
Variables Limit Reusability

Allen Wirfs-Brock
allenw%spt.tek.com@relay.cs.net

(503) 627-6195

Br ian Wi l ke rson

brianw%spt.tek.com@relay.cs.net
(503)627-3294

P.O. Box 500, Mail Sta. 50-470
Tektronix, Inc.

Beaverton, OR 97077

A B S T R A C T

One of the primary benefits of the object-oriented paradigm is the ability to increase programmer
productivity by enabling the reuse of existing code. One way to reuse code is to refine or
specialize it to create a new subclass. We believe that the direct reference of variables can be an
impediment to the refinement of code. This in turn decreases programmer productivity. We first
present some examples of when and why this occurs. We then present some programming
conventions that will eliminate such problems and discuss the advantages and disadvantages of
using these conventions.

Topic Area: Software Engineering

Keywords: Reusability, instance variable, object-oriented programming, Smalltalk,
refinement, modularity.

Word Count: Approximately 4000



Variables Limit Reusability

I n t r o d u c t i o n

The object-oriented paradigm has proven to be a powerful programming methodology that can

significantly contribute to programmer productivity. Much of this productivity improvement can
be attributed to the fact that the methodology supports development of reusable software

components. Two of the main principles of the paradigm that support reusability are modularity
and refinement [Meye87].

Modular i ty

The principle of modularity states that problems should be broken into pieces. The unit of

modularity in object-oriented programming languages is usually called a class. Modularity is
enforced by:

• using a message-based interface to perfomi operations on objects, and

• hiding implementation details within a class.

Implementation details are hidden by encapsulating state within objects.

R e fi n e m e n t

The second principle, refinement, states that classes (the imits of modularity) should be built in
such a way that they can be incrementally modified for reuse. This incremental refinement, and
the ability to reuse code, allows programmers to be far more productive than they might be in a
conventional programming environment.

Designs are refined, and code is reused, chiefly through the mechanism of inheritance using
subclassing. Subclasses inherit methods from their superclasses, and add methods of their own.
If an inherited method adds behavior inappropriate to the subclass, it may be overridden. Indeed,
it is a simple matter to change any design decision represented by a method.



Design Decisions

Modularity and refinement cannot be separated when you define a class. Modularity detennines
which classes you define. In defining a class, you must specify its private implementation and its

public interface. Its private implementation may, in turn, have a significant effect on the ease
with which the class may be refined.

The design decision that concerns us here is how to represent the state of an object. In
Smalltalk-80™ [Gold83], you might choose to represent some state with a variable. The state

represented by a variable may be accessed in either of two ways from within a method.

• The variable may be referred to by name. This is the most fundamental way to access the
value stored in that variable.

• The object can send a message to itself, asking for the value stored in the variable. This

message invokes a method, which accesses the variable by name and returns the value. This

way is less direct than the first.

A subclass might need to change the design decision represented by a variable. In order to do so,

the subclass must override all methods in which the variable has been referred to by name. Direct

references to variables cannot be modified in any other way by subclasses. It may not necessarily

be a simple matter to change any design decision represented by a variable if the variable has

been referred to by name.

On the other hand, if a message has been sent to access the variable, the subclass need only

override the accessing method. Subclassing and inheritance becomes much simpler. Indeed, in

Smalltalk-80, instance, class, pool, and global variables all represent the state of an object, and
therefore sending a message to access them is good object-oriented style.

These ideas can apply to any object-oriented programming language, but the following discussion

uses examples written in Smalltalk-80.

I n s t a n c e Va r i a b l e s

Assimie that Rectangle is a class representing a rectangular area, having two instance variables

(origin and extent), both of which are points. This class might have a method called center
defined as:

c e n t e r
"Return the center point of the receiver."

Torigin + (extent // 2)

— 2 —



This method computes the center point of a rectangular region. Now imagine an application
which needs to test the center point of a large number of rectangles. Perfoimance analysis of this

application might show that a significant amount of time is being spent perfonning the center
computation. The designer of this application might decide that the program could be optimized
by explicitly saving the center point as part of the internal state of objects representing rectangle.
This could be accomplished by creating a new subclass of Rectangle, called, perhaps,

CenteredRectangle, which has an extra instance variable (called center) to hold the value of
the center point. The method center would then have to be overridden to be something like:

c e n t e r
"Return the center point of ttie receiver."

Tcenter

Would any other methods have to be overridden by this new class? It would have to initialize the

new instance variable when a new CenteredRectangle is created, and update the instance
variable if the position or size of the rectangle changes. Presume that the methods origin: and
extent: are defined by class Rectangle as follows.

origin: aPoint
"Change the origin of the receiver."
o r i g i n a P o i n t

e x t e n t : a P o i n t

"Change the size of the receiver."
e x t e n t a P o i n t

These methods would have to be overridden by CenteredRectangle as follows in order to
maintain the center value.

origin: aPoint
"Change the origin of the receiver."
o r ig in aPo in t .
self computeCenter

e x t e n t : a P o i n t

"Change the size of the receiver."
e x t e n t < - a P o i n t .
self computeCenter

— 3 —



A new method would have to be added to compute the center point

computeCenter
"Update the cached center point value."
center <- self origin + (self extent // 2)

In this example, computeCenter is a new private method called whenever the origin or extent
was modified to recompute the saved center point value. Would any methods other than origin:
and extent: have to be overridden by CenteredRectangle? That depends upon whether there
are any other methods which direcdy modify the instance variables origin and extent. If all
other methods modify these instance variables by sends of origin: or extent: to self then no other
methods would have to be modified to support CenteredRectangle. However, any method
which directly modified those variables would also have to be overridden. For example, suppose
the method width: had been defined in class Rectangle as shown below,

width: aninteger
"Change the width of the receiver to be that specified by the argument."

extentaninteger @ extent y

It would then have to be overridden, perhaps as follows,

width: aninteger
"Change the width of the receiver to be that specified by the argument."
"Remember to update center state."
extent <- aninteger @ extent y.
self computeCenter

Because the new definition of extent: automatically updates the center state, it would be

preferable to override the method as follows,
width: aninteger

"Change the width of the receiver to be that specified by the argument."
self extent: aninteger @ extent y

In the Smalltalk-80 Version 2 virtual image there are fifteen methods in class Rectangle which

directly modify either or both of its two instance variables. Because the instance variables are
modified directly, each of these methods would have to be overridden in order to create a class

like CenteredRectangle. If all of these methods had used accessing methods such as origin:
and extent:, only those two methods would have had to be overridden to create the new subclass.

Is it only direct modifications of instance variables which cause problems? Is there any reason

not to directly access the values of instance variables? Consider another example, also using class

Rectangle.

— 4 —



Within the Tektronix Smalltalk implementation, an instance of class Rectangle occupies 20

bytes of storage. Instances of class Point also occupy 20 bytes. Since a rectangle references two
Point instances, a total of 60 bytes of storage is needed for each rectangle.

If an application needed to use an extremely large number of rectangles, it might try to optimize
its storage requirements by changing the representation of rectangles. If instances of class

Rectangle directly stored the x and y values of the two points as instance variables, then a
rectangle could be represented with 28 bytes of storage instead of 60 bytes. This could be
accomplished by defining a new subclass of Rectangle which had two extra instance variables,

orlglnY and extentY. We might call this new class CompactRectangle. CompactRectangle
would override methods as follows.

origin: aPoint
"Change the origin of the receiver."
origin 4- aPoInt x. "Store the x coordinate in the old origin instance variable."
originV aPoint y "Store the y coordinate in a new instance variable."

e x t e n t : a P o i n t

"Change the size of the receiver."
extent <r- aPoint x. "Store the x coordinate in the old extent instance variable."
extentY <- aPoint y "Store the y coordinate in a new instance variable."

or ig in
"Return the origin point of the receiver."

TPoint x: origin y: orlglnY

e x t e n t
"Return the extent point of the receiver."

tPoint x: extent y: extentY

Because the argument and result specifications of these methods are the same as for the original
class Rectangle, any uses of Rectangle could be transparently replaced by

CompactRectangle.

But what about the rest of the inherited methods from class Rectangle? Do they need to be

overridden? Any method which directly accessed the instance variables origin and extent would

have to be modified to use the accessing methods of the same name. Even if we assume that all

the of the methods which directly modify the instance variables had already been changed as

suggested in the previous example, the Smalltalk-80 Version 2 definition of class Rectangle

— 5 —



would still have 28 different methods which would have to be overridden because they directly
access the instance variables. None of these methods would have to be overridden if they had
been written using accessing methods instead of direct instance variable references.

If a few simple coding conventions were followed, the subclassing of methods would be greatly
simplified.

□ For each variable defined by a class, define two accessing methods: one to set the value of the
variable, and one to retrieve the value of the variable.

□ Variables should only be accessed or modified using message sends which invoke the

accessing methods.

□ An accessing method should only store or retrieve the value of its associated variable. It
should perform no other computations.

□ Because variable accessing methods reflect the internal representation of the object, they
should be considered private methods.

We propose that variables never be referred to by name witiiin methods. Instead, variables
should be referred to in only two stylized ways, using accessing or modifying protocol as shown

b e l o w.

Accessing Protocol
< v a r i a b l e n a m e >

T<variable name>

Modifying Protocol
<varlable name>: argument

<variable name> <- argument

In order to simplify it, the CompactRectangle example did not fully follow these rules.

Specifically, it did not use accessing methods for tiie new instance variables. The preferred
definition and implementation of class CompactRectangle would be as shown in the boxes

b e l o w.

— 6 —



C l a s s D e fi n i t i o n

Rectangle subclass: #CompactRectangle
InstanceVariableNames: 'origlnY extentV
c l a s s Va r i a b l e N a m e s : "
poolVariabieNames:"

Accessing Methods

origin: aPoInt
"Change the origin of the receiver."

selforiginX: aPointx.
self origlnY: aPclnty

e x t e n t : a P o I n t

"Change the size of the receiver."
self extentX: aPoint x.
self extentV: aPoInt y

or ig in
"Return the origin point of the receiver."

TPoint x: self orlginX y: self origlnY

e x t e n t
"Return the extent point of the receiver."

Point x: self extentX y: self extentY



Private State Representation

originX: aNumber
"Save the state of the x coordinate of the origin."

origin aNumber "Use inherited origin variable to store originX state."

originY: aNumber
"Save the state of the y coordinate of the origin."

originY <- aNumber "Use originY instance variable to store originY state."

e x t e n t X : a N u m b e r
"Save the state of the x coordinate of the extent"

extent aNumber "Use inheri ted extent variable to store extentX state."

e x t e n t Y : a N u m b e r
"Save the state of the y coordinate of the origin."

extentY <- aNumber "Use extentY instance variable to store extentY state."

or ig inX
"Return the current state of the x coordinate of the origin."

torigin "Use inherited origin variable to store originX state."

originY
"Return the current state of the y coordinate of the origin."

toriginY "Use originY instance variable to store origin Y state."

e x t e n t X
"Return the current state of the x coordinate of the extent."

Textent "Use inherited extent variable to store extentX state."

e x t e n t Y
"Return the current state of the y coordinate of the origin."
TextentY "Use extentY instance variable to store extentY state."

C l a s s Va r i a b l e s

So far, we have discussed only instance variables. But the same stylistic considerations apply to
other kinds of variables as well. To illustrate this, here is an example showing how the above

— 8 —



guidelines may be applied to class variables.

What are the characteristics of a class variable? A class variable stores one value which is shared

by a class and all its instances, as well as all of its subclasses and all their instances.

It is common in Smalltalk-80 for all windows of the same type to share a menu. For example, all
workspaces share the same middle button menu. In order for them to do so, the menu is stored in
one place. This place is typically a class variable. When the menu must be displayed, the
methods to do so access the class variable.

Suppose now that an application wishes to use a window of a similar type, adding new items to
its menu. The application dare not modify the class variable, because that will change the menu
of aU existing windows of the original type. Instead, the natural way to add a menu item is to
subclass the class which stores the menu as its class variable. The subclass then replaces it with a
new class variable which contains the new menu. This new subclass, however, must override

every method that refers to the original class variable by name, replacing the direct reference to
specify the new class variable instead. Not only is this a lot of work, but it creates a lot of
unnecessary duplication as well.

For example, suppose that the class ApplicationController has a class variable called SizeMenu.

This menu is initialized as follows:

Qass method

in i t i a l i ze
"Initialize the menu."

SizeMenu <r- PopUpi\/ienu labels: 'small\medium\large' wIthCRs

When we access SizeiVlenu, we refer to it by name, as in the following method.

Instance method

ciiangeSize
Top up a menu to allow the user to change the size."
self setSize: SizeMenu startup

In order to subclass this class, you must override the class method Initialize and declare a new

class variable. You must also override the instance method changeSIze (and any other method
that references the variable by name), as shown below.

— 9 —



AppIicationController subclass: #MyApplicationController
Ins tanceVar iab leNames: "
classVariableNames: 'MySizeMenu'
poolVariableNames:"

Qass method

i n i t i a l i z e
"Initialize the menu."

IVIySizeMenu <- PopUpMenu labels: 'petite\small\medium\large\giant' withCRs
Instance method

ci iangeSize
"Pop up a menu to allow the user to change the size."
self setSize: MySizeMenu startup

A better way to implement AppIicationController would be to set up a class variable called
SizeMenu, and initialize it, as before, but to access it through the accessing protocol sizeMenu
and SizeMenu:. Subclasses would have to override the class variable again, and the class
methods initialize, sizeMenu, and sizeMenu:, but only class protocols change. AU instance
methods would use these accessing methods.

It is very much to the point of the subclass that these accessing methods be overridden. Another

programmer, browsing the subclass later, would not be forced to browse through many methods
containing one slight modification irrelevant to the purpose of the method.

The superclass would define these methods as shown below.

Qass methods

— 1 0 —



i n i t i a l i z e
" I n i t i a l i ze t he menu . "

self sIzeMenu: (PopUpMenu labels: 'small\medlum\large' wIthCRs)

s i z e M e n u
"Answer the menu used to select a new size."

tSizeMenu

S i z e M e n u : a l \ / I e n u
"Set the menu used to select a new size to be the argument, aMenu."
S i z e M e n u a M e n u

Instance method

cliangeSize
"Pop up a menu to allow the user to change the size."
self setSize: self class sizeMenu startup

Then, in order to subclass this class, you need only override the class methods as follows.

Qass methods

i n i t i a i i z e
" In i t i a l i ze the menu . "

self SizeMenu: (PopUpMenu labels: *petite\small\medium\large\giant' withCRs)

S i z e M e n u
"Answer the menu used to select a new size."

TMySizeMenu

SizeMenu : aMenu
"Set the menu used to select a new size to be the argument, aMenu."

MySizeMenu <- aMenu

But that way, you still had to introduce a new class variable in the subclass. You could, however,

use a class instance variable (that is, an instance variable of the class) in the superclass. That

way, the subclass need only override one class method, initialize. Overriding initialize now does
not change superclass menus. However, for the same reasons discussed above, the class instance

variable should be referred to only with accessing methods.

— 11 —



ApplicationController class
instance Variable Names: 'sizeMen u'.

Qass methods

I n i t i a l i z e
" I n i t i a l i ze t he menu . "

self sizeMenu: (PopUpMenu labels: 'small\medium\large' withCRs)

s i z e M e n u
"Answer the menu used to select a new size."

tsizeMenu

s i z e l \ / l e n u : a M e n u

"Set the menu used to select a new size to be the argument, aMenu."
SizeMenu <- aMenu

Instance method

changeSize
"Pop up a menu to allow the user to change the size."
self setSize: self class sizeMenu startup

The subclass now need only override initialize as shown below.

Qass method

i n i t i a l i z e
"Initialize the menu."

self sizeMenu: (PopUpMenu labels: 'petite\small\medium\large\giant' withCRs)

O t h e r Va r i a b l e s

Indeed, the four conventions recommended above should be applied to variables of any kind.

P o o l V a r i a b l e s

For example, pool variables are variables which may be shared among classes outside of the
inheritance hierarchy. Because the value stored in a pool variable may be shared by any class
defined to do so, without even the control imposed by inheritance, direct references to pool
variables can be even more difficult for the programmer to manage. Clearly, the conventions
discussed above would simplify this state of affairs.

— 1 2 —



For example, in the Smalltalk-80 system, the class Paragraph refers to the pool variable

CaretForm (from the pool TextConstants) directly. If a subclass wished to change the

appearance of the insertion point cursor it would have to override all methods that directly refer
to this variable. If those methods had sent an accessing message to the class instead, then only
one method would need to be overridden.

G l o b a l Va r i a b l e s

The conventions outlined above defer a design decision. They make the code less direa, so that
the decision can be changed by refinement. But sooner or later, the decision must be made.

Global variables in Smalltalk-80 are typically class names. As such, progranmiers tend to think
of them as constant values. Global variables, then, might seem a safe and natural place to fix the

design decision. But are they, really?

Let*s discuss two examples, one simple, and one a bit less so, to see what effect the proposed
convent ions would have.

For the first example, let us presume a method, such as copy, that returns an instance of its own
class. For example, suppose that the method for copying an instance of MyClass is defined as
MyClass new. This method must be explicitly overridden in any subclass of MyClass, or else
copying an instance of the subclass will return an instance of the wrong class. The copy method
should instead say self class new. (The accessing method class is predefined.)

For the second example, consider the Smalltalk compiler. The compiler is represented by

approximately 20 classes, including a class for each type of node in the parse tree. The compiler
refers to these classes directly.

If you wish to modify the compiler, you must subclass the parts of the compiler you wish to

change. Subclassing protects you from breaking the compiler in a way that makes it impossible
to compile the code to fix the compiler.

For example, do you wish to store more information in the class LIteralNode? You might create
the subclass TrulyLiteralNode to do so. However, all methods in other classes that must create a
LiteralNode say LiteralNode new. If these methods instead said self class literalNodeClass
new it would save you a lot of trouble, because as things stand now you are going to have to
override all these methods. In the process, you will create almost as many new subclasses as
there are methods to override. This is a lot of work and overhead for one substantive new class.

It no longer seems simple to make changes to the system, which is one of the explicit goals of the
inheritance and refinement mechanisms. Instead, the technique, which requires all this

— 13 —



unnecessary duplication, is time-consuming and, especially, emor-prone.

The SmaIltalk-80 user interface classes implicitly recognize the value of these conventions, and

use the proposed technique at least partially. All views understand the message

defaultControllerClass. Therefore, modifying a controller for a given view is easy — only one
method in the view must change.

It must be admitted, however, that sometimes it is not practical to do other than to refer to global
variables directly by name. The designer must therefore decide what is conceivable for a

subclass to need to change. Such items should be parameterized. But the designer can assume

that certain global variables are, indeed, functionally constants. These design decisions, if made

with a sensitivity to future refinement, can break the otherwise endless chain of regression.

Temporary Variables

Earlier, we stated that aU variables should be accessed using accessing protocol only, and argued
the case for instance, class, pool, and global variables. But are these all the kinds of variables?

What about temporary variables, that is, variables within methods?

The variables used within methods do not represent encapsulated state. They do not persist; they

typically represent intermediate results, and vanish after the method has finished executing. They
cannot be accessed from outside the method. Instead, they are a way of factoring code for

readability and efficiency. For example, consider the method below, which uses temporary
var iables.

I width height |
width <r- self origin x - self corner x.
height <- self origin y - self corner y.
t(wldth squared + height squared) sqrt

Compare it with the following method, which uses no temporary variables.

T((self origin x - self corner x) squared + (self origin y - self corner y) squared) sqrt

Qearly, ttie two methods are equivalent as far as the results are concerned, but the one using the
temporary variables is easier to read.

Because temporary variables are not state variables, and because they cannot be accessed from

outside a method, the conventions recommended above need not, and indeed cannot, apply to
them.

— 1 4 —



Objections

Are there any disadvantages to using the proposed accessing conventions? Three objections can
be raised to these conventions:

• they make applications less efficient,

• they make code less readable, and

• they depend on programmers respecting an essentially arbitrary convention: that of

"private" methods.

Let's discuss these objections one at a time.

Efficiency

Sending a message to access a variable is less direct, and presumably less efficient, than simply
referring to the variable by name. But the loss of execution efficiency must be balanced against
the increased programmer productivity. By simplifying the process of refinement, programmers
are able to create new programs and maintain existing ones with far less time and toil.

Furthermore, it is not inherentiy less efficient. One can imagine future implementations of
Smalltalk in which accessing methods are as efficient as direct variable references.

Even so, it is always possible to eliminate perfonnance botflenecks. If analysis reveals that

accessing variables in this way is slowing your application, you can use direct variable references
instead. You then know you are optimizing your application for performance, and not for future
refinement. Comment your code accordingly.

Readability

Another objection is that writing programs in this way contributes to syntactic clutter, making
methods less concise and harder to read. These conventions may obscure the fact that you are

using a variable to do something.

They do obscure that fact, which is part of the point. The principle of modularity says that the
implementation of a class should not be important to clients of that class. The refinements of a
class are also its clients [Snyd86]. Message-based state accessing hides tiie implementation of a

class from its subclasses. Although code may be slightiy harder to read until a programmer gets

used to the conventions, they allow subclassing and refinement in a quicker and less error-prone
manner. The benefits far outweigh this relatively minor disadvantage.

— 15 —



T h e P r i v a t e M e t h o d C o n v e n t i o n

It may also be objected that Smalltalk-80 doesn't have true private methods. Private methods are

just a convention telling the programmer that these methods should not be sent from outside the
class. Therefore the only way to really protect state in Smalltalk-80 is to have a variable with no

accessing method. But the proposed conventions for the use of variables say that all variables
should have accessing methods.

This is not a valid objection because even variables without accessors aren't really safe from
extemal access. Methods defined in the class Object (instVarAt: and instVarAt: put:) allow

any instance variable to be accessed or modified. It is already only a convention that a

programmer normally shouldn't do this. This convention is no more or less binding than the
"private" method conventioa Nevertheless, future implementations of Smalltalk should probably
support true private methods.

Eliminating Variables

This discussion has introduced a set of conventions. But the problem with all conventions is that

programmers must learn and adhere to them. If the convention is intrinsic to the programming
paradigm of a language, it should instead be formalized in the syntax and semantics of that
language. In that way, the language supports you in doing tilings correctiy.

One could certainly design a new language that follows these principles. For example, Dave

Unger and Randy Smith have designed a language called Self which, among other things, has no
variables at all, but uses accessing messages exclusively to access state [UngeS?].

But it is not necessary to be quite so extreme. One can imagine a relatively minor extension to
Smalltalk-80 that formalizes these stated conventions. All that is required is the syntactic
mechanism to specify that a pair of message selectors, taken togetiier, represent an instance
variable. With such a mechanism, the variable name itself is no longer necessary.

Many such mechanisms are possible. One such syntax might be, for example:

Rectangle subclass: #CompactRectangle
InstanceStateMethods: '(originY originY:) (extentY extentY:)'

Using this syntax, the message selectors originY and originY:, for example, represent the same
piece of internal object state as that named by tiie variable originY. Using this syntax, the
variable name itself becomes superfluous. This syntax also enables the creation of state method
pairs that are not otherwise lexically related, such as getX and setX:.

— 1 6 —



C o n c l u s i o n

Object-oriented programming languages, through their support of refinable and reusable classes,
offer the potential of greatly increased programmer productivity. However, this potential can be
realized only if users of these languages design for reusability. Direct references to variables

severely limit the ability of programmers to refine existing classes. The programming
conventions described here structure the use of variables to promote reusable designs. We

encourage users of all object-oriented languages to follow these conventions. Additionally, we
strongly urge designers of object-oriented languages to consider the effects of unrestricted
variable references on reusability.

R e f e r e n c e s

[Bom87] Boming, Alan, and Tim O'Shea, "Deltatalk: An Empirically and Aesthetically
Motivated Simplification of the Smalltalk-80 Language," ECOOP Proceedings, 1987.

[Gold83] Goldberg, Adele, and David Robson, Smalltalk-
80: The Language and Its Implementation, Addison-Wesley, Reading Massachusetts, 1983.

[Meye87] Meyer, Bertrand, "Eiffel: Programming for Reusability and Extendibility," Technical
Report TR-EI-3/GI, Interactive Software Engineering, Inc., Goleta, CA, January, 1987.

[Snyd86] Snyder, Alan, "Encapsulation and Inheritance in Object-Oriented Programming
Langauges," OOPSLA '86 Conference Proceedings, pp. 38-45. Also published as
SIGPLAN Notices, vol. 21 no. 11, November 1986, pp. 38-45.

[Unge87] Unger, David and Randall B. Smith, "Self: The Power of Simplicity," OOPSLA '87
Conference Proceedings, pp. 227-242. Also published as SIGPLAN Notices, vol. 22 no. 12,
December 1987, pp. 227-242.

— 17 —


