https://web.archive.org/web/20030803015558/http://www.mozilla.org:80/js/language/es4/index.html
http://www.mozilla.org:80/js/language/E262-3-errata.html
http://www.mozilla.org:80/js/language/E262-3-errata.html
https://web.archive.org/web/20030814001205/http://www.mozilla.org:80/js/language/E262-3-errata.html
https://web.archive.org/web/20030803020856/http://www.mozilla.org/js/language/js20.html
https://web.archive.org/web/20030803020856/http://www.mozilla.org/js/language/js20.html
https://mail.mozilla.org/pipermail/es-discuss/2008-October/007807.html
https://web.archive.org/web/20131103214751/https://mail.mozilla.org/pipermail/es-discuss/2008-October/007807.html
https://www.ecma-international.org/archive/ecmascript/2008/misc/FibHist.pdf
https://mail.mozilla.org/pipermail/es-discuss/2009-January/008711.html
https://mail.mozilla.org/pipermail/es-discuss/2009-January/008711.html
https://web.archive.org/web/20140605033918/https://mail.mozilla.org/pipermail/es-discuss/2009-January/008711.html
https://mail.mozilla.org/pipermail/es-discuss/2010-September/011880.html
https://mail.mozilla.org/pipermail/es-discuss/2010-September/011880.html
https://web.archive.org/web/20140605004733/https://mail.mozilla.org/pipermail/es-discuss/2010-September/011880.html
http://www.mozilla.org/js/language/Epimetheus.html
http://www.mozilla.org/js/language/Epimetheus.html
https://web.archive.org/web/20030814002031/http://www.mozilla.org/js/language/Epimetheus.html
https://dxr.mozilla.org/js/source/mozilla/js2
https://dxr.mozilla.org/js/source/mozilla/js2
https://web.archive.org/web/20200226164005/https://dxr.mozilla.org/js/source/mozilla/js2
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-016.pdf
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-016.pdf
https://web.archive.org/web/20140223032139/http://wiki.ecmascript.org/doku.php?id=strawman:data_parallelism
https://web.archive.org/web/20140223032139/http://wiki.ecmascript.org/doku.php?id=strawman:data_parallelism
https://mail.mozilla.org/pipermail/es5-discuss/2009-August/003112.html
https://web.archive.org/web/20140724031811/https://mail.mozilla.org/pipermail/es5-discuss/2009-August/003112.html
https://web.archive.org/web/20140724031811/https://mail.mozilla.org/pipermail/es5-discuss/2009-August/003112.html
https://hbr.org/1997/09/developing-products-on-internet-time
https://web.archive.org/web/20200211230550/https://hbr.org/1997/09/developing-products-on-internet-time
https://web.archive.org/web/20200211230550/https://hbr.org/1997/09/developing-products-on-internet-time
http://devchat.tv/js-jabber/124-jsj-the-origin-of-javascript-with-brendan-eich
https://web.archive.org/web/20150817165652/http://devchat.tv/js-jabber/124-jsj-the-origin-of-javascript-with-brendan-eich
https://web.archive.org/web/20150817165652/http://devchat.tv/js-jabber/124-jsj-the-origin-of-javascript-with-brendan-eich

JavaScript: The First 20 Years 177

17 Aug. 2015 16:56:52).
Mike Judge et al. 1996. Beavis and Butt-Head Do America. Movie. Paramount Pictures. The lines from the movie that

inspired the naming of Netscape’s SpiderMonkey JavaScript engine are transcribed at: https://web.archive.org/web/
20190901190842/https://en.wikiquote.org/wiki/Beavis_and_Butt-head_Do_America

Chris Kanaracus. 2007. Mozilla, Microsoft drawing sabers over next JavaScript. ITWorld.com (1 Nov.). non-archival
http://www.itworld.com:80/AppDev/4061/071101mozillams/ (broken; also at Internet Archive 3 Nov. 2007 09:04:50).

Kangax. 2010. How ECMAScript 5 still does not allow to subclass an array. Blog post. 15 July 2010. non-archival
http://perfectionkills.com/how-ecmascript-5-still-does-not-allow-to-subclass-an-array/ (also at Internet Archive 20 July
2010 17:05:33).

Yahuda Katz. 2014. JavaScript Modules. Website. non-archival http://jsmodules.io/ (broken; also at Internet Archive 7
July 2014 22:32:06).

Niall Kennedy. 2008. The story behind Google Chrome. Blog post. 3 Sept. 2008. non-archival http://www.niallkennedy.com:
80/blog/2008/09/google-chrome.html (also at Internet Archive 16 Dec. 2008 02:35:45).

Khronos Group. 2011. Typed Array Specification, Version 1.0 08 February 2011. Technical Report. Khronos Group, Beaverton,
Oregon USA. non-archival http://www.khronos.org/registry/typedarray/specs/1.0/ (superseded; also at Internet
Archive 1 Aug. 2013 06:45:47).

Gregor Kiczales, Jim Des Rivieres, and Daniel Gureasko Bobrow. 1991. The Art of the Metaobject Protocol. MIT Press,
Cambridge, MA, USA. 0262111586

Adam Klein. 2015. An update on Object.observe. es-discuss mailing list. 2 Nov. 2015. non-archival https://mail.mozilla.
org/pipermail/es-discuss/2015-November/044684.html (also at Internet Archive 21 Jan. 2016 21:31:10).

Peter-Paul Koch. 2003. Level 0 DOM. QuirksMode.org Web page. Dec. 2003. non-archival http://www.quirksmode.org:
80/js/dom0.html (also at Internet Archive 5 Dec. 2003 22:39:29).

Kris Kowal. 2009a. CommonJS effort sets JavaScript on path for world domination. ArsTechnica.com (1 Dec.). non-
archival https://arstechnica.com/information-technology/2009/12/commonjs-effort-sets-javascript-on-path-for-world-
domination/ (also at Internet Archive 23 June 2018 10:14:04).

Kris Kowal. 2009b. Hermetic Evaluation, Modules Strawman. es-discuss mailing list. 30 Sept. 2009. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2009-September/010009.html (also at Internet Archive 5 June 2014 02:36:53).

Kris Kowal and Ihab A.B. Awad. 2009a. Module System for ES-Harmony. Ecma/TC39/2009/011. 11 Feb. 2009. https:
//www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-011.pdf

Kris Kowal and Ihab A.B. Awad. 2009b. Module System for ES-Harmony (Revised). Online document. Sept. 2009. non-
archival https://docs.google.com/document/pub?id=1hNv1SHh_v_6nD1QBd6pySUJ2U5roAELzW5cqD2tt_WM (also at
Internet Archive 22 March 2019 16:08:16).

Paul Krill. 2011. InfoWorld interview: Why Google Dart beats JavaScript. InfoWorld (15 Nov.). non-archival http:
//www.infoworld.com:80/article/2620869/javascript/infoworld-interview--why-google-dart-beats-javascript.html (also
at Internet Archive 5 Oct. 2014 04:38:03).

Pratap Lakshman. 2007a. Discussion: Browser Profile. ecmascript.org wiki. 11 March 2007. non-archival http://wiki.
ecmascript.org:80/doku.php?id=discussion:browser_profile (broken; also at Internet Archive 3 Nov. 2007 15:16:03).

Pratap Lakshman. 2007b. ES4 Minimalist Proposal - Draft. ecmascript.org wiki. 1 March 2007. non-archival
http://wiki.ecmascript.org/lib/exe/fetch.php?id=discussion%3Abrowser_profile&cache=cache&media=discussion:
es4minimalistproposaldraft.rtf (broken; also at Internet Archive 12 Dec. 2007 03:56:42).

Pratap Lakshman. 2007c. JScript Deviations from ES3. ecmascript.org wiki. 24 Sept. 2007. Archived at https://www.ecma-
international.org/archive/ecmascript/2007/misc/jscriptdeviationsfromes3.pdf

Pratap Lakshman. 2008. ES3.1: Draft 1. es-discuss mailing list. 28 May 2008. non-archival https://mail.mozilla.org/
pipermail/es-discuss/2008-May/006409.html (also at Internet Archive 5 June 2014 05:11:23).

Pratap Lakshman et al. 2008. ECMAScript 3.1 Draft Specification (28 May 2008). ecmascript.org wiki. 28 May 2008.
https://www.ecma-international.org/archive/ecmascript/2008/misc/tc39-es31-draft29may08.pdf

Pratap Lakshman, Douglas Crockford, and Allen Wirfs-Brock. 2007. ES3.1 Proposal Working Draft. ecmascript.org wiki. 15
April 2007. non-archival http://wiki.ecmascript.org/doku.php?id=es3.1:es3.1_proposal_working_draft (broken; also
at Internet Archive 3 Nov. 2007 15:16:13).

Pratap Lakshman and Allen Wirfs-Brock (Eds.). 2009. ECMA-262, 5th Edition: ECMAScript Language Specification. Ecma
International, Geneva, Switzerland (Dec.). https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/
ECMA-262%205th%20edition%20December%202009.pdf

Pratap Lakshman, Allen Wirfs-Brock, et al. 2009. Final draft Standard ECMA-262 5th edition (28 April 2009). Ec-
ma/TC397/2009/025. https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-025.pdf

Martin LaMonica. 1995. Group Backs Windows Spec. InfoWorld 17, 51 (18 Dec.), 16. non-archival
https://books.google.com/books?id=PDgEAAAAMBAJ&lpg=PA16&dq=Inforworld%20Dec%2018%2C%201995%
20ecma&pg=PA16#v=onepage&q&f=false (retrieved 18 April 2019)

Authors’ Corrections: March 2021

https://web.archive.org/web/20150817165652/http://devchat.tv/js-jabber/124-jsj-the-origin-of-javascript-with-brendan-eich
https://web.archive.org/web/20150817165652/http://devchat.tv/js-jabber/124-jsj-the-origin-of-javascript-with-brendan-eich
https://web.archive.org/web/20190901190842/https://en.wikiquote.org/wiki/Beavis_and_Butt-head_Do_America
https://web.archive.org/web/20190901190842/https://en.wikiquote.org/wiki/Beavis_and_Butt-head_Do_America
https://web.archive.org/web/20071103090450/http://www.itworld.com:80/AppDev/4061/071101mozillams/
http://perfectionkills.com/how-ecmascript-5-still-does-not-allow-to-subclass-an-array/
https://web.archive.org/web/20100720170533/http://perfectionkills.com/how-ecmascript-5-still-does-not-allow-to-subclass-an-array/
https://web.archive.org/web/20100720170533/http://perfectionkills.com/how-ecmascript-5-still-does-not-allow-to-subclass-an-array/
https://web.archive.org/web/20140707223206/http://jsmodules.io/
https://web.archive.org/web/20140707223206/http://jsmodules.io/
http://www.niallkennedy.com:80/blog/2008/09/google-chrome.html
http://www.niallkennedy.com:80/blog/2008/09/google-chrome.html
https://web.archive.org/web/20081216023545/http://www.niallkennedy.com:80/blog/2008/09/google-chrome.html
https://web.archive.org/web/20130801064547/http://www.khronos.org/registry/typedarray/specs/1.0/
https://web.archive.org/web/20130801064547/http://www.khronos.org/registry/typedarray/specs/1.0/
https://mail.mozilla.org/pipermail/es-discuss/2015-November/044684.html
https://mail.mozilla.org/pipermail/es-discuss/2015-November/044684.html
https://web.archive.org/web/20160121213110/https://mail.mozilla.org/pipermail/es-discuss/2015-November/044684.html
http://www.quirksmode.org:80/js/dom0.html
http://www.quirksmode.org:80/js/dom0.html
https://web.archive.org/web/20031205223929/http://www.quirksmode.org:80/js/dom0.html
https://arstechnica.com/information-technology/2009/12/commonjs-effort-sets-javascript-on-path-for-world-domination/
https://arstechnica.com/information-technology/2009/12/commonjs-effort-sets-javascript-on-path-for-world-domination/
https://web.archive.org/web/20180623101404/https://arstechnica.com/information-technology/2009/12/commonjs-effort-sets-javascript-on-path-for-world-domination/
https://mail.mozilla.org/pipermail/es-discuss/2009-September/010009.html
https://web.archive.org/web/20140605023653/https://mail.mozilla.org/pipermail/es-discuss/2009-September/010009.html
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-011.pdf
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-011.pdf
https://docs.google.com/document/pub?id=1hNv1SHh_v_6nD1QBd6pySUJ2U5roAELzW5cqD2tt_WM
https://web.archive.org/web/20190322160816/https://docs.google.com/document/pub?id=1hNv1SHh_v_6nD1QBd6pySUJ2U5roAELzW5cqD2tt_WM
http://www.infoworld.com:80/article/2620869/javascript/infoworld-interview--why-google-dart-beats-javascript.html
http://www.infoworld.com:80/article/2620869/javascript/infoworld-interview--why-google-dart-beats-javascript.html
https://web.archive.org/web/20141005043803/http://www.infoworld.com:80/article/2620869/javascript/infoworld-interview--why-google-dart-beats-javascript.html
https://web.archive.org/web/20071103151603/http://wiki.ecmascript.org:80/doku.php?id=discussion:browser_profile
https://web.archive.org/web/20071212035642/http://wiki.ecmascript.org/lib/exe/fetch.php?id=discussion%3Abrowser_profile&cache=cache&media=discussion:es4minimalistproposaldraft.rtf
https://www.ecma-international.org/archive/ecmascript/2007/misc/jscriptdeviationsfromes3.pdf
https://www.ecma-international.org/archive/ecmascript/2007/misc/jscriptdeviationsfromes3.pdf
https://mail.mozilla.org/pipermail/es-discuss/2008-May/006409.html
https://mail.mozilla.org/pipermail/es-discuss/2008-May/006409.html
https://web.archive.org/web/20140605051123/https://mail.mozilla.org/pipermail/es-discuss/2008-May/006409.html
https://www.ecma-international.org/archive/ecmascript/2008/misc/tc39-es31-draft29may08.pdf
https://web.archive.org/web/20071103151613/http://wiki.ecmascript.org/doku.php?id=es3.1:es3.1_proposal_working_draft
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-025.pdf
https://books.google.com/books?id=PDgEAAAAMBAJ&lpg=PA16&dq=Inforworld%20Dec%2018%2C%201995%20ecma&pg=PA16#v=onepage&q&f=false
https://books.google.com/books?id=PDgEAAAAMBAJ&lpg=PA16&dq=Inforworld%20Dec%2018%2C%201995%20ecma&pg=PA16#v=onepage&q&f=false

178 Allen Wirfs-Brock and Brendan Eich

Bill Lazar. 1997. Borland’s IntraBuilder 1.0. Softw. Dev. 5, 1 (Jan.), 15–20. 1070-8588 non-archival http://www.sdmagazine.
com:80/breakrm/products/reviews/s971r1.shtml (broken; also at Internet Archive 15 Aug. 2000 08:46:51).

Steve Leach et al. 2018. The Ginger Project. Project Website. 10 Dec. 2018. non-archival https://ginger.readthedocs.io/en/
latest (also at Internet Archive 10 Dec. 2018 09:50:52).

Russell Leggett. 2012. Finding a "safety syntax" for classes. es-discuss mailing list. 19 March 2012. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2012-March/021430.html (also at Internet Archive 14 Jan. 2013 02:07:22).

Brian Leroux. 2010. wtfjs. Web site. 2 June 2010. non-archival http://wtfjs.com/ (also at Internet Archive 7 June 2010
02:45:13).

Ted Leung. 2011. JSConf 2011. Blog post. May 2011. non-archival https://www.sauria.com/blog/2011/05/06/jsconf-2011/
Archived at https://web.archive.org/web/20110512171639/http://www.sauria.com/blog/2011/05/06/jsconf-2011

Clayton Lewis. 1999a. TC39 Chairman’s Report to the Co-ordinating Committee 10th November 1999. Ecma/TC39/1999/016.
10 Nov. 1999. https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-016.pdf

Clayton Lewis. 1999b. TC39 Chairman’s Report to the Co-ordinating Committee 3rd May 1999. Ecma/TC39/1999/008. 3
May 1999. https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-008.pdf

Norbert Lindenberg. 2012. ECMA-402, 1st Edition: ECMAScript Internationalization API Specification. Ecma International,
Geneva, Switzerland (Dec.). http://www.ecma-international.org/ecma-402/1.0/ECMA-402.pdf

C. H. Lindsey. 1993. A History of ALGOL 68. In The Second ACM SIGPLAN Conference on History of Programming Languages
(Cambridge, Massachusetts, USA) (HOPL-II). ACM, New York, NY, USA, 97–132. 0-89791-570-4 https://doi.org/10.1145/
154766.155365

Macromedia. 2003. Symbolic Operators : (type). Online reference manual. June 2003. Archived at https://web.archive.org/
web/20031212205931if_/http://www.macromedia.com/livedocs/flash/mx2004/main/12_asd21.htm#wp673890 This is the
entry in the ActionScript Dictionary for the ActionScript 2 language which describes the use of type declarations.

Macromedia. 2005. ActionScript 3 Language Specification. Macromedia, Inc (14 Nov.). https://www.ecma-international.org/
archive/ecmascript/2005/misc/as3lang.pdf

Joel Marcey. 2004. TG39 Chairman’s Report to: Co-ordinating Committee. Ecma/TC39/2004/018. 8 April 2004. https:
//www.ecma-international.org/archive/ecmascript/2004/TC39/tc39-2004-018.pdf

Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. 2004. A visual environment for developing
context-sensitive term rewriting systems. In International Conference on Rewriting Techniques and Applications. Springer,
Berlin, Heidelberg, 301–311.

John McCarthy and Michael I Levin. 1965. LISP 1.5 Programmer’s Manual. M.I.T. Press. 9780262130110
Tom McFarland. 1998. HP ECMAScript comments. email to TC39 working group. 19 May 1998. https://www.ecma-

international.org/archive/ecmascript/1998/TC39WG/980519-hpcomma.html
Sebastian McKenzie. 2016. 2015 in review. Blog post. 6 Jan. 2016. non-archival https://medium.com/@sebmck/2015-in-

review-51ac7035e272 (also at Internet Archive 17 Feb. 2016 23:07:33).
Don Melton. 2003. Greetings from the Safari team at Apple Computer. Email message forwarded to kfm-devel mailing list

by Dirk Mueller. 7 Jan. 2003. non-archival https://marc.info/?l=kfm-devel&m=104197092318639&w=2 Archived at
https://web.archive.org/save/https://marc.info/?l=kfm-devel&m=104197092318639&w=2

Robinson Meyer. 2014. On the Reign of ’Benevolent Dictators for Life’ in Software. The Atlantic (17 Jan.). non-
archival https://www.theatlantic.com/technology/archive/2014/01/on-the-reign-of-benevolent-dictators-for-life-in-
software/283139/ (also at Internet Archive 19 Jan. 2014 18:40:05).

Microsoft. 1996. Microsoft Internet Explorer 3.0 Beta NowAvailable. Press Release. 29 May 1996. non-archival https://news.
microsoft.com/1996/05/29/microsoft-internet-explorer-3-0-beta-now-available Archived at https://web.archive.org/
web/20141006081714/http://news.microsoft.com/1996/05/29/microsoft-internet-explorer-3-0-beta-now-available//

Microsoft. 1997. Microsoft Design Proposals for the Ecmascript 2.0 Language Specification. Ecma/TC39/1997/032. 10 July
1997. https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-032.pdf

Microsoft. 2000a. Microsoft Delivers First .NET Platform Developer Tools for Building Web Services. Press Release. 11 July
2000. non-archival https://news.microsoft.com/2000/07/11/microsoft-delivers-first-net-platform-developer-tools-for-
building-web-services/ (also at Internet Archive 26 Feb. 2020 23:37:13).

Microsoft. 2000b. Microsoft Unveils Vision for Next Generation Internet. Press Release. 22 June 2000. non-archival
https://news.microsoft.com/2000/06/22/microsoft-unveils-vision-for-next-generation-internet/ (also at Internet Archive
19 Dec. 2015 23:07:05).

Microsoft. 2009a. Initial set of ECMAScript 5 conformance tests. Ecma/TC39/2009/030. May 2009. https://www.ecma-
international.org/archive/ecmascript/2009/TC39/tc39-2009-030.zip A zipped directory containing the original set of ES5
tests developed by Microsoft.

Microsoft. 2009b. JScript Version Information. Web page. non-archival http://msdn.microsoft.com:80/en-us/library/
s4esdbwz(VS.71).aspx (also at Internet Archive 11 Feb. 2009 11:41:02).

Authors’ Corrections: March 2021

http://web.archive.org/web/20000815084651/http://www.sdmagazine.com:80/breakrm/products/reviews/s971r1.shtml
https://ginger.readthedocs.io/en/latest
https://ginger.readthedocs.io/en/latest
https://web.archive.org/web/20181210095052/https://ginger.readthedocs.io/en/latest
https://mail.mozilla.org/pipermail/es-discuss/2012-March/021430.html
https://web.archive.org/web/20130114020722/https://mail.mozilla.org/pipermail/es-discuss/2012-March/021430.html
http://wtfjs.com/
https://web.archive.org/web/20100607024513/http://wtfjs.com/
https://web.archive.org/web/20100607024513/http://wtfjs.com/
https://www.sauria.com/blog/2011/05/06/jsconf-2011/
https://web.archive.org/web/20110512171639/http://www.sauria.com/blog/2011/05/06/jsconf-2011
https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-016.pdf
https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-008.pdf
http://www.ecma-international.org/ecma-402/1.0/ECMA-402.pdf
https://doi.org/10.1145/154766.155365
https://doi.org/10.1145/154766.155365
https://web.archive.org/web/20031212205931if_/http://www.macromedia.com/livedocs/flash/mx2004/main/12_asd21.htm#wp673890
https://web.archive.org/web/20031212205931if_/http://www.macromedia.com/livedocs/flash/mx2004/main/12_asd21.htm#wp673890
https://www.ecma-international.org/archive/ecmascript/2005/misc/as3lang.pdf
https://www.ecma-international.org/archive/ecmascript/2005/misc/as3lang.pdf
https://www.ecma-international.org/archive/ecmascript/2004/TC39/tc39-2004-018.pdf
https://www.ecma-international.org/archive/ecmascript/2004/TC39/tc39-2004-018.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980519-hpcomma.html
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980519-hpcomma.html
https://medium.com/@sebmck/2015-in-review-51ac7035e272
https://medium.com/@sebmck/2015-in-review-51ac7035e272
https://web.archive.org/web/20160217230733/https://medium.com/@sebmck/2015-in-review-51ac7035e272
https://marc.info/?l=kfm-devel&m=104197092318639&w=2
https://web.archive.org/save/https://marc.info/?l=kfm-devel&m=104197092318639&w=2
https://www.theatlantic.com/technology/archive/2014/01/on-the-reign-of-benevolent-dictators-for-life-in-software/283139/
https://www.theatlantic.com/technology/archive/2014/01/on-the-reign-of-benevolent-dictators-for-life-in-software/283139/
https://web.archive.org/web/20140119184005/https://www.theatlantic.com/technology/archive/2014/01/on-the-reign-of-benevolent-dictators-for-life-in-software/283139/
https://news.microsoft.com/1996/05/29/microsoft-internet-explorer-3-0-beta-now-available
https://news.microsoft.com/1996/05/29/microsoft-internet-explorer-3-0-beta-now-available
https://web.archive.org/web/20141006081714/http://news.microsoft.com/1996/05/29/microsoft-internet-explorer-3-0-beta-now-available//
https://web.archive.org/web/20141006081714/http://news.microsoft.com/1996/05/29/microsoft-internet-explorer-3-0-beta-now-available//
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-032.pdf
https://news.microsoft.com/2000/07/11/microsoft-delivers-first-net-platform-developer-tools-for-building-web-services/
https://news.microsoft.com/2000/07/11/microsoft-delivers-first-net-platform-developer-tools-for-building-web-services/
https://web.archive.org/web/20200226233713/https://news.microsoft.com/2000/07/11/microsoft-delivers-first-net-platform-developer-tools-for-building-web-services/
https://news.microsoft.com/2000/06/22/microsoft-unveils-vision-for-next-generation-internet/
https://web.archive.org/web/20151219230705/http://news.microsoft.com/2000/06/22/microsoft-unveils-vision-for-next-generation-internet/
https://web.archive.org/web/20151219230705/http://news.microsoft.com/2000/06/22/microsoft-unveils-vision-for-next-generation-internet/
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-030.zip
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-030.zip
http://msdn.microsoft.com:80/en-us/library/s4esdbwz(VS.71).aspx
http://msdn.microsoft.com:80/en-us/library/s4esdbwz(VS.71).aspx
https://web.archive.org/web/20090211114102/http://msdn.microsoft.com:80/en-us/library/s4esdbwz(VS.71).aspx

JavaScript: The First 20 Years 179

Microsoft. 2016. WPF overview. Web page. Nov. 2016. non-archival https://docs.microsoft.com/en-us/dotnet/framework/
wpf/introduction-to-wpf?view=vs-2019 (also at Internet Archive 11 Feb. 2020 23:28:05).

Microsoft. 2019. www.typescriptlang.org. Website. non-archival https://www.typescriptlang.org/ (also at Internet
Archive 4 April 2019 22:40:13).

JimMiller. 2007. TC39 Chairman’s Report to Coordinating Committee. Ecma/TC39/2007/002. 4 May 2007. https://www.ecma-
international.org/archive/ecmascript/2007/TC39/tc39-2007-002.pdf

Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control.
Ph.D. Dissertation. Johns Hopkins University, Baltimore, MD, USA. Advisor(s) Shapiro, Jonathan S. non-archival
http://erights.org/talks/thesis/markm-thesis.pdf (Some typo fixes and wording improvements). Archived at https:
//web.archive.org/web/20120205063344/http://www.erights.org/talks/thesis/markm-thesis.pdf

Mark S. Miller. 2008a. Comments regarding: defineProperty/getProperty design sketch. es-discuss mailing list. 23 April
2008. non-archival https://mail.mozilla.org/pipermail/es-discuss/2008-April/006222.html (also at Internet Archive 5
June 2014 05:22:39).

Mark S. Miller. 2008b. Controlling DontEnum (was: ES4 draft: Object). es-discuss mailing list. 13 March 2008. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2008-March/005759.html (also at Internet Archive 5 June 2014 05:29:45).

Mark S. Miller. 2008c. How much sugar do classes need? es-discuss mailing list. 22 Nov. 2008. non-archival https:
//mail.mozilla.org/pipermail/es-discuss/2008-November/008181.html (also at Internet Archive 18 July 2010 15:40:33).

Mark S. Miller. 2008d. Look Ma, no "this". es-discuss mailing list. 19 Aug. 2008. non-archival https://mail.mozilla.org/
pipermail/es-discuss/2008-August/006941.html (also at Internet Archive 2 Nov. 2011 18:08:09).

Mark S. Miller. 2009. Classes as Sugar – old threads revisited (1 of 2). es-discuss mailing list. 30 March 2009. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2009-March/009116.html (also at Internet Archive 5 June 2014 03:26:19).

Mark S. Miller. 2010a. Classes as Sugar. ecmascript.org wiki. 20 Nov. 2010. non-archival http://wiki.ecmascript.org/doku.
php?id=strawman:classes_as_sugar (broken; also at Internet Archive 3 Nov. 2011 00:15:25).

Mark S. Miller. 2010b. States and transitions of the attributes of an EcmaScript 5 property. ecmascript.org wiki. 3 Aug. 2010.
non-archival http://wiki.ecmascript.org/doku.php?id=es3.1:attribute_states (broken; also at Internet Archive 14 May
2013 18:20:10).

Mark S. Miller. 2010c. Strawman: Guards. ecmascript.org wiki. 12 Dec. 2010. non-archival http://wiki.ecmascript.org/
doku.php?id=strawman:guards (broken; also at Internet Archive 18 Feb. 2011 15:54:02).

Mark S. Miller. 2010d. Syntax for Efficient Traits. ecmascript.org wiki. 22 Sept. 2010. non-archival http://wiki.ecmascript.
org/doku.php?id=strawman:syntax_for_efficient_traits (broken; also at Internet Archive 14 Nov. 2011 23:17:12).

Mark S. Miller. 2011a. Classes with Trait Composition. ecmascript.org wiki. 9 May 2011. non-archival http://wiki.
ecmascript.org/doku.php?id=strawman:classes_with_trait_composition (broken; also at Internet Archive 19 Aug. 2011
13:58:29).

Mark S. Miller. 2011b. Harmony Classes. ecmascript.org wiki. 9 June 2011. non-archival http://wiki.ecmascript.org/doku.
php?id=harmony:classes (broken; also at Internet Archive 2 July 2011 20:26:24).

Mark S. Miller. 2018. Regarding: Private members break proxies. GitHub issue comment. 17 June 2018. non-archival
https://github.com/tc39/proposal-class-fields/issues/106#issuecomment-397891307 (also at Internet Archive 29 July 2019
16:31:47).

Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. 2008. Caja: Safe active content in sanitized JavaScript.
Google white paper. July 2008. non-archival http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
(broken; also at Internet Archive 4 July 2008 19:08:28).

Mark S Miller, Jonathan Shapiro, et al. 2019. eright.org. Website. non-archival http://erights.org Archived at https:
//web.archive.org/web/20190808072144/http://erights.org/ Website created January 1999.

Robin Milner, Mads Tofte, and David Macqueen. 1997. The Definition of Standard ML. MIT Press, Cambridge, MA, USA.
0262631814

Miniwatts Marketing Group. 2019. Internet Growth Statistics. Internet World Stats website. Nov. 2019. non-archival
https://www.internetworldstats.com/emarketing.htm (also at Internet Archive 3 Feb. 2020 09:42:53).

Eric Miraglia. 2007. A JavaScript Module Pattern. Blog post on Yahoo! User Interface Blog. 12 June 2007. non-archival
https://yuiblog.com/blog/2007/06/12/module-pattern/ (also at Internet Archive 2 July 2007 02:37:33).

Neil Mix. 2008a. Attribute defaults for Object.defineProperty. es-discuss mailing list. 21 Aug. 2008. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2008-August/006979.html (also at Internet Archive 2 Nov. 2011 18:46:47).

Neil Mix. 2008b. Controlling DontEnum (was: ES4 draft: Object). es-discuss mailing list. 13 March 2008. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2008-March/005746.html (also at Internet Archive 5 June 2014 05:29:40).

Gordon E. Moore. 1975. Progress in digital integrated electronics. IEDM Tech. Digest 11, 11–13.
Mozilla. 2004. Mozilla Foundation releases the highly anticipated Mozilla Firefox 1.0 web browser. Web page. 9 Nov.

2004. non-archival http://blog.mozilla.org/press/2004/11/mozilla-foundation-releases-the-highly-anticipated-mozilla-
firefox-1-0-web-browser/ (also at Internet Archive 28 Nov. 2013 22:15:35).

Authors’ Corrections: March 2021

https://docs.microsoft.com/en-us/dotnet/framework/wpf/introduction-to-wpf?view=vs-2019
https://docs.microsoft.com/en-us/dotnet/framework/wpf/introduction-to-wpf?view=vs-2019
https://web.archive.org/web/20200211232805/https://docs.microsoft.com/en-us/dotnet/framework/wpf/introduction-to-wpf?view=vs-2019
https://www.typescriptlang.org/
https://web.archive.org/web/20190404224013/https://www.typescriptlang.org/
https://web.archive.org/web/20190404224013/https://www.typescriptlang.org/
https://www.ecma-international.org/archive/ecmascript/2007/TC39/tc39-2007-002.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TC39/tc39-2007-002.pdf
http://erights.org/talks/thesis/markm-thesis.pdf
https://web.archive.org/web/20120205063344/http://www.erights.org/talks/thesis/markm-thesis.pdf
https://web.archive.org/web/20120205063344/http://www.erights.org/talks/thesis/markm-thesis.pdf
https://mail.mozilla.org/pipermail/es-discuss/2008-April/006222.html
https://web.archive.org/web/20140605052239/https://mail.mozilla.org/pipermail/es-discuss/2008-April/006222.html
https://web.archive.org/web/20140605052239/https://mail.mozilla.org/pipermail/es-discuss/2008-April/006222.html
https://mail.mozilla.org/pipermail/es-discuss/2008-March/005759.html
https://web.archive.org/web/20140605052945/https://mail.mozilla.org/pipermail/es-discuss/2008-March/005759.html
https://mail.mozilla.org/pipermail/es-discuss/2008-November/008181.html
https://mail.mozilla.org/pipermail/es-discuss/2008-November/008181.html
https://web.archive.org/web/20100718154033/https://mail.mozilla.org/pipermail/es-discuss/2008-November/008181.html
https://mail.mozilla.org/pipermail/es-discuss/2008-August/006941.html
https://mail.mozilla.org/pipermail/es-discuss/2008-August/006941.html
https://web.archive.org/web/20111102180809/https://mail.mozilla.org/pipermail/es-discuss/2008-August/006941.html
https://mail.mozilla.org/pipermail/es-discuss/2009-March/009116.html
https://web.archive.org/web/20140605032619/https://mail.mozilla.org/pipermail/es-discuss/2009-March/009116.html
https://web.archive.org/web/20111103001525/http://wiki.ecmascript.org/doku.php?id=strawman:classes_as_sugar
https://web.archive.org/web/20130514182010/http://wiki.ecmascript.org/doku.php?id=es3.1:attribute_states
https://web.archive.org/web/20130514182010/http://wiki.ecmascript.org/doku.php?id=es3.1:attribute_states
https://web.archive.org/web/20110218155402/http://wiki.ecmascript.org/doku.php?id=strawman:guards
https://web.archive.org/web/20111114231712/http://wiki.ecmascript.org/doku.php?id=strawman:syntax_for_efficient_traits
https://web.archive.org/web/20110819135829/http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
https://web.archive.org/web/20110819135829/http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
https://web.archive.org/web/20110702202624/http://wiki.ecmascript.org/doku.php?id=harmony:classes
https://github.com/tc39/proposal-class-fields/issues/106#issuecomment-397891307
https://web.archive.org/web/20190729163147/https://github.com/tc39/proposal-class-fields/issues/106#issuecomment-397891307
https://web.archive.org/web/20190729163147/https://github.com/tc39/proposal-class-fields/issues/106#issuecomment-397891307
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
https://web.archive.org/web/20080704190828/http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://erights.org
https://web.archive.org/web/20190808072144/http://erights.org/
https://web.archive.org/web/20190808072144/http://erights.org/
https://www.internetworldstats.com/emarketing.htm
https://web.archive.org/web/20200203094253/https://www.internetworldstats.com/emarketing.htm
https://yuiblog.com/blog/2007/06/12/module-pattern/
https://web.archive.org/web/20070702023733/https://yuiblog.com/blog/2007/06/12/module-pattern/
https://mail.mozilla.org/pipermail/es-discuss/2008-August/006979.html
https://web.archive.org/web/20111102184647/https://mail.mozilla.org/pipermail/es-discuss/2008-August/006979.html
https://mail.mozilla.org/pipermail/es-discuss/2008-March/005746.html
https://web.archive.org/web/20140605052940/https://mail.mozilla.org/pipermail/es-discuss/2008-March/005746.html
http://blog.mozilla.org/press/2004/11/mozilla-foundation-releases-the-highly-anticipated-mozilla-firefox-1-0-web-browser/
http://blog.mozilla.org/press/2004/11/mozilla-foundation-releases-the-highly-anticipated-mozilla-firefox-1-0-web-browser/
https://web.archive.org/web/20131128221535/http://blog.mozilla.org/press/2004/11/mozilla-foundation-releases-the-highly-anticipated-mozilla-firefox-1-0-web-browser/

180 Allen Wirfs-Brock and Brendan Eich

Mozilla. 2006a. New in JavaScript 1.7. Web page. Aug. 2006. non-archival https://developer.mozilla.org/en-US/docs/Web/
JavaScript/New_in_JavaScript/1.7 (also at Internet Archive 23 Aug. 2013 14:56:10).

Mozilla. 2006b. Tamarin Project. Web page. Nov. 2006. non-archival http://www.mozilla.org:80/projects/tamarin/ (broken;
also at Internet Archive 14 Nov. 2006 23:52:48).

Mozilla. 2008a. Core JavaScript 1.5 Reference : __noSuchMethod__. misc reference manual. June 2008. non-archival
http://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object/noSuchMethod (also at Internet
Archive 24 Aug. 2008 10:46:55).

Mozilla. 2008b. New in JavaScript 1.8. Web page. Aug. 2008. non-archival http://developer.mozilla.org/en/New_in_
JavaScript_1.8 (also at Internet Archive 31 Aug. 2008 00:53:07).

Mozilla Organization. 1998. who we are. early mozilla.org web page. Dec. 1998. non-archival http://www.mozilla.org/
about.html (superseded; also at Internet Archive 2 Dec. 1998 15:21:41).

John F Nash. 1950. Equilibrium points in n-person games. Proceedings of the national academy of sciences 36, 1, 48–49.
https://doi.org/10.1073/pnas.36.1.48

anonymous contributor Netfreak. 2019. SGI Indy—Higher Intellect Vintage Computer Wiki. non-archival https:
//wiki.preterhuman.net/SGI_Indy (also at Internet Archive 3 Aug. 2019 22:54:38).

Netscape. 1995a. Netscape to License Sun’s Java Programming Language. Press Release. 23 May 1995. non-archival
http://home.netscape.com/newsref/pr/newsrelease25.html (broken; also at Internet Archive 14 June 1997 00:32:24).

Netscape. 1995b. Release Notes: Netscape Naviagor 2.0b1. Web page. Oct. 1995. non-archival http://www25.netscape.com:
80/eng/mozilla/2.0/relnotes/windows-2.0b1.html (broken; also at Internet Archive 19 April 1997 16:05:10).

Netscape. 1996a. Features added after version 1. Web page, part of Netscape 3.0 JavaScript Handbook. Aug. 1996. non-
archival http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/newfunc.htm#1005394 (broken; also at Inter-
net Archive 5 Dec. 1998 01:54:42).

Netscape. 1996b. Navigator Objects. Web page, part of Netscape 2.0 JavaScript Handbook. March 1996. non-archival
http://home.netscape.com/eng/mozilla/2.0/handbook/javascript/navobj.html (broken). Archived at https://web.archive.
org/web/19970617232504fw_/http://home.netscape.com/eng/mozilla/2.0/handbook/javascript/navobj.html

Netscape. 1996c. Navigator Scripting. Web page, part of Navigator 2.0 JavaScript Handbook. March 1996. non-archival
http://home.netscape.com:80/eng/mozilla/2.0/handbook/javascript/script.html (broken; also at Internet Archive 17 June
1997 23:24:58).

Netscape. 1996d. Netscape 2.0 JavaScript Handbook. Online manual. March 1996. non-archival http://home.netscape.com:
80/eng/mozilla/2.0/handbook/javascript/index.html (broken; also at Internet Archive 13 June 1997 23:49:17).

Netscape. 1996e. Netscape 3.0 JavaScript Guide. Online manual. Aug. 1996. non-archival http://home.netscape.com/eng/
mozilla/3.0/handbook/javascript/index.html (broken; also at Internet Archive 14 June 1997 04:24:41).

Netscape. 1996f. Netscape Introduces Netscape Enterprise Server 2.0. Press Release. 5 March 1996. non-archival
http://home.netscape.com/newsref/pr/newsrelease99.html (broken; also at Internet Archive 9 July 1997 16:06:19).

Netscape. 1996g. Release Notes: Netscape Navigator for Window, Atlas Preview Release 2. Web page. May 1996. non-
archival http://www20.netscape.com/eng/mozilla/3.0/relnotes/windows-3.0b3.html (broken; also at Internet Archive
12 May 1996 20:39:09). These are the release notes for Navigator 3.0b3.

Netscape. 1997a. JavaScript Security in Communicator 4.x. Online manual. 30 Sept. 1997. non-archival http://developer.
netscape.com:80/docs/manuals/communicator/jssec/index.htm (broken; also at Internet Archive 5 Dec. 1998 07:14:22).

Netscape. 1997b. Netscape Communicator 3.0.2 Source Tree. The Internet Archive Software Collection. Archived
at https://archive.org/details/netscape-communicator-3-0-2-source (28 Oct. 2011) This archive consists of a .zip file
containing the complete source code tree used to build Netscape Communicator 3.0.2. The the directory named “mocha”
contains the source code for the Mocha JavaScript engine.

Netscape. 1997c. What’s New in JavaScript for Navigator 4.0: Introduction. Online manual. June 1997. non-archival
http://developer.netscape.com/library/documentation/communicator/jsguide/intro.htm (broken; also at Internet Archive
30 June 1997 09:26:41). Introduction to JavaScript 1.2 new features.

Netscape. 1997d. What’s New in JavaScript for Navigator 4.0: Operators. Online manual. June 1997. non-archival
http://developer.netscape.com:80/library/documentation/communicator/jsguide/operator.htm (broken; also at Internet
Archive 30 June 1997 09:27:41). Describes new operators in JavaScript 1.2.

Netscape. 2000. Core JavaScript Guide 1.5. Online manual. 28 Sept. 2000. non-archival http://devedge.netscape.com/
library/manuals/2000/javascript/1.5/guide/ (broken; also at Internet Archive 26 Oct. 2002 08:43:19).

Netscape and Sun. 1995. Netscape and Sun Announce Javascript, the Open, Cross-platform Object Scripting Language
for Enterprise Networks and the Internet 0. Press Release. 4 Dec. 1995. non-archival http://home.netscape.com:
80/newsref/pr/newsrelease67.html (broken; also at Internet Archive 14 June 1997 00:28:09).

Oscar Nierstrasz. 2000. Identify the Champion, An Organisational Pattern Language for Programme Committees. Pattern
Languages of Program Design 4, 539–556. non-archival http://scg.unibe.ch/download/champion/ (also at Internet
Archive 28 July 2009 09:42:27).

Authors’ Corrections: March 2021

https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/1.7
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/1.7
https://web.archive.org/web/20130823145610/https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/1.7
https://web.archive.org/web/20061114235248/http://www.mozilla.org:80/projects/tamarin/
http://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object/noSuchMethod
https://web.archive.org/web/20080824104655/http://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object/noSuchMethod
https://web.archive.org/web/20080824104655/http://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object/noSuchMethod
http://developer.mozilla.org/en/New_in_JavaScript_1.8
http://developer.mozilla.org/en/New_in_JavaScript_1.8
https://web.archive.org/web/20080831005307/http://developer.mozilla.org/en/New_in_JavaScript_1.8
https://web.archive.org/web/19981202152141/http://www.mozilla.org/about.html
https://doi.org/10.1073/pnas.36.1.48
https://wiki.preterhuman.net/SGI_Indy
https://wiki.preterhuman.net/SGI_Indy
https://web.archive.org/web/20190803225438/https://wiki.preterhuman.net/SGI_Indy
https://web.archive.org/web/19970614003224/http://home.netscape.com/newsref/pr/newsrelease25.html
https://web.archive.org/web/19970419160510/http://www25.netscape.com:80/eng/mozilla/2.0/relnotes/windows-2.0b1.html
https://web.archive.org/web/19981205015442/http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/newfunc.htm#1005394
https://web.archive.org/web/19981205015442/http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/newfunc.htm#1005394
https://web.archive.org/web/19970617232504fw_/http://home.netscape.com/eng/mozilla/2.0/handbook/javascript/navobj.html
https://web.archive.org/web/19970617232504fw_/http://home.netscape.com/eng/mozilla/2.0/handbook/javascript/navobj.html
https://web.archive.org/web/19970617232458/http://home.netscape.com:80/eng/mozilla/2.0/handbook/javascript/script.html
https://web.archive.org/web/19970617232458/http://home.netscape.com:80/eng/mozilla/2.0/handbook/javascript/script.html
https://web.archive.org/web/19970613234917/http://home.netscape.com:80/eng/mozilla/2.0/handbook/javascript/index.html
https://web.archive.org/web/19970614042441/http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/index.html
https://web.archive.org/web/19970709160619/http://home.netscape.com/newsref/pr/newsrelease99.html
https://web.archive.org/web/19960512203909/http://www20.netscape.com/eng/mozilla/3.0/relnotes/windows-3.0b3.html
https://web.archive.org/web/19960512203909/http://www20.netscape.com/eng/mozilla/3.0/relnotes/windows-3.0b3.html
https://web.archive.org/web/19981205071422/http://developer.netscape.com:80/docs/manuals/communicator/jssec/index.htm
https://archive.org/details/netscape-communicator-3-0-2-source
https://web.archive.org/web/19970630092641/http://developer.netscape.com/library/documentation/communicator/jsguide/intro.htm
https://web.archive.org/web/19970630092641/http://developer.netscape.com/library/documentation/communicator/jsguide/intro.htm
https://web.archive.org/web/19970630092741/http://developer.netscape.com:80/library/documentation/communicator/jsguide/operator.htm
https://web.archive.org/web/19970630092741/http://developer.netscape.com:80/library/documentation/communicator/jsguide/operator.htm
https://web.archive.org/web/20021026084319/http://devedge.netscape.com/library/manuals/2000/javascript/1.5/guide/
https://web.archive.org/web/19970614002809/http://home.netscape.com:80/newsref/pr/newsrelease67.html
http://scg.unibe.ch/download/champion/
https://web.archive.org/web/20090728094227/http://scg.unibe.ch/download/champion/
https://web.archive.org/web/20090728094227/http://scg.unibe.ch/download/champion/

JavaScript: The First 20 Years 181

Shanku Niyogi. 2010. The New JavaScript Engine in Internet Explorer 9. Microsoft IEBlog. 18 March 2010. non-archival
https://blogs.msdn.microsoft.com/ie/2010/03/18/the-new-javascript-engine-in-internet-explorer-9/ (also at Internet
Archive 9 March 2016 20:23:17).

Node Foundation. 2018. About the Node.js Foundation. Web page. Aug. 2018. non-archival https://foundation.nodejs.org/
about (superseded; also at Internet Archive 13 Aug. 2018 16:47:01). The archived page includes a history of the Node
Foundation. In 2020, this URL redirects to a generic page about the OpenJS Foundation.

Node Project. 2009. tinyclouds.org/node. Website. Aug. 2009. non-archival http://tinyclouds.org:80/node#download
(broken; also at Internet Archive 17 Aug. 2009 19:00:07). This page links to source code tarballs for early versions of
node.js.

Brent Noorda. 2012. History of Nombas. Web page. April 2012. non-archival http://www.brent-noorda.com/nombas/
history/HistoryOfNombas.html (also at Internet Archive 12 Nov. 2013 23:52:57).

Bob Nystrom. 2011. Harmonious Classes. TC39 working document. May 2011. https://ecma-international.org/archive/
ecmascript/2011/misc/2011misc5-May-2011.pdf

Openweb. 2008. Brendan Eich and Arun Ranganathan on ECMAScript Harmony. Openweb Podcast Episode 2. 15 Aug. 2008.
non-archival http://openwebpodcast.com/episode-2-brendan-eich-and-arun-ranganathan-on-ecmascript-harmony
(broken; also at Internet Archive 18 Aug. 2008 14:02:42).

Opera. 2013. Opera version history. Web page. 5 Feb. 2013. non-archival http://www.opera.com:80/docs/history/ (broken;
also at Internet Archive 7 March 2013 13:53:54).

Jason Orendorff and David Herman. 2014. js-loaders repository. GitHub repository. 28 Feb. 2014. non-archival
https://github.com/jorendorff/js-loaders (also at Internet Archive 14 Aug. 2014 22:21:22).

John K. Ousterhout. 1997. Scripting: Higher Level Programming for the 21st Century. IEEE Computer 31, 23–30.
Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc., New York, NY, USA.

0-465-04627-4
S Prasanna. 2002. Microsoft’s VJ#.Net is made in India. Express Computer (29 July). non-archival http://computer.

financialexpress.com/20020729/indnews3.shtml (broken; also at Internet Archive 28 Nov. 2013 17:03:55).
Valerio Proietti. 2006. mootools.net. Website. 24 Oct. 2006. non-archival http://mootools.net:80/ (superseded; also at

Internet Archive 24 Oct. 2006 03:25:26).
Dave Raggett. 1998a. ECMA TC39 Working Group meeting 19 Nov 1998. https://www.ecma-international.org/archive/

ecmascript/1998/TC39WG/tcn9811.htm
Dave Raggett. 1998b. ECMAScript Proposals. 10 Dec. 1998. https://www.ecma-international.org/archive/ecmascript/1998/

TC39WG/981210-dsrdec98.htm
Dave Raggett. 1998c. W3C ‘Spice’ details. 3 March 1998. https://www.ecma-international.org/archive/ecmascript/1998/

TC39WG/980303-spice.htm
Dave Raggett. 1999a. ECMA TC39 meetings 14th October 1999. https://www.ecma-international.org/archive/ecmascript/

1999/TC39WG/991014-mod9910.htm
Dave Raggett. 1999b. ECMA TC39 Working Group (technical) meeting notes – 11/12 January 1999. https://www.ecma-

international.org/archive/ecmascript/1999/TC39WG/tcn9901.htm
Dave Raggett. 1999c. ECMA TC39 Working Group (technical) meeting notes – 19 February 1999. https://www.ecma-

international.org/archive/ecmascript/1999/TC39WG/tcn9902.htm
Dave Raggett. 1999d. ECMAScript Modularity SubGroup Meeting – 25th March 1999. Ecma/TC39/1999/006. https:

//www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-006.htm
Dave Raggett. 2000. ECMA TC39 meetings 20th January 2000. https://www.ecma-international.org/archive/ecmascript/

2000/TC39WG/mins-20jan00.html
Dave Raggett, Chris Dollin, and Steve Leach. 1998. Spice documentation. 27 Sept. 1998. https://www.ecma-international.

org/archive/ecmascript/1998/TC39WG/980928-spice-docs/index.html
Lisa Rein. 1997. JavaScript 1.2’s evolution as explained by its creator. Netscape World 2, 5 (May). non-archival

http://www.netscapeworld.com/netscapeworld/nw-05-1997/nw-05-js12.html (broken; also at Internet Archive 16 June
1997 18:33:20).

John Resig. 2006. jQuery: New Wave Javascript. Website. 3 Feb. 2006. non-archival http://jquery.com:80/ (superseded;
also at Internet Archive 3 Feb. 2006 02:57:10). This is the original jQuery website home page.

Reuters. 2000. Microsoft Dominates Browser Battle. PC World.com (27 June). non-archival http://www.pcworld.com:
80/news/article.asp?aid=17448 (broken; also at Internet Archive 20 Oct. 2000 22:46:08).

Andreas Rossberg. 2013. Harmony: Refutable Patterns. ecmascript.org wiki. 21 March 2013. non-archival http:
//wiki.ecmascript.org/doku.php?id=harmony:refutable_matching (broken; also at Internet Archive 5 June 2013 01:52:14).

Alex Russell et al. 2005. dōjō the browser toolkit. Website. 1 Sept. 2005. non-archival http://dojotoolkit.org:80/ (superseded;
also at Internet Archive 1 Sept. 2005 04:43:03). The home page of the early Dojo toolkit website.

Authors’ Corrections: March 2021

https://blogs.msdn.microsoft.com/ie/2010/03/18/the-new-javascript-engine-in-internet-explorer-9/
https://web.archive.org/web/20160309202317/https://blogs.msdn.microsoft.com/ie/2010/03/18/the-new-javascript-engine-in-internet-explorer-9/
https://web.archive.org/web/20160309202317/https://blogs.msdn.microsoft.com/ie/2010/03/18/the-new-javascript-engine-in-internet-explorer-9/
https://web.archive.org/web/20180813164701/https://foundation.nodejs.org/about
https://web.archive.org/web/20090817190007/http://tinyclouds.org:80/node#download
http://www.brent-noorda.com/nombas/history/HistoryOfNombas.html
http://www.brent-noorda.com/nombas/history/HistoryOfNombas.html
https://web.archive.org/web/20131112235257/http://www.brent-noorda.com/nombas/history/HistoryOfNombas.html
https://ecma-international.org/archive/ecmascript/2011/misc/2011misc5-May-2011.pdf
https://ecma-international.org/archive/ecmascript/2011/misc/2011misc5-May-2011.pdf
https://web.archive.org/web/20080818140242/http://openwebpodcast.com/episode-2-brendan-eich-and-arun-ranganathan-on-ecmascript-harmony
https://web.archive.org/web/20130307135354/http://www.opera.com:80/docs/history/
https://github.com/jorendorff/js-loaders
https://web.archive.org/web/20140814222122/https://github.com/jorendorff/js-loaders
https://web.archive.org/web/20131128170355/http://computer.financialexpress.com/20020729/indnews3.shtml
https://web.archive.org/web/20061024032526/http://mootools.net:80/
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/tcn9811.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/tcn9811.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/981210-dsrdec98.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/981210-dsrdec98.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980303-spice.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980303-spice.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/991014-mod9910.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/991014-mod9910.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/tcn9901.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/tcn9901.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/tcn9902.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/tcn9902.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-006.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-006.htm
https://www.ecma-international.org/archive/ecmascript/2000/TC39WG/mins-20jan00.html
https://www.ecma-international.org/archive/ecmascript/2000/TC39WG/mins-20jan00.html
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980928-spice-docs/index.html
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980928-spice-docs/index.html
https://web.archive.org/web/19970616183320/http://www.netscapeworld.com/netscapeworld/nw-05-1997/nw-05-js12.html
https://web.archive.org/web/19970616183320/http://www.netscapeworld.com/netscapeworld/nw-05-1997/nw-05-js12.html
https://web.archive.org/web/20060203025710/http://jquery.com:80/
https://web.archive.org/web/20001020224608/http://www.pcworld.com:80/news/article.asp?aid=17448
https://web.archive.org/web/20130605015214/http://wiki.ecmascript.org/doku.php?id=harmony:refutable_matching
https://web.archive.org/web/20050901044303/http://dojotoolkit.org:80/

182 Allen Wirfs-Brock and Brendan Eich

Srivats Sampath. 1996. Netscape Application for Associate membership. Ecma/GA/1996/098. 10 Oct. 1996. https://www.ecma-
international.org/archive/ecmascript/1996/GA/96-098.pdf

John Schneider, Rok Yu, and Jeff Dyer (Eds.). 2005. ECMA-357, 2nd Edition: ECMAScript for XML (E4X) Specification.
Ecma International, Geneva, Switzerland (Dec.). https://www.ecma-international.org/publications/files/ECMA-ST-
WITHDRAWN/Ecma-357.pdf

William A. Schulze. 2004a. TG1 Convener’s Report to TC39s. Ecma/TC39-TG1/2004/006. 24 Sept. 2004. https://www.ecma-
international.org/archive/ecmascript/2004/TG1/tc39-tg1-2004-006.pdf

William A. Schulze. 2004b. TG1 of TC39 Intentions. Ecma/TC39-TG1/2004/005. 29 June 2004. https://www.ecma-
international.org/archive/ecmascript/2004/TG1/tc39-tg1-2004-005.pdf Presentation to Ecma General Asembly.

Peter Seibel. 2009. Coders at work: Reflections on the craft of programming. Apress.
Rawn Shah. 1996. Bending over backward to make JavaScript work on 14 platforms. JavaWorld 1, 2 (18 April). non-archival

http://www.javaworld.com/javaworld/jw-04-1996/jw-04-jsinterview.html (also at Internet Archive 4 Jan. 1997 12:22:16).
Remy Sharp. 2010. What is a Polyfill? Blog post. Oct. 2010. non-archival https://remysharp.com/2010/10/08/what-is-a-

polyfill (also at Internet Archive 5 Oct. 2012 20:21:13).
David Singer. 1998. The Future of HTML: A Modest Proposal. Presention at W3C Shapng the Future of HTML Workshop.

May 1998. non-archival https://www.w3.org/MarkUp/future/papers/singer/im-164149.htm (also at Internet Archive
23 Oct. 1999 02:49:10).

Walter R. Smith. 1995. Using a Prototype-based Language for User Interface: The Newton Project’s Experience. In Proceedings
of the Tenth Annual Conference on Object-oriented Programming Systems, Languages, and Applications (Austin, Texas,
USA) (OOPSLA ’95). ACM, New York, NY, USA, 61–72. 0-89791-703-0 https://doi.org/10.1145/217838.217844

Maciej Stachowiak. 2007a. Announcing SunSpider 0.9. Webkit.org blog post. 18 Dec. 2007. non-archival http://webkit.
org/blog/152/announcing-sunspider-09/ (also at Internet Archive 21 Dec. 2007 05:57:44).

Maciej Stachowiak. 2007b. RE: Refocus (16 March 2007, 6:21 PM). Message to TC39-TG1 private mailing list. Archived by
Ecma International.

Maciej Stachowiak. 2008a. Introducing SquirrelFish Extreme. Webkit.org blog post. 18 Sept. 2008. non-archival
http://webkit.org/blog/214/introducing-squirrelfish-extreme/ (also at Internet Archive 30 Sept. 2008 20:55:51).

Maciej Stachowiak. 2008b. Namespaces as Sugar. ES4-discuss mailing list. 27 May 2008. non-archival https://mail.mozilla.
org/pipermail/es-discuss/2008-May/006395.html (also at Internet Archive 5 June 2014 05:09:24).

Stack Overflow. 2018. Stack Survey 2018 Developer Survey: Most Popular Technologies. Web page. March 2018. non-
archival https://insights.stackoverflow.com/survey/2018/#most-popular-technologies (also at Internet Archive 13 March
2018 07:14:17).

Guy L. Steele, Jr. 1990. Common LISP: the Language, 2nd Edition. Elsevier. non-archival https://www.cs.cmu.edu/Groups/
AI/html/cltl/cltl2.html

Guy L. Steele, Jr. (Ed.). 1997. ECMA-262: ECMAScript A general purpose cross-platform programming language. Ecma
International, Geneva, Switzerland (June). https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/
ECMA-262,%201st%20edition,%20June%201997.pdf The standard was approved in June 1997 by the Ecma General
Assembly, but was not published until September 1997.

Sam Stephenson et al. 2007. Prototype JavaScript Framework. Project Website 25 Jan 2007. 25 Jan. 2007. non-archival
http://www.prototypejs.org:80/ (superseded; also at Internet Archive 25 Jan. 2007 18:19:49). This is an early version of
the jQuery Prototype framework home page.

Gerald Jay Sussman and Guy L. Steele Jr. 1975. Scheme: An interpreter for extended lambda calculus. https://doi.org/10.
1023/A:1010035624696 non-archival https://dspace.mit.edu/handle/1721.1/5794 AI Memo 349, MIT.

Ankur Taly, Úlfar Erlingsson, John C Mitchell, Mark S Miller, and Jasvir Nagra. 2011. Automated Analysis of Security-
Critical JavaScript APIs. In IEEE Symposium on Security & Privacy (SP). IEEE, 363–378. https://ieeexplore.ieee.org/
document/5958040/ non-archival https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37199.pdf
non-archival http://www-cs-students.stanford.edu/~ataly/Papers/sp11.pdf

TC39. 1996. Minutes for the 1st meeting of TC39. Ecma/TC39/1996/004. Dec. 1996. https://www.ecma-international.org/
archive/ecmascript/1996/TC39/96-004.pdf

TC39. 1997a. ECMAScript Language Specification, Version 0.12 (with revision marks). Ecma/TC39/1997/017B. 12 March
1997. https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-017B.pdf

TC39. 1997b. ECMAScript Language Specification, Version 0.18. Ecma/TC39/1997/028. 2 May 1997. https://www.ecma-
international.org/archive/ecmascript/1997/TC39/97-028.pdf

TC39. 1997c. ECMAScript Language Specification, Version 0.3. Ecma/TC39/1997/001. 10 Jan. 1997. https://www.ecma-
international.org/archive/ecmascript/1997/TC39/97-001.pdf

TC39. 1997d. ES1 issue resolution history. 14 April 1997. https://www.ecma-international.org/archive/ecmascript/1997/
misc/97misc-1.pdf Extract from ECMA/TC39/97/23.

Authors’ Corrections: March 2021

https://www.ecma-international.org/archive/ecmascript/1996/GA/96-098.pdf
https://www.ecma-international.org/archive/ecmascript/1996/GA/96-098.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/Ecma-357.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/Ecma-357.pdf
https://www.ecma-international.org/archive/ecmascript/2004/TG1/tc39-tg1-2004-006.pdf
https://www.ecma-international.org/archive/ecmascript/2004/TG1/tc39-tg1-2004-006.pdf
https://www.ecma-international.org/archive/ecmascript/2004/TG1/tc39-tg1-2004-005.pdf
https://www.ecma-international.org/archive/ecmascript/2004/TG1/tc39-tg1-2004-005.pdf
http://www.javaworld.com/javaworld/jw-04-1996/jw-04-jsinterview.html
https://web.archive.org/web/19970104122216/http://www.javaworld.com/javaworld/jw-04-1996/jw-04-jsinterview.html
https://remysharp.com/2010/10/08/what-is-a-polyfill
https://remysharp.com/2010/10/08/what-is-a-polyfill
https://web.archive.org/web/20121005202113/https://remysharp.com/2010/10/08/what-is-a-polyfill
https://www.w3.org/MarkUp/future/papers/singer/im-164149.htm
https://web.archive.org/web/19991023024910/http://www.w3.org/MarkUp/future/papers/singer/im-164149.htm
https://web.archive.org/web/19991023024910/http://www.w3.org/MarkUp/future/papers/singer/im-164149.htm
https://doi.org/10.1145/217838.217844
http://webkit.org/blog/152/announcing-sunspider-09/
http://webkit.org/blog/152/announcing-sunspider-09/
https://web.archive.org/web/20071221055744/http://webkit.org/blog/152/announcing-sunspider-09/
http://webkit.org/blog/214/introducing-squirrelfish-extreme/
https://web.archive.org/web/20080930205551/http://webkit.org/blog/214/introducing-squirrelfish-extreme/
https://mail.mozilla.org/pipermail/es-discuss/2008-May/006395.html
https://mail.mozilla.org/pipermail/es-discuss/2008-May/006395.html
https://web.archive.org/web/20140605050924/https://mail.mozilla.org/pipermail/es-discuss/2008-May/006395.html
https://insights.stackoverflow.com/survey/2018/#most-popular-technologies
https://web.archive.org/web/20180313071417/https://insights.stackoverflow.com/survey/2018/#most-popular-technologies
https://web.archive.org/web/20180313071417/https://insights.stackoverflow.com/survey/2018/#most-popular-technologies
https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
https://web.archive.org/web/20070125181949/http://www.prototypejs.org:80/
https://doi.org/10.1023/A:1010035624696
https://doi.org/10.1023/A:1010035624696
https://dspace.mit.edu/handle/1721.1/5794
https://ieeexplore.ieee.org/document/5958040/
https://ieeexplore.ieee.org/document/5958040/
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37199.pdf
http://www-cs-students.stanford.edu/~ataly/Papers/sp11.pdf
https://www.ecma-international.org/archive/ecmascript/1996/TC39/96-004.pdf
https://www.ecma-international.org/archive/ecmascript/1996/TC39/96-004.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-017B.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-028.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-028.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-001.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-001.pdf
https://www.ecma-international.org/archive/ecmascript/1997/misc/97misc-1.pdf
https://www.ecma-international.org/archive/ecmascript/1997/misc/97misc-1.pdf

JavaScript: The First 20 Years 183

TC39. 1997e. Minutes for the 2nd meeting of TC39, 14-15 January 1997. Ecma/TC39/1997/007. https://www.ecma-
international.org/archive/ecmascript/1997/TC39/97-007.pdf

TC39. 1997f. Minutes for the 3rd meeting of TC39, 18-19 March 1997. Ecma/TC39/1997/018. https://www.ecma-international.
org/archive/ecmascript/1997/TC39/97-018.pdf

TC39. 1997g. Minutes for the 4th meeting of TC39. July 15-16, 2007. Ecma/TC39/1997/030. https://www.ecma-international.
org/archive/ecmascript/1997/TC39/97-030.pdf

TC39. 1997h. Minutes for the 5th meeting of TC39. September 16-17, 1997. Ecma/TC39/1997/039. https://www.ecma-
international.org/archive/ecmascript/1997/TC39/97-039.pdf

TC39. 1998a. Disposition of Comments Report for DIS-16262. Ecma/TC39/1998/010. 15 June 1998. https://www.ecma-
international.org/archive/ecmascript/1998/TC39/8T39-010.pdf

TC39. 1998b. ECMA comments ISO/IEC DIS 16262, ECMAScript. Ecma/TC39/1998/005. 1 April 1998. https://www.ecma-
international.org/archive/ecmascript/1998/TC39/8T39-005.pdf

TC39. 1998c. ECMA TC39 technical meeting - 19 February 1998. https://www.ecma-international.org/archive/ecmascript/
1998/TC39WG/tcn9802t.htm

TC39. 1998d. ECMA TC39 Technical Meeting - March 20, 1998. https://www.ecma-international.org/archive/ecmascript/
1998/TC39WG/tcn9803.htm

TC39. 1998e. Letter ballot results for DIS 16262. Ecma/TC39/1998/007. 4 May 1998. https://www.ecma-international.org/
archive/ecmascript/1998/TC39/8T39-007.pdf

TC39. 1999a. ECMA TC39 meetings 14th-15th November 1999. https://www.ecma-international.org/archive/ecmascript/
1999/TC39WG/tcn9911.htm

TC39. 1999b. ECMA TC39 meetings 23-24th September 1999. https://www.ecma-international.org/archive/ecmascript/
1999/TC39WG/tcn9909.htm

TC39. 1999c. ECMA TC39 Working Group - Futures list, as of 1999.03.30. Ecma/TC39/1999/004. 30 March 1999. https:
//www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-004.pdf

TC39. 1999d. ECMA TC39 Working Group - Futures list, as of 1999.11.15. 15 Nov. 1999. https://www.ecma-international.
org/archive/ecmascript/1999/TC39WG/991115-futures.htm

TC39. 1999e. ECMAScript Language Specification, Edition 3 Final Draft. (14 Oct. 1999). Ecma/TC39/1999/015. 14 Oct. 1999.
https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-015.pdf

TC39. 2003. TC39 Email Reflector. From January 2003 through November 2016, TC39 and TC39-TG1 used an email list
server operated by the Ecma Secretariat. This was called the TC39-TG1 (and later just TC39) Reflector. It was a private
distribution list used for communications among TC39 delegates and with the Ecma Secretariat. Ecma has electronic
archives of the messages sent to this list, but as of 2020 they have not been made public. The archived messages were
available to the authors of this paper. Requests to access these archives should be submitted to the Ecma Secretary
General.

TC39. 2007. ES Wiki. non-archival http://wiki.ecmascript.org (broken). Archived at https://web.archive.org/web/
20150924163114/http://wiki.ecmascript.org/doku.php?id= Originally named “ES4 Wiki” it was renamed to “ES Wiki”
in August 2008. From September 2007 through 2015, TC39 used wiki.ecmascript.org to capture and host ECMAScript
feature proposals and other materials. That wiki is no longer operational but much of its content is accessible using
archive.org. It is necessary to move around the capture timeline to access some of the older material.

TC39. 2007. Minutes for the Ecma TC39-TG1 held in San Francisco, CA on 8-9 November 2007. Ecma/TC39/2007/012.
https://www.ecma-international.org/archive/ecmascript/2007/TC39/tc39-2007-012.pdf

TC39. 2008a. Minutes for the 7th meeting of Ecma TC39. Ecma/TC39/2008/105. 20 Nov. 2008. https://www.ecma-
international.org/archive/ecmascript/2008/TC39/tc39-2008-105.pdf

TC39. 2008b. Minutes of the 1st meeting of Ecma TC39 Special group on Secure ECMAScript. Ecma/TC39/2008/079. 28 Aug.
2008. https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-079.pdf

TC39. 2008c. Minutes of the TC39 ES3.1WG meeting of 26 March 2008. Ecma/TC39/2008/028. https://www.ecma-
international.org/archive/ecmascript/2008/TC39/tc39-2008-028.pdf

TC39. 2008d. Minutes of the TC39 ES3.1WG teleconference of 21 February 2008. Ecma/TC39/2008/013. https://ecma-
international.org/archive/ecmascript/2008/TC39/tc39-2008-013.pdf

TC39. 2008e. Presentations at the 1st meeting of Ecma TC39 Special group on Secure ECMAScript. Ecma/TC39/2008/086. 28
Aug. 2008. https://www.ecma-international.org/archive/ecmascript/2008/index.html#files-086

TC39. 2008f. Revised Agenda for the 5th meeting of Ecma TC39. Ecma/TC39/2008/054-Rev1. 19 July 2008. https://www.ecma-
international.org/archive/ecmascript/2008/TC39/tc39-2008-054-Rev1.pdf

TC39. 2008g. Revised Minutes of the 5th meeting of Ecma TC39 23-25 July 2008. Ecma/TC39/2008/067-Rev1. 30 Sept. 2008.
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-067-Rev1.pdf

TC39. 2009a. Minutes for the 11th meeting of Ecma TC39 29-30 July 2009. Ecma/TC39/2009/037-Rev1. https://www.ecma-
international.org/archive/ecmascript/2009/TC39/tc39-2009-037-Rev1.pdf

Authors’ Corrections: March 2021

https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-007.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-007.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-018.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-018.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-030.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-030.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-039.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-039.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39/8T39-010.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39/8T39-010.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39/8T39-005.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39/8T39-005.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/tcn9802t.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/tcn9802t.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/tcn9803.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/tcn9803.htm
https://www.ecma-international.org/archive/ecmascript/1998/TC39/8T39-007.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39/8T39-007.pdf
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/tcn9911.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/tcn9911.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/tcn9909.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/tcn9909.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-004.pdf
https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-004.pdf
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/991115-futures.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39WG/991115-futures.htm
https://www.ecma-international.org/archive/ecmascript/1999/TC39/9t39-015.pdf
https://web.archive.org/web/20150924163114/http://wiki.ecmascript.org/doku.php?id=
https://web.archive.org/web/20150924163114/http://wiki.ecmascript.org/doku.php?id=
https://www.ecma-international.org/archive/ecmascript/2007/TC39/tc39-2007-012.pdf
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-105.pdf
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-105.pdf
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-079.pdf
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-028.pdf
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-028.pdf
https://ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-013.pdf
https://ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-013.pdf
https://www.ecma-international.org/archive/ecmascript/2008/index.html#files-086
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-054-Rev1.pdf
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-054-Rev1.pdf
https://www.ecma-international.org/archive/ecmascript/2008/TC39/tc39-2008-067-Rev1.pdf
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-037-Rev1.pdf
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-037-Rev1.pdf

184 Allen Wirfs-Brock and Brendan Eich

TC39. 2009b. Minutes for the 12th meeting of Ecma TC39 23-24 September 2009. Ecma/TC39/2009/045. https://www.ecma-
international.org/archive/ecmascript/2009/TC39/tc39-2009-045.pdf

TC39. 2009c. Minutes for the 8th meeting of Ecma TC39 28-29 January 2009. Ecma/TC39/2009/008-Rev1. https://www.ecma-
international.org/archive/ecmascript/2009/TC39/tc39-2009-008-Rev1.pdf

TC39. 2009d. Minutes for the 9th meeting of Ecma TC39 25-26 March 2009. Ecma/TC39/2009/022. https://www.ecma-
international.org/archive/ecmascript/2009/TC39/tc39-2009-022.pdf

TC39. 2010. Minutes for the 16th meeting of Ecma TC39 24-25 May 2010. Ecma/TC39/2010/028. https://www.ecma-
international.org/archive/ecmascript/2010/TC39/tc39-2010-028.pdf

TC39. 2011a. Draft Minutes for the 23rd meeting of Ecma TC39 27-28 July 2011. Ecma/TC39/2011/037. https://www.ecma-
international.org/archive/ecmascript/2011/TC39/tc39-2011-037.pdf

TC39. 2011b. Minutes for the 22nd meeting of Ecma TC39 24-26 May 2011. Ecma/TC39/2011/028. https://www.ecma-
international.org/archive/ecmascript/2011/TC39/tc39-2011-028.pdf

TC39. 2012a. Minutes for the 27th meeting of Ecma TC39, Revision 2. Ecma/TC39/2012/020-rev2. 30 March 2012. https:
//www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-020-Rev2.pdf

TC39. 2012b. Minutes for the 28th meeting of Ecma TC39. Ecma/TC39/2012/034. 23 May 2012. https://www.ecma-
international.org/archive/ecmascript/2012/TC39/tc39-2012-034.pdf

TC39. 2012c. Minutes for the 29th meeting of Ecma TC39. Ecma/TC39/2012/056. 24 July 2012. https://www.ecma-
international.org/archive/ecmascript/2012/TC39/tc39-2012-056.pdf

TC39. 2013a. March 14, 2013 Meeting Notes. https://www.ecma-international.org/archive/ecmascript/2013/notes/2013-
03/mar-14.html

TC39. 2013b. Minutes for the 32nd meeting of Ecma TC39 January 29-31, 2013. Ecma/TC39/2013/009. https://www.ecma-
international.org/archive/ecmascript/2013/TC39/tc39-2013-009.pdf

TC39. 2013c. Minutes for the 36th meeting of Ecma TC39. Ecma/TC39/2013/055. 17 Sept. 2013. https://www.ecma-
international.org/archive/ecmascript/2013/TC39/tc39-2013-055.pdf

TC39. 2014a. July 30, 2014 Meeting Notes. https://web.archive.org/web/20190820220952/https://tc39.es/tc39-notes/2014-
07_jul-30.html

TC39. 2014b. Minutes for the 42th meeting of Ecma TC39. Ecma/TC39/2014/051. 25 Sept. 2014. https://www.ecma-
international.org/archive/ecmascript/2014/TC39/tc39-2014-051.pdf

TC39. 2015a. January 27, 2015 Meeting Notes. https://www.ecma-international.org/archive/ecmascript/2015/notes/2015-
01/jan-27.html

TC39. 2015b. Minutes for the 45th meeting of Ecma TC39. Ecma/TC39/2015/031. 17 March 2015. https://www.ecma-
international.org/archive/ecmascript/2015/TC39/tc39-2015-031.pdf

TC39 et al. 2006. The es-discuss Archives. Email forum hosted by mozilla.org. non-archival https://mail.mozilla.org/
pipermail/es-discuss/ (also at Internet Archive 6 Nov. 2017 17:08:35). Originally named es4-discuss. Renamed in August
2008.

TC39 et al. 2008. The es5-discuss Archives. Email forum hosted by mozilla.org. April 2008. non-archival https:
//mail.mozilla.org/pipermail/es5-discuss/ (also at Internet Archive 14 Jan. 2019 10:49:03). Originally named es3.1-discuss.
Renamed in March 2009.

TC39 et al. 2016. TC39 Bugzilla Archive, 2011–2015. non-archival https://tc39.es/archives/bugzilla/ This is a formatted
listing of a data export from the original TC39 Bugzilla server.

TC39 ES4. 2006a. Catchall proposal. ecmascript.org wiki. Nov. 2006. non-archival http://wiki.ecmascript.org:80/doku.
php?id=proposals:catchalls (broken; also at Internet Archive 20 Oct. 2007 08:25:39).

TC39 ES4. 2006b. Clarification: Type System. ES4 Wiki. 23 Aug. 2006. non-archival http://developer.mozilla.org:
80/es4/clarification/type_system.html (broken; also at Internet Archive 14 Jan. 2007 06:19:15).

TC39 ES4. 2006c. Expression Closures proposal. ecmascript.org wiki. Sept. 2006. non-archival http://wiki.ecmascript.org:
80/doku.php?id=proposals:expression_closures (broken; also at Internet Archive 20 Oct. 2007 08:26:04).

TC39 ES4. 2006d. Proposals: Structural types and typing of initializers. ES4 Wiki. 17 June 2006. non-archival http:
//developer.mozilla.org:80/es4/proposals/structural_types_and_typing_of_initializers.html (broken; also at Internet
Archive 17 June 2006 07:44:06).

TC39 ES4. 2007a. Clarification: Formal Type System. ES4 Wiki. 16 Jan. 2007. non-archival http://developer.mozilla.org:
80/es4/clarification/formal_type_system.html (broken; also at Internet Archive 16 Jan. 2007 07:21:22).

TC39 ES4. 2007b. Clarification: Type System. ecmascript.org wiki. 7 July 2007. non-archival http://wiki.ecmascript.org/
doku.php?id=clarification:type_system (broken; also at Internet Archive 8 Nov. 2007 07:52:29).

TC39 ES4. 2007c. ECMAScript Documentation. www.ecmascript.org website. 27 Oct. 2007. non-archival http://www.
ecmascript.org:80/docs.php (broken; also at Internet Archive 27 Oct. 2007 09:38:37).

TC39 ES4. 2007d. ES4 Pre Release M0 Source. www.ecmascript.org website. 8 June 2007. non-archival http://www.
ecmascript.org/files/es4-pre-release.M0.source.tar.gz (broken; also at Internet Archive 31 Oct. 2007 13:08:00). This is the

Authors’ Corrections: March 2021

https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-045.pdf
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-045.pdf
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-008-Rev1.pdf
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-008-Rev1.pdf
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-022.pdf
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-022.pdf
https://www.ecma-international.org/archive/ecmascript/2010/TC39/tc39-2010-028.pdf
https://www.ecma-international.org/archive/ecmascript/2010/TC39/tc39-2010-028.pdf
https://www.ecma-international.org/archive/ecmascript/2011/TC39/tc39-2011-037.pdf
https://www.ecma-international.org/archive/ecmascript/2011/TC39/tc39-2011-037.pdf
https://www.ecma-international.org/archive/ecmascript/2011/TC39/tc39-2011-028.pdf
https://www.ecma-international.org/archive/ecmascript/2011/TC39/tc39-2011-028.pdf
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-020-Rev2.pdf
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-020-Rev2.pdf
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-034.pdf
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-034.pdf
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-056.pdf
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-056.pdf
https://www.ecma-international.org/archive/ecmascript/2013/notes/2013-03/mar-14.html
https://www.ecma-international.org/archive/ecmascript/2013/notes/2013-03/mar-14.html
https://www.ecma-international.org/archive/ecmascript/2013/TC39/tc39-2013-009.pdf
https://www.ecma-international.org/archive/ecmascript/2013/TC39/tc39-2013-009.pdf
https://www.ecma-international.org/archive/ecmascript/2013/TC39/tc39-2013-055.pdf
https://www.ecma-international.org/archive/ecmascript/2013/TC39/tc39-2013-055.pdf
https://web.archive.org/web/20190820220952/https://tc39.es/tc39-notes/2014-07_jul-30.html
https://web.archive.org/web/20190820220952/https://tc39.es/tc39-notes/2014-07_jul-30.html
https://www.ecma-international.org/archive/ecmascript/2014/TC39/tc39-2014-051.pdf
https://www.ecma-international.org/archive/ecmascript/2014/TC39/tc39-2014-051.pdf
https://www.ecma-international.org/archive/ecmascript/2015/notes/2015-01/jan-27.html
https://www.ecma-international.org/archive/ecmascript/2015/notes/2015-01/jan-27.html
https://www.ecma-international.org/archive/ecmascript/2015/TC39/tc39-2015-031.pdf
https://www.ecma-international.org/archive/ecmascript/2015/TC39/tc39-2015-031.pdf
https://mail.mozilla.org/pipermail/es-discuss/
https://mail.mozilla.org/pipermail/es-discuss/
https://web.archive.org/web/20171106170835/https://mail.mozilla.org/pipermail/es-discuss/
https://mail.mozilla.org/pipermail/es5-discuss/
https://mail.mozilla.org/pipermail/es5-discuss/
https://web.archive.org/web/20190114104903/https://mail.mozilla.org/pipermail/es5-discuss/
https://tc39.es/archives/bugzilla/
https://web.archive.org/web/20071020082539/http://wiki.ecmascript.org:80/doku.php?id=proposals:catchalls
https://web.archive.org/web/20070114061915/http://developer.mozilla.org:80/es4/clarification/type_system.html
https://web.archive.org/web/20071020082604/http://wiki.ecmascript.org:80/doku.php?id=proposals:expression_closures
https://web.archive.org/web/20060617074406/http://developer.mozilla.org:80/es4/proposals/structural_types_and_typing_of_initializers.html
https://web.archive.org/web/20060617074406/http://developer.mozilla.org:80/es4/proposals/structural_types_and_typing_of_initializers.html
https://web.archive.org/web/20070116072122/http://developer.mozilla.org:80/es4/clarification/formal_type_system.html
https://web.archive.org/web/20071108075229/http://wiki.ecmascript.org/doku.php?id=clarification:type_system
https://web.archive.org/web/20071027093837/http://www.ecmascript.org:80/docs.php
https://web.archive.org/web/20071031130800/http://www.ecmascript.org/files/es4-pre-release.M0.source.tar.gz

JavaScript: The First 20 Years 185

first public source code release of the ES42 reference implementation. The final source code as of the termination of the
project in July 2008 is at non-archival https://github.com/dherman/es4.

TC39 ES4. 2007e. Proposals for modifying the spec. ecmascript.org wiki. 29 Sept. 2007. non-archival http://wiki.ecmascript.
org:80/doku.php?id=proposals:proposals (broken; also at Internet Archive 20 Oct. 2007 01:50:54).

TC39 ES4. 2007f. Proposals: Inactive. ecmascript.org wiki. 29 Sept. 2007. non-archival http://wiki.ecmascript.org:
80/doku.php?id=proposals:inactive (broken; also at Internet Archive 20 Oct. 2007 08:26:35).

TC39 ES4. 2007g. Public snapshot of TC39-TG1’s private ES4 wiki. Jan. 2007. non-archival http://developer.mozilla.org/es4/
(broken; also at Internet Archive 3 Jan. 2007 22:37:12).

TC39 Harmony. 2008. Strawman Proposals. ecmascript.org wiki. 21 Nov. 2008. non-archival http://wiki.ecmascript.org:
80/doku.php?id=strawman:strawman (broken; also at Internet Archive 22 Dec. 2008 19:08:52).

TC39 Harmony. 2009. Strawman Proposals. ecmascript.org wiki. 3 Aug. 2009. non-archival http://wiki.ecmascript.org:
80/doku.php?id=strawman:strawman (also at Internet Archive 18 Aug. 2009 15:32:07).

TC39 Harmony. 2010a. Deferred Proposals. ecmascript.org wiki. 23 Nov. 2010. non-archival http://wiki.ecmascript.org/
doku.php?id=strawman:deferred (broken; also at Internet Archive 6 Dec. 2011 19:08:02).

TC39 Harmony. 2010b. Strawman Proposals. ecmascript.org wiki. 22 Dec. 2010. non-archival http://wiki.ecmascript.org:
80/doku.php?id=strawman:strawman (broken; also at Internet Archive 31 Dec. 2010 08:39:07).

TC39 Harmony. 2010c. Strawman: Shorter function syntax. ecmascript.org wiki. May 2010. non-archival http://wiki.
ecmascript.org/doku.php?id=strawman:shorter_function_syntax (broken; also at Internet Archive 22 Jan. 2011 01:14:36).

TC39 Harmony. 2011a. Harmony Proposals. ecmascript.org wiki. 23 March 2011. non-archival http://wiki.ecmascript.org:
80/doku.php?id=harmony:proposals (broken; also at Internet Archive 24 April 2011 16:23:26).

TC39 Harmony. 2011b. Harmony Proposals. ecmascript.org wiki. 1 June 2011. non-archival http://wiki.ecmascript.org:
80/doku.php?id=harmony:proposals (broken; also at Internet Archive 25 June 2011 00:55:57).

TC39 Harmony. 2011c. Strawman Proposals. ecmascript.org wiki. 28 April 2011. non-archival http://wiki.ecmascript.org:
80/doku.php?id=strawman:strawman (broken; also at Internet Archive 1 May 2011 19:23:03).

TC39 Harmony. 2014. Harmony Proposals. ecmascript.org wiki. 30 Jan. 2014. non-archival http://wiki.ecmascript.org:
80/doku.php?id=harmony:proposals (broken; also at Internet Archive 14 Feb. 2014 12:05:27).

TC39 Harmony. 2015. Harmony: Specification Drafts. ecmascript.org wiki. 17 April 2015. non-archival http://wiki.
ecmascript.org:80/doku.php?id=harmony:specification_drafts (broken; also at Internet Archive 19 April 2015 08:03:39).

TC39-TG1. 2005. Minutes of Ecma TC39-TG1 September 22, 2005. Ecma/TC39-TG1/2005/006. https://www.ecma-
international.org/archive/ecmascript/2005/TG1/tc39-tg1-2005-006.pdf

TC39-TG1. 2006a. Minutes of Ecma TC39-TG1 April 21, 2006. Ecma/TC39-TG1/2006/020. https://www.ecma-international.
org/archive/ecmascript/2006/TG1/tc39-tg1-2006-020.pdf

TC39-TG1. 2006b. Minutes of Ecma TC39-TG1 February 16, 2006. Ecma/TC39-TG1/2006/011. https://www.ecma-
international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-011.pdf

TC39-TG1. 2006c. Minutes of Ecma TC39-TG1 July 27-28, 2006. Ecma/TC39-TG1/2006/032. https://www.ecma-international.
org/archive/ecmascript/2006/TG1/tc39-tg1-2006-032.pdf

TC39-TG1. 2006d. Minutes of Ecma TC39-TG1 March 16, 2006. Ecma/TC39-TG1/2006/015. https://www.ecma-international.
org/archive/ecmascript/2006/TG1/tc39-tg1-2006-015.pdf

TC39-TG1. 2006e. Minutes of Ecma TC39-TG1 October 19-20, 2006. Ecma/TC39-TG1/2006/041. https://www.ecma-
international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-041.pdf

TC39-TG1. 2007a. Minutes of Ecma TC39-TG1 April 18-20, 2007. Ecma/TC39-TG1/2007/017. https://www.ecma-international.
org/archive/ecmascript/2007/TG1/tc39-tg1-2007-017.pdf

TC39-TG1. 2007b. Minutes of Ecma TC39-TG1 June 21-22, 2007. Ecma/TC39-TG1/2007/025. https://www.ecma-international.
org/archive/ecmascript/2007/TG1/tc39-tg1-2007-025.pdf

TC39-TG1. 2007c. Minutes of Ecma TC39-TG1 March 21-23, 2007. Ecma/TC39-TG1/2007/013. https://www.ecma-
international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-013.pdf

TC39-TG1. 2007d. Minutes of Ecma TC39-TG1 September 27-28, 2007. Ecma/TC39-TG1/2007/036. https://www.ecma-
international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-036.pdf

R.D. Tennent. 1981. Principles of programming languages. Prentice/Hall International. 9780137098736 80024271
Brian Terlson. 2012. Real World Func Decl in Block Scope Breakages. es-discuss mailing list. 26 Dec. 2012. non-archival

https://mail.mozilla.org/pipermail/es-discuss/2012-December/027419.html (also at Internet Archive 4 June 2014 15:53:17).
Sam Tobin-Hochstadt. 2010. simple modules. es-discuss mailing list. 4 Feb. 2010. non-archival https://mail.mozilla.org/

pipermail/es-discuss/2010-February/010782.html (also at Internet Archive 5 June 2014 01:27:32).
Sam Tobin-Hochstadt and David Herman. 2010. Simple Modules. Ecma/TC39/2010/017. 24 March 2010. https://www.ecma-

international.org/archive/ecmascript/2010/TC39/tc39-2010-017.pdf Presentation at TC39 meeting.
Traceur Project. 2011a. traceur-compiler project. Google Code Project. 5 May 2011. non-archival http://code.google.

com/p/traceur-compiler/ (superseded; also at Internet Archive 5 May 2011 01:15:49). The Traceur GitHub repository

Authors’ Corrections: March 2021

https://github.com/dherman/es4
https://web.archive.org/web/20071020015054/http://wiki.ecmascript.org:80/doku.php?id=proposals:proposals
https://web.archive.org/web/20071020082635/http://wiki.ecmascript.org:80/doku.php?id=proposals:inactive
https://web.archive.org/web/20070103223712/http://developer.mozilla.org/es4/
https://web.archive.org/web/20081222190852/http://wiki.ecmascript.org:80/doku.php?id=strawman:strawman
https://web.archive.org/web/20090818153207/http://wiki.ecmascript.org:80/doku.php?id=strawman:strawman
https://web.archive.org/web/20111206190802/http://wiki.ecmascript.org/doku.php?id=strawman:deferred
https://web.archive.org/web/20101231083907/http://wiki.ecmascript.org:80/doku.php?id=strawman:strawman
https://web.archive.org/web/20110122011436/http://wiki.ecmascript.org/doku.php?id=strawman:shorter_function_syntax
https://web.archive.org/web/20110424162326/http://wiki.ecmascript.org:80/doku.php?id=harmony:proposals
https://web.archive.org/web/20110625005557/http://wiki.ecmascript.org:80/doku.php?id=harmony:proposals
https://web.archive.org/web/20110501192303/http://wiki.ecmascript.org:80/doku.php?id=strawman:strawman
https://web.archive.org/web/20140214120527/http://wiki.ecmascript.org:80/doku.php?id=harmony:proposals
https://web.archive.org/web/20150419080339/http://wiki.ecmascript.org:80/doku.php?id=harmony:specification_drafts
https://www.ecma-international.org/archive/ecmascript/2005/TG1/tc39-tg1-2005-006.pdf
https://www.ecma-international.org/archive/ecmascript/2005/TG1/tc39-tg1-2005-006.pdf
https://www.ecma-international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-020.pdf
https://www.ecma-international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-020.pdf
https://www.ecma-international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-011.pdf
https://www.ecma-international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-011.pdf
https://www.ecma-international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-032.pdf
https://www.ecma-international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-032.pdf
https://www.ecma-international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-015.pdf
https://www.ecma-international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-015.pdf
https://www.ecma-international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-041.pdf
https://www.ecma-international.org/archive/ecmascript/2006/TG1/tc39-tg1-2006-041.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-017.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-017.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-025.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-025.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-013.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-013.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-036.pdf
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-036.pdf
https://mail.mozilla.org/pipermail/es-discuss/2012-December/027419.html
https://web.archive.org/web/20140604155317/https://mail.mozilla.org/pipermail/es-discuss/2012-December/027419.html
https://mail.mozilla.org/pipermail/es-discuss/2010-February/010782.html
https://mail.mozilla.org/pipermail/es-discuss/2010-February/010782.html
https://web.archive.org/web/20140605012732/https://mail.mozilla.org/pipermail/es-discuss/2010-February/010782.html
https://www.ecma-international.org/archive/ecmascript/2010/TC39/tc39-2010-017.pdf
https://www.ecma-international.org/archive/ecmascript/2010/TC39/tc39-2010-017.pdf
https://web.archive.org/web/20110505011549/http://code.google.com/p/traceur-compiler/

186 Allen Wirfs-Brock and Brendan Eich

non-archival https://github.com/google/traceur-compiler
Traceur Project. 2011b. Traceur Language Features - Classes. Google Code Project. 4 May 2011. non-archival http:

//code.google.com/p/traceur-compiler/wiki/LanguageFeatures#Classes (superseded; also at Internet Archive 7 May 2011
11:59:13).

David Ungar and Randall B. Smith. 1987. Self: The Power of Simplicity. In Conference Proceedings on Object-oriented
Programming Systems, Languages and Applications (Orlando, Florida, USA) (OOPSLA ’87). ACM, New York, NY, USA,
227–242. 0-89791-247-0 https://doi.org/10.1145/38765.38828

Tom Van Cutsem. 2009. Catch-all proposal based on proxies. es-discuss mailing list. 7 Dec. 2009. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2009-December/010250.html (also at Internet Archive 6 Aug. 2013 07:15:18).

Tom Van Cutsem. 2011. Direct proxies strawman. es-discuss mailing list. 17 Oct. 2011. non-archival https://mail.mozilla.
org/pipermail/es-discuss/2011-October/017466.html (also at Internet Archive 4 June 2014 20:08:02).

Tom Van Cutsem. 2013. Notification Proxies. Blog Post. 22 May 2013. non-archival http://tvcutsem.github.io/notification-
proxies (also at Internet Archive 22 Jan. 2017 02:37:05).

Tom Van Cutsem and Mark S. Miller. 2010a. Catch-all Proxies. ecmascript.org wiki. March 2010. non-archival
http://wiki.ecmascript.org/doku.php?id=harmony:proxies (broken; also at Internet Archive 24 March 2010 21:47:41).

Tom Van Cutsem and Mark S. Miller. 2010b. Proxies: Design Principles for Robust Object-oriented Intercession APIs. In
Proceedings of the 6th Symposium on Dynamic Languages (Reno/Tahoe, Nevada, USA) (DLS ’10). ACM, New York, NY,
USA, 59–72. 978-1-4503-0405-4 https://doi.org/10.1145/1869631.1869638

Tom Van Cutsem and Mark S. Miller. 2010c. Proxies Strawman Proposal. Ecma/TC39/2010/007. 27 Jan. 2010. https:
//www.ecma-international.org/archive/ecmascript/2010/TC39/tc39-2010-007.pdf Presentation at TC39 meeting.

Tom Van Cutsem and Mark S. Miller. 2011a. Direct Proxy Spec. ecmascript.org wiki. 23 Dec. 2011. non-archival
http://wiki.ecmascript.org/doku.php?id=harmony:proxies_spec (broken; also at Internet Archive 14 May 2012 05:55:57).

Tom Van Cutsem and Mark S. Miller. 2011b. Strawman: Direct Proxies. ecmascript.org wiki. 23 Nov. 2011. non-archival
http://wiki.ecmascript.org/doku.php?id=strawman:direct_proxies (broken; also at Internet Archive 13 July 2012 16:15:48).

Tom Van Cutsem and Mark S. Miller. 2011c. Traits.Js: Robust Object Composition and High-integrity Objects for Ecmascript
5. In Proceedings of the 1st ACM SIGPLAN International Workshop on Programming Language and Systems Technologies
for Internet Clients (Portland, Oregon, USA) (PLASTIC ’11). ACM, New York, NY, USA, 1–8. 978-1-4503-1171-7 https:
//doi.org/10.1145/2093328.2093330

Tom Van Cutsem and Mark S. Miller. 2012. Proposal: Direct Proxies. ecmascript.org wiki. 22 March 2012. non-archival
http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies (broken; also at Internet Archive 23 April 2012 15:01:31).

Tom Van Cutsem and Mark S. Miller. 2013. Trustworthy Proxies: Virtualizing Objects with Invariants. In Proceedings of the
27th European Conference on Object-Oriented Programming (Montpellier, France) (ECOOP’13). Springer-Verlag, Berlin,
Heidelberg, 154–178. 978-3-642-39037-1 https://doi.org/10.1007/978-3-642-39038-8_7

Jim Van Eaton. 2005. Outlook Web Access - A catalyst for web evolution. Microsoft Exchange Team Blog. 21 June 2005.
non-archival http://msexchangeteam.com/archive/2005/06/21/406646.aspx (broken; also at Internet Archive 23 June
2006 17:50:04).

Markku Vartiainen (Ed.). 2001. ECMA-327, ECMAScript 3rd Edition Compact Profile. Ecma International, Geneva, Switzerland
(June). https://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/Ecma-327.pdf

Herman Venter. 1998a. instanceof proposal. Ecma TC39 working document. 5 March 1998. https://www.ecma-international.
org/archive/ecmascript/1998/TC39WG/980305-instance.pdf

Herman Venter. 1998b. Revised section 12. Ecma TC39 working document. 5 March 1998. https://www.ecma-international.
org/archive/ecmascript/1998/TC39WG/980305-labelled.pdf

Herman Venter. 1998c. Updates for section 12. Ecma TC39 working document. 22 April 1998. https://www.ecma-
international.org/archive/ecmascript/1998/TC39WG/980430-label3.pdf

Eelco Visser. 2001. Stratego: A Language for Program Transformation Based on Rewriting Strategies. In Proceedings of the
12th International Conference on Rewriting Techniques and Applications (RTA ’01). Springer-Verlag, Berlin, Heidelberg,
357–362. 3-540-42117-3 http://dl.acm.org/citation.cfm?id=647200.718711

W3C. 1998. Shaping the Future of HTML. W3C web pages. May 1998. non-archival https://www.w3.org/MarkUp/future/
(also at Internet Archive 3 July 1998 15:57:23). Record of W3C workshop held 4–5 May 1998.

Richard Wagner (Ed.). 1999. ECMA-290: ECMAScript Components Specification. Ecma International, Geneva, Switzerland
(June). https://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/ECMA-290.pdf

Richard Wagner and Chip Shapley. 1998. ECMAScript Components Technical Specification. (25 June 1998). Ec-
ma/TC39/1998/011. 25 June 1998. https://www.ecma-international.org/archive/ecmascript/1998/TC39/8T39-011.pdf

Joe Walker. 2018. The Brave Cookie Monster—Brendan Eich. The Jolly Swagman Podcast Episode 50. 29 May 2018. Audio
recording non-archival https://content.blubrry.com/thejollyswagmen/JollySwagmen050-BrendanEich-FINAL.mp3
(also at Internet Archive 12 Feb. 2020 16:44:00). Show Notes non-archival https://josephnoelwalker.com/50-the-brave-
cookie-monster-brendan-eich/

Authors’ Corrections: March 2021

https://github.com/google/traceur-compiler
https://web.archive.org/web/20110507115913/http://code.google.com/p/traceur-compiler/wiki/LanguageFeatures#Classes
https://web.archive.org/web/20110507115913/http://code.google.com/p/traceur-compiler/wiki/LanguageFeatures#Classes
https://doi.org/10.1145/38765.38828
https://mail.mozilla.org/pipermail/es-discuss/2009-December/010250.html
https://web.archive.org/web/20130806071518/https://mail.mozilla.org/pipermail/es-discuss/2009-December/010250.html
https://mail.mozilla.org/pipermail/es-discuss/2011-October/017466.html
https://mail.mozilla.org/pipermail/es-discuss/2011-October/017466.html
https://web.archive.org/web/20140604200802/https://mail.mozilla.org/pipermail/es-discuss/2011-October/017466.html
http://tvcutsem.github.io/notification-proxies
http://tvcutsem.github.io/notification-proxies
https://web.archive.org/web/20170122023705/http://tvcutsem.github.io/notification-proxies
https://web.archive.org/web/20100324214741/http://wiki.ecmascript.org/doku.php?id=harmony:proxies
https://doi.org/10.1145/1869631.1869638
https://www.ecma-international.org/archive/ecmascript/2010/TC39/tc39-2010-007.pdf
https://www.ecma-international.org/archive/ecmascript/2010/TC39/tc39-2010-007.pdf
https://web.archive.org/web/20120514055557/http://wiki.ecmascript.org/doku.php?id=harmony:proxies_spec
https://web.archive.org/web/20120713161548/http://wiki.ecmascript.org/doku.php?id=strawman:direct_proxies
https://doi.org/10.1145/2093328.2093330
https://doi.org/10.1145/2093328.2093330
https://web.archive.org/web/20120423150131/http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies
https://doi.org/10.1007/978-3-642-39038-8_7
https://web.archive.org/web/20060623175004/http://msexchangeteam.com/archive/2005/06/21/406646.aspx
https://web.archive.org/web/20060623175004/http://msexchangeteam.com/archive/2005/06/21/406646.aspx
https://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/Ecma-327.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980305-instance.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980305-instance.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980305-labelled.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980305-labelled.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980430-label3.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39WG/980430-label3.pdf
http://dl.acm.org/citation.cfm?id=647200.718711
https://www.w3.org/MarkUp/future/
https://web.archive.org/web/19980703155723/https://www.w3.org/MarkUp/future/
https://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/ECMA-290.pdf
https://www.ecma-international.org/archive/ecmascript/1998/TC39/8T39-011.pdf
https://content.blubrry.com/thejollyswagmen/JollySwagmen050-BrendanEich-FINAL.mp3
https://web.archive.org/web/20200212164400/https://content.blubrry.com/thejollyswagmen/JollySwagmen050-BrendanEich-FINAL.mp3
https://josephnoelwalker.com/50-the-brave-cookie-monster-brendan-eich/
https://josephnoelwalker.com/50-the-brave-cookie-monster-brendan-eich/

JavaScript: The First 20 Years 187

Rafael Weinstein. 2012. Harmony: Observe. ecmascript.org wiki. 16 March 2012. non-archival http://wiki.ecmascript.org:
80/doku.php?id=harmony:observe (broken; also at Internet Archive 16 Nov. 2012 14:24:41).

Rafael Weinstein and Dmitry Lomov. 2013. Post-ES6 Spec Process. Presentation to TC39. 18 Sept. 2013. non-archival
http://slides.com/rafaelweinstein/tc39-process/# (also at Internet Archive 24 July 2014 03:33:36).

Rafael Weinstein and Allen Wirfs-Brock. 2013. TC-39 Process. Ecma/TC39/2013/062. Nov. 2013. https://www.ecma-
international.org/archive/ecmascript/2013/TC39/tc39-2013-062.pdf

Robert Welland et al. 1996. The JScript Language Specification, Version 0.1. Ecma/TC39/1996/005. Nov. 1996. https:
//www.ecma-international.org/archive/ecmascript/1996/TC39/96-005.pdf

RobertWelland, Shon Katzenberger, and Peter Kukol. 2018. Oral history of members of original Microsoft JScript development
team. 22 March 2018. non-archival http://www.wirfs-brock.com/allen/files/jshistory/JScriptInterview.mp3 (also at
Internet Archive 7 March 2020 17:37:32). Audio recording, duration 52:44. Interviewer Allen Wirfs-Brock.

Wikinews. 2007. Wikinews interviews World Wide Web co-inventor Robert Cailliau. Wikinew website. 16 Aug. 2007.
non-archival http://en.wikinews.org/wiki/Wikinews_interviews_World_Wide_Web_co-inventor_Robert_Cailliau (also
at Internet Archive 5 Dec. 2007 22:04:09).

Wikipedia. 2019. Embrace, extend, and extinguish—Wikipedia, The Free Encyclopedia. non-archival https://en.wikipedia.
org/wiki/Embrace,_extend,_and_extinguish (retrieved 25 July 2019)

Scott Wiltamuth. 1997a. 1/15 working group meeting notes. Ecma/TC39/1997/005. https://www.ecma-international.org/
archive/ecmascript/1997/TC39/97-005.pdf

Scott Wiltamuth. 1997b. 1/24 working group notes. Ecma/TC39/1997/008. https://www.ecma-international.org/archive/
ecmascript/1997/TC39/97-008.pdf

Scott Wiltamuth. 1997c. 4/16 Working group meeting notes. Ecma/TC39/1997/025. https://www.ecma-international.org/
archive/ecmascript/1997/TC39/97-025.pdf

ScottWiltamuth. 1997d. Notes from the 1/31 working groupmeeting. Ecma/TC39/1997/009. https://www.ecma-international.
org/archive/ecmascript/1997/TC39/97-009.pdf

Scott Wiltamuth. 1997e. Notes from the 2/11 conference call. Ecma/TC39/1997/010. https://www.ecma-international.org/
archive/ecmascript/1997/TC39/97-010.pdf

ScottWiltamuth. 1997f. Notes from the 2/14 working group meeting. Ecma/TC39/1997/015. https://www.ecma-international.
org/archive/ecmascript/1997/TC39/97-015.pdf

ScottWiltamuth. 1997g. Notes from the 2/28 working groupmeeting. Ecma/TC39/1997/012. https://www.ecma-international.
org/archive/ecmascript/1997/TC39/97-012.pdf

ScottWiltamuth. 1997h. Notes from the 3/14working groupmeeting. Ecma/TC39/1997/024. https://www.ecma-international.
org/archive/ecmascript/1997/TC39/97-024.pdf

Scott Wiltamuth. 1997i. Notes from the 3/18 TC39 technical meeting. Ecma/TC39/1997/026. https://www.ecma-international.
org/archive/ecmascript/1997/TC39/97-026.pdf

Scott Wiltamuth. 1997j. Selecting a new name to replace "ECMAScript". Ecma/TC39/1997/002. 14 Jan. 1997. https:
//www.ecma-international.org/archive/ecmascript/1997/TC39/97-002.pdf

Nick Wingfield. 1995. Microsoft storms the Web. InfoWorld 17, 50 (11 Dec.), 1. non-archival https:
//books.google.com/books?id=QjgEAAAAMBAJ&lpg=PP1&dq=Inforworld%2520Dec%252011%252C%25201995&
pg=PP3#v=onepage&q&f=false (also at Internet Archive 27 Feb. 2020 21:15:10).

Allen Wirfs-Brock. 2007a. Implementation Loopholes In ECMAScript, 3rd Edition. ecmascript.org wiki. Aug. 2007.
https://www.ecma-international.org/archive/ecmascript/2007/misc/es3_implementation_loopholes_annotated.pdf

Allen Wirfs-Brock. 2007b. Mozilla Extensions to ECMAScript, 3rd Edition. ecmascript.org wiki. Aug. 2007. https:
//www.ecma-international.org/archive/ecmascript/2007/misc/mozilla_javascript_extensions.pdf

Allen Wirfs-Brock. 2007c. Re: ECMAScript 4 Language Overview White Paper (23 Oct. 2007, 5:47 AM). Message to
TC39-TG1 private mailing list. Archived by Ecma International.

Allen Wirfs-Brock. 2008. Proposed ECMAScript 3.1 Static Object Functions: Use Cases and Rationale. ecmascript.org wiki.
26 Aug. 2008. https://www.ecma-international.org/archive/ecmascript/2008/misc/rationale_for_es3_1_static_object_
methodsaug26.pdf

Allen Wirfs-Brock. 2009. definitional interpreter for ECMAScript 5 implemented using ECMAScript. Ecma/TC39/2009/052.
Oct. 2009. https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-052.pdf

Allen Wirfs-Brock. 2010. simple modules. es-discuss mailing list. 3 Feb. 2010. non-archival https://mail.mozilla.org/
pipermail/es-discuss/2010-February/010776.html (also at Internet Archive 5 June 2014 01:27:16).

Allen Wirfs-Brock. 2011a. Declarative Object and Class Abstractions Based Upon Extended Object Initialisers. Ec-
ma/TC39/2011/019. 23 March 2011. https://www.ecma-international.org/archive/ecmascript/2011/TC39/tc39-2011-
019.pdf

Allen Wirfs-Brock (Ed.). 2011b. ECMA-262, Edition 5.1: ECMAScript Language Specification. Ecma International,
Geneva, Switzerland (June). https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205.

Authors’ Corrections: March 2021

https://web.archive.org/web/20121116142441/http://wiki.ecmascript.org:80/doku.php?id=harmony:observe
http://slides.com/rafaelweinstein/tc39-process/#
https://web.archive.org/web/20140724033336/http://slides.com/rafaelweinstein/tc39-process/
https://www.ecma-international.org/archive/ecmascript/2013/TC39/tc39-2013-062.pdf
https://www.ecma-international.org/archive/ecmascript/2013/TC39/tc39-2013-062.pdf
https://www.ecma-international.org/archive/ecmascript/1996/TC39/96-005.pdf
https://www.ecma-international.org/archive/ecmascript/1996/TC39/96-005.pdf
http://www.wirfs-brock.com/allen/files/jshistory/JScriptInterview.mp3
https://web.archive.org/web/20200307173732/http://www.wirfs-brock.com/allen/files/jshistory/JScriptInterview.mp3
http://en.wikinews.org/wiki/Wikinews_interviews_World_Wide_Web_co-inventor_Robert_Cailliau
https://web.archive.org/web/20071205220409/http://en.wikinews.org/wiki/Wikinews_interviews_World_Wide_Web_co-inventor_Robert_Cailliau
https://en.wikipedia.org/wiki/Embrace,_extend,_and_extinguish
https://en.wikipedia.org/wiki/Embrace,_extend,_and_extinguish
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-005.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-005.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-008.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-008.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-025.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-025.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-009.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-009.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-010.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-010.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-015.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-015.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-012.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-012.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-024.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-024.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-026.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-026.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-002.pdf
https://www.ecma-international.org/archive/ecmascript/1997/TC39/97-002.pdf
https://books.google.com/books?id=QjgEAAAAMBAJ&lpg=PP1&dq=Inforworld%2520Dec%252011%252C%25201995&pg=PP3#v=onepage&q&f=false
https://books.google.com/books?id=QjgEAAAAMBAJ&lpg=PP1&dq=Inforworld%2520Dec%252011%252C%25201995&pg=PP3#v=onepage&q&f=false
https://books.google.com/books?id=QjgEAAAAMBAJ&lpg=PP1&dq=Inforworld%2520Dec%252011%252C%25201995&pg=PP3#v=onepage&q&f=false
https://web.archive.org/web/20200227211510/https://books.google.com/books?id=QjgEAAAAMBAJ&lpg=PP1&dq=Inforworld%2520Dec%252011%252C%25201995&pg=PP3#v=onepage&q&f=false
https://www.ecma-international.org/archive/ecmascript/2007/misc/es3_implementation_loopholes_annotated.pdf
https://www.ecma-international.org/archive/ecmascript/2007/misc/mozilla_javascript_extensions.pdf
https://www.ecma-international.org/archive/ecmascript/2007/misc/mozilla_javascript_extensions.pdf
https://www.ecma-international.org/archive/ecmascript/2008/misc/rationale_for_es3_1_static_object_methodsaug26.pdf
https://www.ecma-international.org/archive/ecmascript/2008/misc/rationale_for_es3_1_static_object_methodsaug26.pdf
https://www.ecma-international.org/archive/ecmascript/2009/TC39/tc39-2009-052.pdf
https://mail.mozilla.org/pipermail/es-discuss/2010-February/010776.html
https://mail.mozilla.org/pipermail/es-discuss/2010-February/010776.html
https://web.archive.org/web/20140605012716/https://mail.mozilla.org/pipermail/es-discuss/2010-February/010776.html
https://www.ecma-international.org/archive/ecmascript/2011/TC39/tc39-2011-019.pdf
https://www.ecma-international.org/archive/ecmascript/2011/TC39/tc39-2011-019.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205.1%20edition%20June%202011.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205.1%20edition%20June%202011.pdf

188 Allen Wirfs-Brock and Brendan Eich

1%20edition%20June%202011.pdf
Allen Wirfs-Brock. 2011c. Other Object Initialiser Property Modifiers. ecmascript.org wiki. 23 March 2011. non-archival

http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_const (broken; also at Internet Archive 15 May 2013
09:27:24).

Allen Wirfs-Brock. 2011d. Strawman: Declarative Object and Class Abstractions Based Upon Extended Object Initialisers.
ecmascript.org wiki. March 2011. non-archival http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_
extensions (broken; also at Internet Archive 22 Aug. 2011 01:33:07).

Allen Wirfs-Brock. 2012a. Block Lambdas: break and continue. es-discuss mailing list. 14 Jan. 2012. non-archival
https://mail.mozilla.org/pipermail/es-discuss/2012-January/019520.html (also at Internet Archive 4 June 2014 18:55:57).

Allen Wirfs-Brock. 2012b. ES6 Max-min class semantics with TC39 decision annotations. Ecma/TC39/2012/054 with
annotations. 26 July 2012. https://www.ecma-international.org/archive/ecmascript/2012/misc/2012misc6.pdf

Allen Wirfs-Brock. 2012c. ES6 Subclassing Built-ins. Ecma/TC39/2012/misc5. July 2012. https://www.ecma-international.
org/archive/ecmascript/2012/misc/2012misc5.pdf Presentation slides at July 2012 TC39 meeting.

Allen Wirfs-Brock. 2012d. Strawman: maximally minimal classes. ecmascript.org wiki. 25 March 2012. non-archival
http://wiki.ecmascript.org:80/doku.php?id=strawman:maximally_minimal_classes (broken; also at Internet Archive 26
April 2012 12:54:28).

Allen Wirfs-Brock. 2012e. "Subclassing" Built-in Constructors. ecmascript.org wiki. non-archival http://wiki.ecmascript.
org/doku.php?id=strawman:subclassable-builtins (broken; also at Internet Archive 15 May 2013 08:39:50).

Allen Wirfs-Brock. 2013. Making Built-in and Exotic Objects Subclassable. Ecma/TC39/2013/misc1. 29 Jan. 2013. https:
//ecma-international.org/archive/ecmascript/2013/misc/2013misc1.pdf Presentation slides at January 2013 TC39 meeting.

Allen Wirfs-Brock (Ed.). 2015a. ECMA-262, 6th Edition: ECMAScript 2015 Language Specification. Ecma International,
Geneva, Switzerland (June). https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%
206th%20edition%20June%202015.pdf

Allen Wirfs-Brock. 2015b. ES6 super [[construct]] proposal. Ecma/TC39/2015/misc1. Jan. 2015. https://www.ecma-
international.org/archive/ecmascript/2015/misc/2015misc1.html

Allen Wirfs-Brock et al. 2007. Position Statement to TC39-TG1 Regarding the Evolution of ECMAScript. Ecma/TC39-
TG1/2007/042. 7 Nov. 2007. https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-042.pdf

Allen Wirfs-Brock et al. 2011a. Draft Specification for ES.next: July 12, 2011. ecmascript.org wiki. 12 July 2011. non-
archival http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts (broken; also at Internet Archive 13
Aug. 2011 14:59:41).

Allen Wirfs-Brock et al. 2011b. Draft Standard ECMA-262 6th Edition, Rev 1. Ecma/TC39/2011/032. 11 July 2011. https:
//www.ecma-international.org/archive/ecmascript/2011/TC39/tc39-2011-032.pdf

Allen Wirfs-Brock et al. 2012a. Draft Specification for ES.next: Feb. 27, 2012. ecmascript.org wiki. 27 Feb. 2012. non-
archival http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts (broken; also at Internet Archive 4 May
2012 04:11:39).

Allen Wirfs-Brock et al. 2012b. Draft Specification for ES.next: Sept. 27, 2012. ecmascript.org wiki. 27 Sept. 2012. non-
archival http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts (broken; also at Internet Archive 13
Jan. 2013 13:46:59).

Allen Wirfs-Brock et al. 2012c. Sixth draft, Standard ECMA-262 6th edition. Ecma/TC39/2012/071. 27 Sept. 2012. https:
//www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-071.pdf

AllenWirfs-Brock et al. 2014a. Draft Specification for ES.next: January 20, 2014 Draft Rev 22. ecmascript.org wiki. 20 Jan. 2014.
non-archival http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts#january_20_2014_draft_rev_22
(broken; also at Internet Archive 23 Jan. 2014 03:43:28).

AllenWirfs-Brock et al. 2014b. Draft Specification for ES.next: October 14, 2014 Draft Rev 28. ecmascript.orgwiki. 14 Oct. 2014.
non-archival http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts#october_14_2014_draft_rev_28
(broken; also at Internet Archive 28 Oct. 2014 07:21:19).

Allen Wirfs-Brock et al. 2014c. Presentation: Instantiation Reform. Ecma/TC39/2014/032. 26 July 2014. https://ecma-
international.org/archive/ecmascript/2014/TC39/tc39-2014-032.pdf

Allen Wirfs-Brock et al. 2014d. Presentation: Object Instantiation Redo. Ecma/TC39/2014/046. Sept. 2014. https://ecma-
international.org/archive/ecmascript/2014/TC39/tc39-2014-046.pdf

Allen Wirfs-Brock et al. 2015a. Draft Specification for ES.next: April 14, 2015 Draft Rev 38. ecmascript.org wiki. 14 April
2015. Originally at non-archival http://wiki.ecmascript.org:80/doku.php?id=harmony:specification_drafts#final_draft
(broken; also at Internet Archive 19 April 2015 08:03:39).

Allen Wirfs-Brock et al. 2015b. Draft Specification for ES.next: March 17, 2015 Draft Rev 36. ecmascript.org wiki. 17 March
2015. non-archival http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts#march_17_2015_rev_36_
release_candidate_3 (broken; also at Internet Archive 24 March 2015 06:04:22).

Authors’ Corrections: March 2021

https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205.1%20edition%20June%202011.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205.1%20edition%20June%202011.pdf
https://web.archive.org/web/20130515092724/http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_const
https://web.archive.org/web/20130515092724/http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_const
https://web.archive.org/web/20110822013307/http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_extensions
https://mail.mozilla.org/pipermail/es-discuss/2012-January/019520.html
https://web.archive.org/web/20140604185557/https://mail.mozilla.org/pipermail/es-discuss/2012-January/019520.html
https://www.ecma-international.org/archive/ecmascript/2012/misc/2012misc6.pdf
https://www.ecma-international.org/archive/ecmascript/2012/misc/2012misc5.pdf
https://www.ecma-international.org/archive/ecmascript/2012/misc/2012misc5.pdf
https://web.archive.org/web/20120426125428/http://wiki.ecmascript.org:80/doku.php?id=strawman:maximally_minimal_classes
https://web.archive.org/web/20120426125428/http://wiki.ecmascript.org:80/doku.php?id=strawman:maximally_minimal_classes
https://web.archive.org/web/20130515083950/http://wiki.ecmascript.org/doku.php?id=strawman:subclassable-builtins
https://ecma-international.org/archive/ecmascript/2013/misc/2013misc1.pdf
https://ecma-international.org/archive/ecmascript/2013/misc/2013misc1.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%206th%20edition%20June%202015.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%206th%20edition%20June%202015.pdf
https://www.ecma-international.org/archive/ecmascript/2015/misc/2015misc1.html
https://www.ecma-international.org/archive/ecmascript/2015/misc/2015misc1.html
https://www.ecma-international.org/archive/ecmascript/2007/TG1/tc39-tg1-2007-042.pdf
https://web.archive.org/web/20110813145941/http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://web.archive.org/web/20110813145941/http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://www.ecma-international.org/archive/ecmascript/2011/TC39/tc39-2011-032.pdf
https://www.ecma-international.org/archive/ecmascript/2011/TC39/tc39-2011-032.pdf
https://web.archive.org/web/20120504041139/http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://web.archive.org/web/20120504041139/http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://web.archive.org/web/20130113134659/http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://web.archive.org/web/20130113134659/http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-071.pdf
https://www.ecma-international.org/archive/ecmascript/2012/TC39/tc39-2012-071.pdf
https://web.archive.org/web/20140123034328/http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts#january_20_2014_draft_rev_22
https://web.archive.org/web/20141028072119/http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts#october_14_2014_draft_rev_28
https://ecma-international.org/archive/ecmascript/2014/TC39/tc39-2014-032.pdf
https://ecma-international.org/archive/ecmascript/2014/TC39/tc39-2014-032.pdf
https://ecma-international.org/archive/ecmascript/2014/TC39/tc39-2014-046.pdf
https://ecma-international.org/archive/ecmascript/2014/TC39/tc39-2014-046.pdf
https://web.archive.org/web/20150419080339/http://wiki.ecmascript.org:80/doku.php?id=harmony:specification_drafts#final_draft
https://web.archive.org/web/20150324060422/http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts#march_17_2015_rev_36_release_candidate_3

JavaScript: The First 20 Years 189

Allen Wirfs-Brock et al. 2015c. Final draft Standard ECMA-262 6th Edition. Ecma/TC39/2015/030. April 2015. https:
//www.ecma-international.org/archive/ecmascript/2015/TC39/tc39-2015-030.pdf

Allen Wirfs-Brock and Douglas Crockford. 2007. Notes from 8/16/07 Allen Wirfs-Brock and Douglas Crockford work session.
ecmascript.org wiki. https://www.ecma-international.org/archive/ecmascript/2007/misc/8-16-07_meeting_notes.pdf

W3Techs. 2010. Usage of javascript libraries for websites. W3Techs Web Technology Surveys. April 2010. 2010 data
non-archival https://w3techs.com/technologies/overview/javascript_library/all (superseded; also at Internet Archive
23 April 2010 04:16:17). Current data non-archival https://w3techs.com/technologies/overview/javascript_library/all

Yahoo! Developer Network. 2008. YUI Core. Online documentation. Sept. 2008. non-archival http://developer.yahoo.com:
80/yui/3/yui/#core (broken; also at Internet Archive 10 Sept. 2008 00:24:03).

Alon Zakai. 2011. Emscripten: An LLVM-to-JavaScript Compiler. In Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems Languages and Applications Companion (Portland, Oregon, USA)
(OOPSLA ’11). ACM, New York, NY, USA, 301–312. 978-1-4503-0942-4 https://doi.org/10.1145/2048147.2048224

Jamie Zawinski. 1999. the netscape dorm. Web page on www.jwz.org. 8 Nov. 1999. non-archival https://www.jwz.org/
gruntle/nscpdorm.html (superseded; also at Internet Archive 8 Nov. 1999 22:25:35). In 2014 the original Web page was
changed to begin with a disavowal of the startup culture descibed in the essay. That version is what is currently accessed
via non-archival https://www.jwz.org/gruntle/nscpdorm.html.

Boris Zbarsky. 2014. RE: @@new. es-discuss mailing list. 17 June 2014. non-archival https://mail.mozilla.org/pipermail/es-
discuss/2014-June/037849.html (also at Internet Archive 23 July 2014 23:17:30).

Authors’ Corrections: March 2021

https://www.ecma-international.org/archive/ecmascript/2015/TC39/tc39-2015-030.pdf
https://www.ecma-international.org/archive/ecmascript/2015/TC39/tc39-2015-030.pdf
https://www.ecma-international.org/archive/ecmascript/2007/misc/8-16-07_meeting_notes.pdf
https://web.archive.org/web/20100423041617/https://w3techs.com/technologies/overview/javascript_library/all
https://web.archive.org/web/20100423041617/https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://web.archive.org/web/20080910002403/http://developer.yahoo.com:80/yui/3/yui/#core
https://doi.org/10.1145/2048147.2048224
https://web.archive.org/web/19991108222535/https://www.jwz.org/gruntle/nscpdorm.html
https://www.jwz.org/gruntle/nscpdorm.html
https://mail.mozilla.org/pipermail/es-discuss/2014-June/037849.html
https://mail.mozilla.org/pipermail/es-discuss/2014-June/037849.html
https://web.archive.org/web/20140723231730/https://mail.mozilla.org/pipermail/es-discuss/2014-June/037849.html

	Abstract
	Contents
	1 Introduction
	1.1 Names, Numbers, and Abbreviations

	Part 1: The Origins of JavaScript
	2 Prehistory
	2.1 Brendan Eich Joins Netscape
	2.2 The Story of Mocha

	3 JavaScript 1.0 and 1.1
	3.1 JavaScript Syntax
	3.2 Data Types and Expressions
	3.3 Objects
	3.4 Function Objects
	3.5 Built-in Library
	3.6 Execution Model
	3.7 Oddities and Bugs
	3.7.1 Redundant Declarations
	3.7.2 Automatic Coercions and the == Operator
	3.7.3 32-Bit Arithmetic
	3.7.4 The this Keyword
	3.7.5 Arguments Objects
	3.7.6 Special Treatment of Numeric Property Keys
	3.7.7 Properties of Primitive Values
	3.7.8 HTML Comments inside JavaScript

	4 Microsoft JScript
	5 From Mocha to SpiderMonkey

	6 Interlude: Critics
	Part 2: Creating a Standard
	7 Finding a Venue
	8 The First TC39 Meeting
	9 Crafting the Specification
	10 Naming the Standard
	11 ISO Fast-track
	12 Defining ECMAScript 3

	13 Interlude: JavaScript Doesn't Need Java
	13.1 The Evangelist
	13.2 Rich Internet Applications and AJAX
	13.3 Browser Game Theory

	Part 3: Failed Reformations
	14 Dissatisfaction with Success
	15 ES4, Take 1
	16 Other Dead-Ends
	17 Flash and ActionScript
	18 ES4, Take 2
	18.1 Resetting TC39-TG1
	18.2 Redesigning ES4
	18.3 Resistance
	18.4 Finding Harmony

	19 Interlude: Taking JavaScript Seriously
	19.1 The JavaScript Performance Revolution
	19.2 CommonJS and Node.js
	19.3 JavaScript: The Browser Universal Runtime

	Part 4: Modernizing JavaScript
	20 Developing ES3.1/ES5
	20.1 ES5 Technical Design
	20.1.1 Strict Mode
	20.1.2 Getters, Setters, Object Meta Operations
	20.1.3 Object Integrity and Security Features.
	20.1.4 Elimination of Activation Objects
	20.1.5 Other ES5 Features

	20.2 Implementations and Tests

	21 From Harmony to ECMAScript 2015
	21.1 Getting Started with Harmony
	21.1.1 Strawmen and Goals
	21.1.2 The Champions Model
	21.1.3 Choosing a Feature Set
	21.1.4 Writing Starts
	21.1.5 One JavaScript
	21.1.6 Brendan's Dreams

	21.2 Recrafting the Specification
	21.2.1 Reorganizing the Specification
	21.2.2 New Terminology
	21.2.3 New Kinds of Semantics

	21.3 ES2015 Language Features
	21.3.1 Realms, Jobs, Proxies, and a MOP
	21.3.2 Block-Scoped Declarations
	21.3.3 Classes
	21.3.4 Modules
	21.3.5 Arrow Functions
	21.3.6 Other Features
	21.3.7 Deferred and Abandoned Features

	21.4 Harmony Transpilers
	21.5 Finishing ECMAScript 2015
	21.5.1 Preparing for the Post-ES6 Future

	22 Conclusion
	Acknowledgments
	Appendices
	A Dramatis Personæ
	B Dramatis Corporationes
	C Glossary
	D Abbreviations and Acronyms
	E Timelines
	E.1 Timeline for Part 1: The Origins of JavaScript
	E.2 Timeline for Part 2: Creating a Standard
	E.3 Timeline for Part 3: Failed Reformations
	E.4 Timeline for Part 4: Modernizing JavaScript

	F December 4, 1995 JavaScript Announcement
	G Issues List from First TC39 Meeting
	H Initial Proposed ECMAScript Version 2 New Feature List
	I A Partial E3 Draft Status Report
	J January 11, 1999 Consensus on Modularity Futures
	K ES4 Reference Implementation Announcement
	L ES4-2 Approved Proposals September 2007
	M ECMAScript Harmony Announcement
	N Harmony Strawman Proposals May 2011
	O Harmony Proposals Wiki Page Following May 2011 Triage
	P TC39 Post ES6 Process Definition
	Q The Evolution of ECMAScript Pseudocode

	References

