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1.  the principal or 
dominant course, 
tendency, or trend: 
the mainstream of 
American culture.  

Random House Dictionary 



•  Compilers, Smalltalk virtual machines, 
GCs, language design, development tools 

•  Tektronix Smalltalk/4404  
•  Helped launch OOPSLA and DLS 
•  Instantiations: OOD Team Dev. Smalltalk,  
•  Digitalk/Parcplace-Digitalk: Enterprise Scale Smalltalk 
•  ANSI Smalltalk 
•  (Re-) Instantiations: JOVE Java optimizing compiler, Eclipse tools 
•  Microsoft – JavaScript/ECMAScript 5 
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“Lisp Machines” 



•  Have a vision 
•  Believe it is possible 
•  Do the right things 
•  Know your weaknesses 
•  Adjust to reality 
•  Don’t give up 





•  2nd West Coast Computer Faire, March 1978 
•  Alan Kay “Don’t Settle for Less” 



“Our curiosity about the 
Smalltalk-80 system had led 
us down a primrose path … 
there was little hope for 
performance high enough to 
lure users away from 
traditional programming 
systems…”  

Joseph R. Falcone, “The Analysis of 
the Smalltalk-80 System at Hewlett-
Packard” in Smalltalk-80: Bits of 
History, Words of Advice 



•  The Smalltalk Virtual Machine 
•  “Just reimplement the VM using your own hardware and run the virtual 

image.” 

•  Tweaking wasn’t enough 
•  The key to Smalltalk performance was understanding that you 

weren’t building a computer, but implementing a language. 



•  Tektronix 
•  Deutsch/Schiffman 
•  Bosworth/Andersen 
•  Dave Thomas’ OTI crew 
•  Ungar and the self guys 



“Avoid allocating objects” 

“Minimize how many function/method 
 calls you make” 



Data representations 
Register usage 
Code sequences 
Activation Records 
Closure representation 
Memory allocation 
GC approach 

Procedure encodings 
Interp/jit/native code 
Caching strategies 
Cache invalidation 
Encodings 
Algorithms 
Fast paths and fallbacks 

Retrofits seldom achieve satisfactory results  



•  Basic data encodings: values/atoms/OOPs 
•  Tagged/untagged, hit bit/low bits, arithmetic instruction sequences 
•  Cycle counts on target processors (x86, x64, ARM) 

•  How fast can you allocate 
•  Tiny write-barriers  
•  Fast-path polymorphic resolution 
•  0/1/2 argument call/returns 
•  Minimizing loads/stores 

  Common usage statistics and traces are very valuable 
  Don’t let the exceptional cases get too slow 

They are probably what makes your language unique 



•  One to learn the problem space 
•  What are the key features and semantics of this language 
•  What makes it slow 

•  One to explore the solution space 
•  Study the literature  
•  Experiment with design alternatives 
•  Gain key insights and innovative solutions 

•  One to “put it all together” 
•  Implement a clean, holistic design  



Dude, I know you just want to write some code, 
but first you might want to take a look at: 

•  Representing Type Information in Dynamically Typed Languages, 
David Gudeman, University of Arizona, TR 93-27, October 1993 

•  OOPSLA Proceedings, particularly OOPSLA 86  ≈ 2000  
•  ACM Lisp and Functional Programming Conference Proceedings, 

1980  ≈1994 
•  The Implementation Techniques section of the Online Scheme 

Bibliography http://library.readscheme.org/page8.html  
•  “the Garbage Collection Page”, Richard Jones, 

http://www.cs.kent.ac.uk/people/staff/rej/gc.html (and Richard’s 
book and the ISMM back proceedings) 





•  Client-side of client/server apps with rich UIs 
•  From green screen to “modern” UIs 

•  Complex analytical business apps for rapidly evolving business 
sectors 
•  Airline pricing 
•  Insurance rating engines 
•  Trading 
•  Intelligence community 

“Smalltalk - the Natural Successor to COBOL” 
PC AI Mag circa 1994 
http://www.pcai.com/web/ai_info/pcai_smalltalk.html 



•  We will never be able to use your languages if you can’t teach 
our guys how to go about designing object-oriented software 

Hallway comment by an early adopter 
from a large enterprise at OOPSLA’88 





Lynx is a global grain trading system that supports over 1,500 
users at 150 sites around the U.S. and has been in production for 
over 15 years.  



•  1995 IBM “bets” on Smalltalk 
•  1997 Smalltalk is “dead” for new enterprise 

developments 
•  How could things go so wrong so fast? 
• A fad is not the mainstream 
• Solving the wrong problems 

GUI designers and visual programming 
instead of deployment 

• New problems require new solutions 
The Web 

•  Java happened! 
The solution that appears to be ready gets adopted 
(whether it really is or not) 





•  “JIT” runtime techniques 
•  Generational garbage collection 
•  IDEs 
•  Frameworks 
•  Model-View-Controller 
•  Object-orient design methodologies 

and practices 
•  Software design patterns 
•  Refactoring and refactoring tools 
•  Agile development practices 
•  Test-driven development 



•  New problem requires new solutions 
•  Java starts as a fad and blows its browser client opportunity  
•  Even so, Java and .NET work their way into the server side 

mainstream 
•  Familiar syntax 
•  Conventional tools 
•  More conventional deployment 

•  Smalltalk and Lisp language engineers and 
researchers “defect” to Java and .NET  



•  Ousterhot’s “Scripting: Higher-Level Programming for the 21st 
Century”, 1998 
•  “Scripting language … are intended not for writing applications from 

scratch  but rather for combining components” 

•  Perl 
•  Python  
•  Ruby  
•  Lua 
•  Early JavaScript 



•  Starting from simple, unsophisticated interpreters 
•  Undemanding users and uses 
•  Coasting on Moore’s law 
•  Many implementers didn’t believe better performance was possible? 
•  Mostly unaware of past dynamic language achievements 
•  The experts and researchers were all working on Java 



•  People want to build highly interactive browser apps 

•  Highly interactive code needs to run close to the user 

•  The only language that is ubiquitous to all browsers is 
JavaScript 

•  Web developers start creating frameworks and doing 
“real programming” using JavaScript 



•  Some initial tweaking of existing engines but they quickly “hit 
the wall” 

•  Lars Bak and the V8 team show that “fast” is actually possible 
•  Today every major browser is devoting significant resources to 

a high-performance JavaScript engine 
•  JavaScript performance for major browsers has generally 

improved by an order of magnitude or more compared to 
2005 

A Dynamic Language is again making 
a run for the mainstream. 



•  Most teams haven’t yet reach that 3rd 
implementation where it all comes together 
•  Some teams are still on their 1st 

•  The performance bar is still too low 
•  It isn’t clear that they yet match the 1995 level of Smalltalk performance 
•  Everybody needs to stop chasing Sunspider 

•  JavaScript is harder to make fast than Smalltalk was 
•  Some really new ideas would be helpful 

•  Why are the memory footprints so large? 
•  Memory management designs are generally weak 
•  Build a great GC and then use it everywhere 

•  The JS engine needs to be part of a holistic browser design 



•  JavaScript is the only “built-in” programming language for the 
ubiquitous browser/web application platform 

•  It isn’t clear how any other language or universal runtime can gain a 
similar position 

•  But remember: We will never be able to use your languages if you can’t 
… 

•  What are the “can’ts” for JavaScript? 
•  Make it scalable for large programs 
•  Improvie it without breaking it 
•  Continue improving on the performance, footprint, 

and power issues 
•  Provide a great development experience 
•  … 

JavaScript is the “VM” of the web-client platform 



•  This is the beginning, not the end of 
opportunities for JavaScript 
innovation 

•  It’s not just about JavaScript, it’s the 
entire web-client technology stack 

•  Industry needs research 
contributions to support and feed 
the pragmatic engineering of the 
production implementations 

•  Researchers need clean, accessible, 
but realistic and usable research 
platforms to build within and upon 
•  Not just a JavaScript engine but an 

entire browser technology stack 
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Technologies 

Dynamic Languages Are a 
Mainstream Technology for This Era 


