
Allen Wirfs-Brock
allen@wirfs-brock.com
DLS-10, October 18. 2010

1.  the principal or
dominant course,
tendency, or trend:
the mainstream of
American culture.

Random House Dictionary

•  Compilers, Smalltalk virtual machines,
GCs, language design, development tools

•  Tektronix Smalltalk/4404
•  Helped launch OOPSLA and DLS
•  Instantiations: OOD Team Dev. Smalltalk,
•  Digitalk/Parcplace-Digitalk: Enterprise Scale Smalltalk
•  ANSI Smalltalk
•  (Re-) Instantiations: JOVE Java optimizing compiler, Eclipse tools
•  Microsoft – JavaScript/ECMAScript 5

1955

1980 1990 2000 2010 1970

High Perf
JavaScript

Java Interlude

Scripting Languages

High Perf Smalltalk & Lisp

“Lisp Machines”

•  Have a vision
•  Believe it is possible
•  Do the right things
•  Know your weaknesses
•  Adjust to reality
•  Don’t give up

•  2nd West Coast Computer Faire, March 1978
•  Alan Kay “Don’t Settle for Less”

“Our curiosity about the
Smalltalk-80 system had led
us down a primrose path …
there was little hope for
performance high enough to
lure users away from
traditional programming
systems…”

Joseph R. Falcone, “The Analysis of
the Smalltalk-80 System at Hewlett-
Packard” in Smalltalk-80: Bits of
History, Words of Advice

•  The Smalltalk Virtual Machine
•  “Just reimplement the VM using your own hardware and run the virtual

image.”

•  Tweaking wasn’t enough
•  The key to Smalltalk performance was understanding that you

weren’t building a computer, but implementing a language.

•  Tektronix
•  Deutsch/Schiffman
•  Bosworth/Andersen
•  Dave Thomas’ OTI crew
•  Ungar and the self guys

“Avoid allocating objects”

“Minimize how many function/method
 calls you make”

Data representations
Register usage
Code sequences
Activation Records
Closure representation
Memory allocation
GC approach

Procedure encodings
Interp/jit/native code
Caching strategies
Cache invalidation
Encodings
Algorithms
Fast paths and fallbacks

Retrofits seldom achieve satisfactory results

•  Basic data encodings: values/atoms/OOPs
•  Tagged/untagged, hit bit/low bits, arithmetic instruction sequences
•  Cycle counts on target processors (x86, x64, ARM)

•  How fast can you allocate
•  Tiny write-barriers
•  Fast-path polymorphic resolution
•  0/1/2 argument call/returns
•  Minimizing loads/stores

  Common usage statistics and traces are very valuable
  Don’t let the exceptional cases get too slow

They are probably what makes your language unique

•  One to learn the problem space
•  What are the key features and semantics of this language
•  What makes it slow

•  One to explore the solution space
•  Study the literature
•  Experiment with design alternatives
•  Gain key insights and innovative solutions

•  One to “put it all together”
•  Implement a clean, holistic design

Dude, I know you just want to write some code,
but first you might want to take a look at:

•  Representing Type Information in Dynamically Typed Languages,
David Gudeman, University of Arizona, TR 93-27, October 1993

•  OOPSLA Proceedings, particularly OOPSLA 86  ≈ 2000
•  ACM Lisp and Functional Programming Conference Proceedings,

1980  ≈1994
•  The Implementation Techniques section of the Online Scheme

Bibliography http://library.readscheme.org/page8.html
•  “the Garbage Collection Page”, Richard Jones,

http://www.cs.kent.ac.uk/people/staff/rej/gc.html (and Richard’s
book and the ISMM back proceedings)

•  Client-side of client/server apps with rich UIs
•  From green screen to “modern” UIs

•  Complex analytical business apps for rapidly evolving business
sectors
•  Airline pricing
•  Insurance rating engines
•  Trading
•  Intelligence community

“Smalltalk - the Natural Successor to COBOL”
PC AI Mag circa 1994
http://www.pcai.com/web/ai_info/pcai_smalltalk.html

•  We will never be able to use your languages if you can’t teach
our guys how to go about designing object-oriented software

Hallway comment by an early adopter
from a large enterprise at OOPSLA’88

Lynx is a global grain trading system that supports over 1,500
users at 150 sites around the U.S. and has been in production for
over 15 years.

•  1995 IBM “bets” on Smalltalk
•  1997 Smalltalk is “dead” for new enterprise

developments
•  How could things go so wrong so fast?
• A fad is not the mainstream
• Solving the wrong problems

GUI designers and visual programming
instead of deployment

• New problems require new solutions
The Web

•  Java happened!
The solution that appears to be ready gets adopted
(whether it really is or not)

•  “JIT” runtime techniques
•  Generational garbage collection
•  IDEs
•  Frameworks
•  Model-View-Controller
•  Object-orient design methodologies

and practices
•  Software design patterns
•  Refactoring and refactoring tools
•  Agile development practices
•  Test-driven development

•  New problem requires new solutions
•  Java starts as a fad and blows its browser client opportunity
•  Even so, Java and .NET work their way into the server side

mainstream
•  Familiar syntax
•  Conventional tools
•  More conventional deployment

•  Smalltalk and Lisp language engineers and
researchers “defect” to Java and .NET

•  Ousterhot’s “Scripting: Higher-Level Programming for the 21st
Century”, 1998
•  “Scripting language … are intended not for writing applications from

scratch but rather for combining components”

•  Perl
•  Python
•  Ruby
•  Lua
•  Early JavaScript

•  Starting from simple, unsophisticated interpreters
•  Undemanding users and uses
•  Coasting on Moore’s law
•  Many implementers didn’t believe better performance was possible?
•  Mostly unaware of past dynamic language achievements
•  The experts and researchers were all working on Java

•  People want to build highly interactive browser apps

•  Highly interactive code needs to run close to the user

•  The only language that is ubiquitous to all browsers is
JavaScript

•  Web developers start creating frameworks and doing
“real programming” using JavaScript

•  Some initial tweaking of existing engines but they quickly “hit
the wall”

•  Lars Bak and the V8 team show that “fast” is actually possible
•  Today every major browser is devoting significant resources to

a high-performance JavaScript engine
•  JavaScript performance for major browsers has generally

improved by an order of magnitude or more compared to
2005

A Dynamic Language is again making
a run for the mainstream.

•  Most teams haven’t yet reach that 3rd
implementation where it all comes together
•  Some teams are still on their 1st

•  The performance bar is still too low
•  It isn’t clear that they yet match the 1995 level of Smalltalk performance
•  Everybody needs to stop chasing Sunspider

•  JavaScript is harder to make fast than Smalltalk was
•  Some really new ideas would be helpful

•  Why are the memory footprints so large?
•  Memory management designs are generally weak
•  Build a great GC and then use it everywhere

•  The JS engine needs to be part of a holistic browser design

•  JavaScript is the only “built-in” programming language for the
ubiquitous browser/web application platform

•  It isn’t clear how any other language or universal runtime can gain a
similar position

•  But remember: We will never be able to use your languages if you can’t
…

•  What are the “can’ts” for JavaScript?
•  Make it scalable for large programs
•  Improvie it without breaking it
•  Continue improving on the performance, footprint,

and power issues
•  Provide a great development experience
•  …

JavaScript is the “VM” of the web-client platform

•  This is the beginning, not the end of
opportunities for JavaScript
innovation

•  It’s not just about JavaScript, it’s the
entire web-client technology stack

•  Industry needs research
contributions to support and feed
the pragmatic engineering of the
production implementations

•  Researchers need clean, accessible,
but realistic and usable research
platforms to build within and upon
•  Not just a JavaScript engine but an

entire browser technology stack

1955

1955 1980 1990 2000 2010 2020 1970

Corporate Computing

Personal Computing

Ambient
Computing

Timesharing

Minicomputer

WWW

Cellphone Transitional
Technologies

Dynamic Languages Are a
Mainstream Technology for This Era

