
TC39	and	ECMAScript	
What’s	in	store	for	the	next	20	years?	

	
	

Allen	Wirfs-Brock	
May	24,	2017	



ECMAScript	will	be	20	years	old	
	next	month	



2016’s	most	popular	
programming	

language:	JavaScript	

Stack	Overflow	2016	Developer	Survey	
hRp://stackoverflow.com/research/developer-survey-2016		

1	JavaScript	
2	Java	
3	PHP	
4	Python	
5	C#	
5	C++	
5	Ruby	
8	CSS	
9	C	
10	Objec]ve-C	

RedMonk	Top	10	
Programming	Languages	
January	2016	

hRp://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/		



hRp://www.robert-drummond.com/2015/06/19/in-what-universe-is-javascript-the-new-c/	



Each	Compu]ng	Era	has	had	
Canonical	Programming	Languages	

Corporate	Compu]ng	Era	–	COBOL/Fortran	
Personal	Compu]ng	Era	–	C/C++	family	
	

JavaScript:	The	Canonical	Language	
of	the	Ambient	Compu]ng	Era	



TC39	isn’t	just	a	rubber		
stamp	standards	body.	

	
It’s	the	design	team	for	this	era’s	

canonical	programming	
language.	

	
As	JavaScript	grows	and	evolves,	

so	must	TC39	
	



Today,	TC-39	isn’t	like	either	of	these	



Challenge:	
How	can	TC39	scale	to	this	



Challenge:	
	

Is	it	at	all	meaningful	to	talk	about	
achieving	consensus	at	a	100+	

person	mee]ng?	



Challenge:	
	

Without	a	BDFL,	how	do	we	con]nue	
to	evolve	JavaScript	while	preserving	a	

coherent	design	esthe]c	



First	version	Aug	2009	
Updated	as	need	
	
This	snapshot	July	2011	

hRp://wiki.ecmascript.org:80/doku.php?id=harmony:harmony		

Harmony/ES6	had	a	plan	



A	Possible	Exemplar:	WG21	

≈	1oo	people	

hRps://isocpp.org/std/the-commiRee		

The	C++	commiRee	holds	two	or	three	full	week-long	face-to-face	mee]ngs	a	year.	One	
mee]ng	a	year	is	tradi]onally	held	outside	the	con]nental	United	States	–	ofen	in	Europe,	
but	periodically	in	Canada	or	Hawaii,	or	occasionally	in	the	Caribbean,	Japan,	or	Australia.	
	
Typical	aRendance	ranges	from	90	to	100	people.	These	are	five-	or	six-day	mee]ngs	(Mon-Fri	
or	Mon-Sat),	and	begin	and	end	with	everyone	in	the	same	room	for	a	plenary	session:	On	
Monday	morning,	we	meet	together	to	organize	work	for	the	week,	and	at	the	end	of	the	
week	we	meet	to	consider	change	recommenda]ons	ready	to	be	brought	before	the	whole	
commiRee	for	approval	polls.	The	rest	of	the	]me	is	spent	in	smaller	subgroups	where	most	
of	the	technical	discussions	occur.	





Part	2	
	

Some]mes	it’s	a	good	idea	to	
reexamine	fundamental	assump]ons	

and	early	design	decisions	



ECMA-262	Edi]on	1	
Clause	4,	Paragraph	1	

ECMA-262,	Edi]on	1	(1997)	said:	

ECMAScript is an object-oriented programming language for performing computations and manipulating 
computational objects within a host environment. ECMAScript as defined here is not intended to be 
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data 
or output of computed results. Instead, it is expected that the computational environment of an ECMAScript 
program will provide not only the objects and other facilities described in this specification but also certain 
environment-specific host objects, whose description and behaviour are beyond the scope of this specification 
except to indicate that they may provide certain properties that can be accessed and certain functions that can 
be called from an ECMAScript program. 

Draf	ECMA-262	2018	says:	



Why	Does	ECMAScript	Need	a	“Host”?	



General	Purpose	and	
Specialized	Libraries	

Hosted	ECMAScript	
Planorm	Integra]on	

Processor+OS	

Main	Program	+	App	
Modules	

Abstracted	
Planorm	
Seman]cs	

Planorm	

“The	Host”	

Applica]on	Program	
Libraries	

Standard	Language	Seman]cs	“Engine”	
Host/Engine	API	

Host’s	Domain	Specific	Abstrac]ons	
and	Processes	

Host	Domain	Objects	

Extended		ES	Language	Seman]cs	

Host	Defined	
Planorm	Objs	

Host	Defined	
External	Objs	

Implement	Abstracted	
Planorm		Seman]cs	

Added-value	
Services	

Foreign	
Libraries	



General	Purpose	and	
Specialized	Libraries	

Hosted	ECMAScript	
Planorm	Integra]on	w/	Host	FFI	

Processor+OS	

Main	Program	+	App	
Modules	

Abstracted	
Planorm	
Seman]cs	

Planorm	

“The	Host”	

Applica]on	Program	
Libraries	

Standard	Language	Seman]cs	“Engine”	
Host/Engine	API	

Host’s	Domain	Specific	Abstrac]ons	
and	Processes	

Host	Domain	Objects	

Extended		ES	Language	Seman]cs	

Host	Defined	
Planorm	Objs	

Host	Defined	
External	Objs	

Implement	Abstracted	
Planorm		Seman]cs	

Foreign	
func]on		

call	
support	 Added-value	

Services	

Foreign	
Libraries	



General	Purpose	and	Specialized	
Libraries	

Conven]onal	Programming	Language	
Planorm	Integra]on	

Processor+OS	

Main	Program	+	App	Modules	

Standard	Language	Seman]cs	
Abstracted	
Planorm	
Seman]cs	

Planorm	

Added-value	
Services	Run]me	Support	

Applica]on	Program	

Libraries	
Foreign	
Libraries	



General	Purpose	and	Specialized	
Libraries	

Conven]onal	Programming	Language	
Planorm	Integra]on	w/	FFI	

Processor+OS	

Main	Program	+	App	Modules	

Standard	Language	Seman]cs	
Abstracted	
Planorm	
Seman]cs	

Planorm	

Added-value	
Services	Run]me	Support	

Applica]on	Program	
External/Foreign	
call	interface		

Libraries	
Foreign	
Libraries	



General	Purpose	and	Specialized	
Libraries	

Hostless	ECMAScript	Planorm	Integra]on?	

Processor+OS	

Main	Program	+	App	Modules	

Standard	Language	Seman]cs	 Abstracted	
Planorm	
Seman]cs	

Planorm	

Added-value	
Services	Run]me	Support	

Applica]on	Program	
External/Foreign	
call	interface		

Libraries	
Foreign	
Libraries	



Could	we	build	this	today?	
Not	quite	🙁	

•  Things	that	are	missing	and	currently	defined	by	
hosts	
–  Incomplete	set	of	abstracted	planorm	seman]cs;	not	
currently	specified	in	the	ECMAScript	standards	
•  Even]ng	
• Worker/Agent/Threads	and	control	API	
•  Realms	
•  Module	loading	reflec]on	

– A	standard	Foreign	Func]on	Interface	specifica]on	
•  EG,	define	a	FFI	module	syntax	


