TC39 and ECMAScript
What's in store for the next 20 years?

Allen Wirfs-Brock
May 24, 2017

ECMAScript will be 20 years old
next month

Standard ECMA—26%

June 1997

ECMA

Standardizing Information and Communication Systems

ECMAScript: A general purpose,
cross-platform programming
language

|. Most Popular Technologies

2016’s most popular
programming
language: JavaScript

C#

JavaScript

C++

C

Nodejs 1 JavaScript RedMonk Top 10
2 Java .
AngularJs 3 PHP Programming Languages
4 Python January 2016
Objective-C 5CH#

5 C++
5 Ruby
8 CSS

More people use JavaScript than use any other programming language. PHP appears to be falling out of 9C

favor as Node and Angular emerge. 10 Objective-C

Stack Overflow 2016 Developer Survey

’
9 T h e Fl O p py D I Sk http://www.robert-drummond.com/2015/06/19/in-what-universe-is-javascript-the-new-c/
[
IN

"Javascript is the new C'

realtime applications, SFCEIREINHSNES @O NRNHERIN ETAGATENG
only truly platform-independent programming language. By 1990, you could

UM RA, 144 compare AA T4
\ < over the))) JG DONE ; if greater,

LGS OVEL LIS assembler fast, bit-level operations, but still an SUB AX,32 ; subtract 32
DONE: RET ; return to ma

expressive 3GL. SUB32 ENDP ; procedure eng

ad all CTALL dVﬂSdllLC, U vwad a 1Cvllallvull, INCal —

ws 10 [0 OK; so nothing like JavaScript then?

Wait. that's only the beginning of the story.

Each Computing Era has had
Canonical Programming Languages

Corporate Computing Era — COBOL/Fortran
Personal Computing Era — C/C++ family

JavaScript: The Canonical Language
of the Ambient Computing Era

TC39 isn’t just a rubber
stamp standards body.

It’s the design team for this era’s
canonical programming
language.

As JavaScript grows and evolves,
so must TC39

Today, TC-39 isn’t like either of these

Challenge:
How can TC39 scale to this

Challenge:

s it at all meaningful to talk about
achieving consensus at a 100+
person meeting?

Challenge:

Without a BDFL, how do we continue
to evolve JavaScript while preserving a
coherent design esthetic

Harmony/ES6 had a plan

http://wiki.ecmascript.org:80/doku.php?id=harmony:harmony

Requirements

1. New features require concrete demonstrations.
2. Keep the language pleasant for casual developers.
3. Preserve the “start small and iteratively prototype” nature of the language.

First version Aug 2009

Goals Updated as need

1. Be a better language for writing: .
I. complex applications; This snapshot JUIV 2011

Ill. code generators targeting the new edition.

. Switch to a testable specification, ideally a definitional interpreter hosted mostly in ES5.
3. Improve interoperation, adopting de facto standards where possible.

l. Keep versioning as simple and linear as possible.

5. Support a statically verifiable, object-capability secure subset.

Means

1. Minimize the additional semantic state needed beyond ESS5.
. Provide syntactic conveniences for:
I. good abstraction patterns;
Il. high integrity patterns;
Ill. defined by desugaring into kernel semantics.

3. Remove (via opt-in versioning or pragmas) confusing or troublesome constructs.
I. Harmony builds on ES5 strict mode to avoid too many modes.

4. Support virtualizability, allowing for host object emulation.

A Possible Exemplar: WG21

The C++ committee holds . One
meeting a year is traditionally held outside the continental United States — often in Europe,
but periodically in Canada or Hawaii, or occasionally in the Caribbean, Japan, or Australia.

. These are (Mon-Fri
or Mon-Sat), and for a plenary session: On
Monday morning, we meet together to organize work for the week, and at the end of the

week we meet to consider change recommendations ready to be brought before the whole
committee for approval polls.

Completed
C++17

Kona, HI, USA
(2017)

ISO/IEC JTC 1) (F)DIS Approval

WG21 Organization . a

SC 22 (Prog. Langs) CD & PDTS Approval
WG21 - C++ Committee Internal Approval
Core WG Library WG Wording & Consistency

Evolution WG Lib Evolution WG Design & Target (IS/TS)

SG4 SG5 | 3
Networking Tx. Memory Domain Spegﬂc
Concepts Ranges Feature Test

Development

SG1 SG2 SG3

Concurrency Modules Filesystem

SG6 SG7

Numerics Reflection

SG11 SG12 SG13 ..
Databases U. Behavior HMI ngfatgxcy

Part 2

Sometimes it’s a good idea to
reexamine fundamental assumptions
and early design decisions

ECMA-262 Edition 1
Clause 4, Paragraph 1

ECMA-262, Edition 1 (1997) said:

EMCAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be computationally
self-sufficient; indeed, there are no provisions in this specification for input of external data or output of computed

results. Instead, it is expected that the computational environment of an ECMAScript program will provide not only the
objects and other facilities described in this specification but also certain environment-specific host objects, whose
description and behavior are beyond the scope of this specification except to indicate that they may provide certain
properties that can be accessed and certain functions that can be called from an ECMAScript program.

Draft ECMA-262 2018 says:

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data
or output of computed results. Instead, it is expected that the computational environment of an ECMAScript

program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

Why Does ECMAScript Need a “Host”?

Application Program
Libraries

“Engine”

“The Host”

Platform

Hosted ECMAScript
Platform Integration

Main Program + App General Purpose and
Modules Specialized Libraries

Abstracted

Standard Language Semantics Platform

. 5 Host Defined Host Defined
Host Domain ObjECtS Platform Objs External Objs

Implement Abstracted

Extended ES Language Semantics Platform Semantics

Foreign
Libraries

Host’s Domain Specific Abstractions

and Processes BN /dded-value
Services

Processor+0S

Hosted ECMAScript
Platform Integration w/ Host FFlI

Application Program Main Program + App General Purpose and
Libraries Modules Specialized Libraries

Abstracted

“Engine” Standard Language Semantics Platform

. 5 Host Defined Host Defined
Host Domain ObjECtS Platform Objs External Objs

: Implement Abstracted
“The Host” Extended ES Language Semantics PI%tform s

Foreign
Foreign Libraries

Host’s Domain Specific Abstractions function
Il
and Processes cupport P Added-value
Services

Platform Processor+0S

Conventional Programming Language
Platform Integration

Application Program Main Program + App Modules
Libraries General Purppse qnd Specialized
Libraries Foreign
Libraries
. . Abstracted Added-val
IRt e ladl Standard Language Semantics | Jatlorm A

Platform Processor+0S

Conventional Programming Language
Platform Integration w/ FFI

Application Program

Libraries

Runtime Support

Platform

Main Program + App Modules

General Purpose and Specialized
Libraries

Abstracted

Standard Language Semantics Platform

Semantics

Processor+0S

External/Foreign
call interface

Foreign
Libraries

Added-value
Services

Hostless ECMAScript Platform Integration?

Application Program Main Program + App Modules

External/Foreign
call interface

General Purpose and Specialized
Libraries

Libraries

Foreign
Libraries

. . Added-value
GIER T sl Standard Language Semantics =~ “hsracted ---

‘nﬁcs I

Platform Processor+0S

Could we build this today?
Not quite e

* Things that are missing and currently defined by
hosts

— Incomplete set of abstracted platform semantics; not
currently specified in the ECMAScript standards
* Eventing
* Worker/Agent/Threads and control API
* Realms
* Module loading reflection

— A standard Foreign Function Interface specification
* EG, define a FFl module syntax

