1987 Draft Smalltalk Language Specification

X3J20/93-004 J

C—

LA

Announcement of Proposed 1987 Smailialk Language Specification
by (alphabetical order, paitiai listing): (| .

George Bosworth, Digitalk

Steve Burbeck, Softsmarts

L. Peter Deutsch, ParcPlace Systems

Barry Haynes, Apple Computer - e

Raiph Johnsan, University of lllinois, Urbana-Champaign
J. Eliot B. Moss, University of Massachusetts, Amherst
Dave Thomas, Carleton University -

David Ungar, Stanford University

Steve Vegdahl, Tektronix

Alien Wirts-Brock, Tektronix

July 1, 1987

The attached document is a proposed specificaiivr: for the Smalltalk
fanguage. Itis the citgrowth of a series of meetings held at Stanford
urniversity on December 11 and 12, 1986 and ~ebruary 26 and 27, 1987. - -
The need for Such a specification is a direct result of Smalltalk's - . "
success. The lanftidge, eivironment, and concepts that were given birth

at Xerox PARC over a decade.ago have grown beyond their initial research
setting into various implementations and systems commercially available
from numerous vendors. | . ‘

Our immediate goal in formulating the attached document is to provide a
basis for greater portability of applications among Smalltatk .
implemeniations by means of a clear and precise language-specificaticn.
At present, the Smalltalk language is under specitied leading to
divergence among implementations, thus neediessly complicating
portability.

We recognize that we represent but a fraction of the total Smallialk
cornmunity and have therefore purposely limited ourselves to the
following goals:

1. Clarify, cleandp, and unify the details of the existing Smalltalk
language definitions;

2. Minimize the disruptions to existing users with large bodies of
working Smalltalk code; . :

3. Add a few mature and valuable enhancements.

We believe we have modestly met the above goals. We intend that our
future implementations will follow this proposal and we encourage others
to do the same. We, therefore, earnestly solicit comments on the
attached proposal. Comments should be forwarded to:

L. Peter Deutsch
ParcPlace Systems
P. O. box 60264
Palo Alto, CA 94306

1 syntax87.text

Further. we feel that the attached proposal represents but a necessary
first step in achieving an eventual Smalltalk standard. Clearly much
more remains to be done, but by formulating a limited but concrete
proposal at this time, we hope to lay the groundwork upon which further
efforts can be based. More importantly the process of preparing this
proposal has already fostered the sense of good will and willingness to
proceed among the major Smalltalk system vendors that is crucial for the
eventual success of a future standard.

We wish to see the process continued, especially since we see that
Smalltalk systems are gaining wide commercial acceptance. We intend to
continue to work together among ourselves, with users, and the wider
community to evolve the Smalitalk language and Smalltalk systems. In
this connection, we note that IEEE has approved and is in the process of
organizing an official Smalltalk Standard effort. We hope that all
interested parties will participate in this effort: details will be

announced in the near future. The present draft language standard is
not meant to preempt the IEEE activity, but rather to serve as an input

to it, and as a possible interim partial standard while the more careful
IEEE process is underway.

2 syntax87.text

(1
i\,

Copyright (C) 1987 by ParcPlace Systems. All rights reserved. Nothing
in this document constitutes a commitment by ParcPlace Systems to
implement or support any facility discussed here.

Proposal for 1987 Smalltalk Standard syntax

Edited by:
L. Peter Deutsch, ParcPlace Systems

Contributors (alphabetical order, partial listing):
George Bosworth, Digitalk
Steve Burbeck, Softsmarts
L. Peter Deutsch, ParcPlace Systems
Barry Haynes, Apple Computer
Ralph Johnson, University of lllinois, Urbana-Champaign
J. Eliot B. Moss, University of Massachusetts, Amherst
Dave Thomas, Carleton University
David Ungar, Stanford University
Steve Vegdabhl, Tektronix
Allen Wirfs-Brock, Tektronix

This is a working document proposing a complete definition of the syntax
of the 1987 version of the Smalltalk-80 (TM) language. This language is
a revision of the Smalltalk-80 language defined in the book :
"Smalltalk-80: The Language and Its Implementation” (Addison-Wesley,
1983), which we will refer to below as the Blue Book.

This document is meant to define the language syntax fully and formally,
but only deals partially and informally with the semantics of the
language. We intend to augment this document with a complete formal
definition of the semantics of the language at some future time. We

also recognize that the usefulness of the Smalltalk-80 language depends
heavily on the set of defined classes and messages: in this respect it
resembles Lisp, and contrasts with most other languages. We specify a
very small set of classes and messages which we believe are required to
support any useful Smalltalk-80 system, and which we consider a suitable
starting point for standardization; however, we recognize that we have
not dealt with this subject adequately.

Changes made in each version are not marked in the text, because they
interfere too much with the reading of the equations and tables: the
version history summarizes the important changes. Comments are
solicited.

You will find this document easier to read if you print it in a
fixed-pitch or nearly fixed-pitch font.

Smalltalk-80 is a trademark of ParcPlace Systems.
Version history:
[6] 1 July 1987: incorporates George Bosworth's cover letter, with some

minor additions, and some minor clarifications discovered by Glenn
Krasner; moves block arguments and assignment operators to lexical

3 syntax87.text

syntax, to avoid problems with where whitespace can appear; changes
primitives (again) to be specified either by class and selector, or by
string. This version was sent to all workshop participants for

approval. :

[5] 5 June 1987: incorporates comments from the Feb. 26-27 workshop and
subsequent contributions. Special thanks to Steve Vegdahl for debugging
the previous version of the syntax by writing a parser for it.

Lexical syntax: clarified assumption that the scanner always
takes the longest token in case of ambiguity; minor changes to number
syntax, including removing alternate-radix floats and scientific
notation for integers; explicitly reserved braces and backquote for
future extensions; changed role of '~ in binary selectors.

Other syntax: removed dynamic array creation syntax, multiple
expressions within parentheses; added #'..." to denote a symbol
containing arbitrary characters; restored classes with both named and
indexed instance variables, and changed the syntax of class definitions;
specify primitives by string and number.

Semantics: removed all messages with fixed meanings; clarified
position on redeclaration of names.

[4] 25 February 1987: made control messages have full message semantics;
minor changes to number syntax; allow multiple expressions in

parentheses, and clarify the role of '.’; provide for extended and

contracted character sets; specify primitives by class and selector

rather than number. This is the version presented at the Feb. 26-27
implementors workshop.

[3] 2 January 1987: moved Blue Book syntax to appendix; reorganized
summary of changes; removed hook for declarations; removed declarations
and multiple expressions within parentheses; made control messages less
special; allow both numbers and strings for primitives; added section on

file format; minor changes reflecting comments from intemal review.

This is the version sent to Eliot Moss for distribution to the

participants in the Dec. 11-12 workshop.

[2] 22 December 1986: added summary comparison with Blue Book, class
definition syntax.

[1] 20 December 1986: first version, no syntax for class definitions yet.

Syntax equations are given in BNF extended with the following constructs:
[x] - optional x
X* - 0 or more occurrences of x
X+ - 1 or more occurrences of x

1. Summary of Changes from the Blue Book

* This is a summary only: consult the following sections for details.

Clarifications

4 syntax87.text

(=

Some minor errors in classifying characters have been corrected.
The syntactic role of 'super’ has been clarified.

The order of evaluation of receiver and arguments has been defined as
left-to-right.

The syntax of primitives has been made explicit.
The syntax for defining classes has been made explicit.

Deletions

Alternate-radix floating point constants, and scientific notation for
integers, are no longer provided.

Classes may be defined with instances containing named instance
variables and/or indexed object references, or indexed 8-bit bytes only:
they may no longer contain "words" (16-bit bytes).

Incompatibilities

Embedded doubled quotes may not appear within comments. (This turns
out not to make any difference in what programs are accepted, only in
how they are parsed.)

The syntax of literal arrays has been changed to make the individual
elements look exactly like free-standing literals.

Block arguments and temporaries are properly scoped both lexically and
dynamically, i.e. they are not stored in the home context. (Many
existing programs will not execute properly, but they can always be
changed so they will work under both current and proposed rules.)

The primitive, if any, comes before the method temporaries, not after.
Standard primitives are identified if necessary by a class name and a
selector; non-standard primitives are identified by a string.

Additions

We provide for extensions to the character set, and acknowledge the
possibility of a reduced character set.

Lower-case letters are allowed within alternate-radix integers.

Symbol literals may contain arbitrary characters: the new syntax for
this is # followed by a string.

Literal arrays may contain nil, true, and false in addition to other
literals. :

The sequence := now also means assignment, as an alternative to _
(left-arrow).

S syntax87.text

Blocks mey have temporaries.

The control messages (ifTrue:, etc.) must not be forced to take explicit
blocks as arguments. In fact, all messages, without exception, behave
the same semantically, and may be redefined by the user.

Standard primitives may have a string description as well as a number.

2. Proposed 1987 standard

The following syntax is organized in the same way as the Blue Book
syntax presented in the Appendix, with one major difference: it is
specifically designed to be recognized by a recursive-descent parser
with no backup and only a one-token buffer (such as the current
Smalltalk-80 parser). Differences from the Blue Book are noted with **.
Deleted constructs are marked with --; new ones with ++.

The syntax presented in the Blue Book does not indicate where separators
(whitespace or comments) are allowed to appear. In the sections

entitled Lexical Primitives below, separators are not allowed to appear
between constructs; in the other sections, separators may appear between
any two constructs (terminal or non-terminal symbols or groupings).

Character set

The 1987 Smallltalk standard syntax is based on the ASCI| character set.
Although this is not mentioned explicitly in the equations below, all
non-printing ASCII characters (those with codes 0-31 and 127) are
treated as whitespace-characters; all other characters are mentioned
explicitly in the following section on lexical primitives.

We explicitly recognize that other character sets may include otherwise
unspecified characters of three kinds: whitespace, alphabetic, and
graphic. Characters classified as whitespace are ignored everywhere
except in character and string constants; alphabetic characters are
lexically equivalent to letters (i.e. may start and appear within
identifiers); graphic characters are allowed in character and string
literals and are illegal elsewhere. With regard to the ASCII set, all
non-graphic characters with codes below 128 (i.e. codes 0-31 and 127)
are whitespace; only letters (upper and lower case) are alphabetic. Any
implementation that goes beyond the ASCII set (on which the syntax is
based) may designate the additional characters as whitespace,
alphabetic, and graphic in an implementation-dependent way. We do not
define any particular mechanism for doing this.

We also recognize that the ISO character set differs from ASCII, and
redefines certain ASCII characters to have different significance,
particularly the square brackets and the braces. We do not specify
alternative representations for these language elements at this time;
however, we recognize that this must be addressed in the final version
of this standard.

Lexical Primitives

6 syntax87.text

We recognize that the lexical syntax is formally ambiguous, in that, for
example, the string 'abc:’ can be parsed either as an identifier
followed by a non-quote-character, or as a keyword. We resolve this
ambiguity in all cases in favor of the longest token that can be formed
starting at a given point in the source text. Thus 'abc:’ is always
considered to be a keyword, if the 'a’ is the beginning of the token.

The definition of token is not used anywhere else in the syntax: it is
supplied only for exposition.

++ token = number | identifier | special-character | keyword |
block-argument | assignment-operator |
binary-selector | character-constant | string

digit="0"1...1'¢’
digits = digit+
++ big-digits = (digit | letter)+ "as appropriate for radix"
™ number = (digits ['r' big-digits] |
fraction-and-exponent) | fraction-and-exponent
++ fraction-and-exponent ="’ digits [('e’ | 'E") [-'] digits]

letter="A"| ... 1’'Z' I’a’ | ... |'Z’
identifier = letter (letter | digit)*
** special-character ="+ |/ |V "™ '~ |'< | > |
=1@% I Y
-- (character)

++ non-quote-character =
digit | letter | special-character |
whitespace-character |
Trregreyeeryr2 A
G R R B
++ block-argument =".’ identifier
++ assignment-operator =’_" |’ '=’
keyword = identifier '’
binary-selector =
(- | special-character)

(- special-character | special-character)*
character-constant ='$' (non-quote-character | ™ | ™)
symbol = identifier | binary-selector | keyword+
string =" (non-quote-character | ™ ™' | "™)* "
comment =" (non-quote-character | ™")* '™
separators = (non-printing-character | comment)*

L2 d

%

k2 4

*k

The syntax for numbers in the Blue Book, and its interpretation by the
current Smalltalk compiler, leads to some unexpected results:
Input Result of dolt
1e31000 (e for exponent works with both integers and floats)
1.0e3 1000.0
16r1e3 4096 (small e still means exponent)
16r10.016.0 (alternate-radix floats work)
16r1E3 483 (big E means hex digit)
5 5 (initial . is interpreted as statement separator)
Under the new syntax, these examples would have the following interpretations:
1e3 (illegal - e is reserved for floats, and requires a .)

7 syntax87.text

1.0e3 1000.0
1or1e3 483 (no upper/lower case distinction)

16r10.0 (illegal - no altemate-radix floats)
16r1E3 483

5 0.5 (initial . means float)

As indicated in the syntax above, we propose to reserve e and E for
floats, and to require a . for floats as well.

We have corrected the errors in the Blue Book, and removed the
two-character limit on the length of binary-selectors. The character

' still plays a special role: it cannot be allowed as the last

character in a binary selector (unless it is the only character),

because otherwise expressions like x+-5 would be ambiguous (x + -5 or x
+- 5). :

We allow ":=’ for assignment, since the ASCII standard has underscore in
place of left arrow (_). Unfortunately, this introduces a minor
syntactic anomaly, explained in the section on expressions below.

Note that braces and backquote are deliberately reserved for future
extensions to the language.

Atomic Terms

named-constant = 'nil’ | 'true’ | *false’

symbol-constant = '#' (symbol | string)

(array) .

array-constant ="#'(’ literal* ')’

literal = -] number | named-constant | symbol-constant |
character-constant | string | array-constant

variable-name = identifier "other than a named-constant,

pseudo-variable-name, or 'super™

The new syntax for array constants is simpler to explain than the
present Smalltalk-80 syntax, but different and a little more verbose.
We explicitly recognize that nil, true, and false are constants. We add
a new syntax (# followed by a string) for writing symbol constants
containing arbitrary characters.

Expressions and Statements

L 2]

++
++

primary = variable-name | pseudo-variable-name | literal |
block-constructor | subexpression

pseudo-variable-name = self | 'thisContext'

unary-message = unary-selector

unary-selector = identifier

binary-message = binary-selector primary unary-message*

keyword-message = (keyword primary unary-message* binary-message*)+

(unary-object-description)

(binary-object-description)

(unary-expression)

(binary-expression)

(keyword-expression)

(message-expression)

8 syntax87.text

LY

-- (cascaded-message-expression)
++ cascaded-messages = (;’ (unary-message | binary-message |
keyword-message))*
++ messages =
unary-message+ binary-message* [keyword-message] |
binary-message+ [keyword-message] |
keyword-message
++ rest-of-expression = [messages cascaded-messages)
** expression =
variable-name
(assignment-operator expression | rest-of-expression) |
keyword =" expression "see below" |
primary rest-of-expression |
'super messages cascaded-messages
++ expression-list = expression (.’ expression)* ['.’]
temporaries ='I' temporary-list 'I' | 'II'
++ subexpression ='(’ expression ')’
++ temporary-list = declared-variable-name*
++ declared-variable-name = variable-name .
statements = [’ expression ['."] | expression ['.’ statements]]
block-constructor = '[' block-declarations statements ']
++ block-declarations = temporaries |
block-argument+
(1" [temporaries] | 'II' temporary-list I’ I 'lII')

L 2

In order to keep lexical analysis and parsing separate, but still allow

constructs like x:=3, we have had to introduce the altemative
keyword '=" expression

for assignment. This should really be read as though it were
variable-name ’:=" assignment

The syntax of messages has been rewritten to make it more amenable to
parsing (and hopefully easier to read.) We explicitly recognize the
existence of pseudo-variables, and the requirement that 'super’ be
followed by a message. (Note that cascaded messages to 'super are
allowed: some existing Smalitalk-80 compilers do not allow this.) The
syntax for .’ allows it to be considered either a separator which may

be followed by an empty element at the end of a list, or a terminator
which may be optionally elided at the end of a list.

Blocks are allowed to declare local temporary variables: this is the one
significant addition to the Blue Book syntax (and semantics). Note that
a block with both arguments and temporaries requires a double '’
between the arguments and the temporaries. (Some syntactic
circumlocutions are again needed to deal with the scanner’s decision to
accumulate consecutive 'I's into a single binary-selector.) We did
consider the obvious alternative, which was to use only a single ’I’ in
this case. The problem with this alternative is a potential ambiguity:
[x1tly&Z]
could be parsed as meaning either "argument x, temporary t, return y &

~ Z"or "argument x, returnt | y & z.* By requiring the double *I’ for

separating arguments from temporaries, we take the latter interpretation.
(We also considered and rejected the three other ways to fix this:

- Disallow 'I’ as a binary operator character - rejected because
I is the standard representation for "or".

- Remove the "I’ after the argument list - rejected because it

9 syntax87.text

reads worse.

- Make the distinction according to whether the names foliowing
the first 'I' are already defined - rejected because this kind of
syntactic dependency on far-away properties invites subtle problems.)

There is a semantic restriction, not expressible in a context-free
syntax, that the only valid variable names are those declared within an
enclosing scope (i.e. global, pool, class, or instance variables of the
class where the method is being defined, or of some superclass:
arguments or temporaries of the enclosing method, arguments or
temporaries of an enclosing block, or temporaries of an enclosing
subexpression). A full treatment of name scopes is beyond the
boundaries of the present proposal. However, we do specify the
following: .
- A local name (method or block argument or temporary) must not
conflict with a non-local name accessible in the same scope
(global, pool, class, or instance variable).
- A local name may conflict with another local name accessible
in the same scope: the inner declaration takes precedence.
We encourage compiler implementors to at least give a waming when
compiling code that contains a redeclaration of a local hame: this will
help catch occurrences of the current Smalltalk practice in which a name
used as a block argument is also declared in the method temporaries,
e.g.
[temp |

message-pattem =
unary-selector |
binary-selector declared-variable-name |
(keyword declared-variable-name)+
++ primitive = "<’ 'primitive:’ [primitive-identification] >’
++ primitive-identification = symbol symbol | string '
™ method = message-pattern [primitive] [temporaries] statements

Primitives are identified either by a class and selector, or by a

string. The former identify standard primitives; the interpretation of

the latter is not defined. If the primitive-identification is missing,

the class and selector name of the method in which the primitive appears
are used. In general, we do not expect primitives to be standardized:
instead, what we propose to standardize is the behavior of certain
messages in certain classes, independent of whether they are implemented
primitively or not.

Note that the implementation (compiler) is responsible for checking that
primitives are only attached to methods and classes for which they are
legal, i.e. this correspondence is truly part of the language

definition. A particular implementation may include polymorphic
primitives that accept (can validly be attached to) a variety of classes
and methods.

We propose that the primitive specification precede, rather than follow,

10 syntax87.text

the method temporaries. This seems more intuitive, since the primitive
is executed before the temporaries are bound.

Classes

The Smalltalk-80 system takes quite a different approach to creating and
editing classes vs. methods: the latter are defined by a textual syntax
and a message interface for compiling it, while operations on the former
are defined in terms of explicit messages taking various kinds of string
arguments. Indeed, the Blue Book does not introduce any syntax per se
for classes: it assumes they are created using the messages described in
Chapter 16. However, the definition of classes is properly part of the
language, just like the definition of methods, so we specify here the
fundamental message for creating classes. The semantics of modifying
existing classes, and the question of what happens to existing instances
when a class is modified, are beyond the scope of the present proposal.

Note that we consider the creation of a class from a specification to be
just like the creation of any other object, and unrelated to its
installation under a name in any dictionary; indeed, we even consider
the creation of a (compiled) method to be separate from its installation
in a class.

A class is created by the following message:
Behavior

newSuperclass: "Behavior | nil"

instanceVariables: "Array of: Symbol"

classVariables: “Array of: Symbol"

poolDictionaries: "Array of: Symbol"
Giving a class a name, installing it in a dictionary, or classifying it
in an organization are all matters outside the scope of the language
definition. (We presume the existence of an interactive interface that
allows users to define classes in some way that avoids writing out the
above message, and also deals with naming and organization if relevant.)

The superclass specified for a class may be either another Behavior or
nil. The latter is required for class Object, and allows creating other
classes that are not subclasses of Object. (Doing this is fraught with
peril, however: for example, if such a class does not define printOn:,
the Smalltalk system is likely to go into a recursion loop the first

time one tries to inspect an instance of the class.)

The syntax of the string supplied to describe the instance variables is
inst-var-names =
declared-variable-name* [indexed-refs] |
indexed-bytes
indexed-refs = "*' 'Object’
indexed-bytes ="' 'Byte’
Thus a class may contain named instance variables that hold object
references, indexed instance variables that hold object references (e.g.
Array), both (e.g. OrderedCollection), or information that is not
object references (e.g. ByteArray). We anticipate that an
implementation will provide a variety of different kinds of primitive
access to bit-type objects, e.g. by 8-, 16- or 32-bit bytes, or perhaps
to arbitrary bit sequences: the only reason for calling such objects

11 syntax87.text

'byte’ as opposed to 'bit’ obiects is that we do not require
impiemeniations to quaniize the space fcr such cbjects in units smaller
than 8 bits.

File syntax

The form in which Smalitalk programs are stored on external files is
defined, not in the Blue Book, but in chapter 3 (pp. 29-37) of the Green
Book. We propose to standardize enough of this external format so that
external files containing programs can be parsed even by systems that.
may not be able to interpret all of their contents. In the syntax

equations below, separators are NOT implicitly allowed between elements:
the equations must be taken exactly as they appear.

marker ="'

non-marker = “any character except the marker"

separators = non-printing-character*

chunk = (non-marker | marker marker)+ marker

special-read-section = marker chunk (separators chunk)*
separators marker

program-file = (separators (special-read-section | chunk))*
separators

Information appears on a program file in "chunks® terminated by a marker
and with embedded markers doubled. A chunk not preceded by a marker is
simply an expression to be evaluated. A chunk preceded by a marker
indicates the start of special syntax: the expression is evaluated to

produce some kind of reader or parser object, which in tum is sent the
message scanFrom: with the file stream itself as the argument. The

reader then is expected to read and process chunks from the file until
encountering an empty chunk. In other words, the following might
represent the algorithm for reading in a program file:

[self skipSeparators.
self atEnd)]
whileFalse:
[(self peekFor: $!)
ifTrue: [(Object evaluate: self nextChunk) scanFrom: self]
ifFalse: [(Object evaluate: self nextChunk)]]

The purpose of the special-read-section is primarily to allow classes to
read in method definitions without having to have them copied two extra
times (once for chunk parsing, once for parsing as a string literal to

be passed as an argument.) The current Smalltalk-80 system copies the
definition one extra time, since it reads it in as a chunk before

parsing: this can clearly be avoided if desired.

At a minimum, a file parser must be able to identify method definitions.
We propose to do this in the following way: we define the message
<Behavior> methodReader as returning an object whose scanFrom: method
will read and define methods for the receiver. We further specify that
additional messages may be sent to this_object without compromising its
function, e.g.

laBehavior methodReader category: 'something’!
By this convention, an implementation can define additional properties

12 syntax87.text

for methods being read without compromising general parsability of
source files.

Semantics

The expressions in an expression-list are evaluated in left-to-right
order.

The message sends in a cascade are evaluated in left-to-right order.

The receiver of a message is evaluated before the arguments; the
arguments are evaluated in left-to-right order.

Standard Classes

Certain classes are conceptually required to support the language
defined above, namely, the classes of literal objects. These classes
are:

Integer

Float

Symbol

String

Array

Character

Block

True, False, Nil

Behavior (for classes)

We do not require that these classes have these specific names, or that
their functionality is divided up in exactly this manner (for example,
integers might be implemented by separate Smalllnteger and Largelnteger
classes, or True and False might be instances of a single class

Boolean). However, in describing the standard messages in the next
section, we will use these names and this division of functionality.

Standard Messages

The language as we have described it has no messages with fixed
meanings. We regard this as a unique strength of Smalltalk (and of
related languages such as Hewitt’s Actor languages), and experience has
indicated the utility of this concept in enabling such things as

transparent message forwarders. On the other hand, any useful language
must provide a basic set of functions such as arithmetic and control
structures, and any commercially viable language must implement some of
these functions very efficiently. We now define a small set of messages
that we expect all implementations of the Smalltalk-80 language to
provide. In the next section, we discuss how the pragmatics of these

or other messages may be modified to enable efficient implementation.

Here are the messages we believe are appropriate to standardize as an

13 syntax87.text

absolute minimum for languace support. The marks in the left margin
refer 10 the section on pragmatics and shouid be ignored at this point.
Arithmetic:

(Integer) + - * < > <= >= = ~= (Integer, Float)

(Integer) //\\ (Integer)

(Integer) / (Float)

(Float) + - */ < > <= >= = ~= (Integer, Float)
Control:

(Block) value

(Block) value: (Object)

(Block) whileTrue: (Block)

(Block) whileFalse: (Block)

(Block) whileTrue

(Block) whileFalse

(Block) repeat

(Integer) to: (Integer) do: (Block)

(Integer) timesRepeat: (Block)

(True, False) ifTrue: (Block)

(True, False) ifTrue: (Block) ifFalse: (Block)

(True, False) ifFalse: (Block)

(True, False) ifFalse: (Block) ifTrue: (Block)

(True, False) and: (Block)

(True, False) or: (Block)
Miscellaneous:

(Object) == (Object)

"D_n_n_n_n_n'U'U TVWTUVTUOUO

m mTTmmTm T

Contexts

Contexts are the one area in which we propose several minor changes in
the semantics of Smalltalk, all of which are backward-compatible given
some minor changes in the Virtual Image.

The first change has to do with the scope and lifetime of block
arguments (and temporaries, which are new). In the current Smalltalk-80
definition, block arguments are stored in the home context. This
prevents blocks from being used recursively, or by more than one
process, and leads to anomalous error messages if a process is
interrupted ("Block already active”). In the proposed definition,

blocks are closures in the sense of Scheme or other modern lexically
scoped Lisps: execution of the [] construct creates a BlockClosure,
which only encapsulates the current (home) context and the code;
invocation of a BlockClosure creates a BlockContext. We note that an
implementation may optimize this process, as long as the semantics are
maintained, in ways familiar from the Lisp literature: for example, a
block that refers to no variables in outer scopes, and does not do a A
return, may not need to hold a reference to the outer scope. One result
of this is that the debugger may have less information available to it:

we explicitly allow this to be the case.

The second semantic change has to do with A. When control returns from
a method, but the context being returned to is anomalous (e.g. has
already been returned from), the current system sends the message
‘cannotReturn: theValue’ to the context being returned from. We propose
to change this so that the system sends the message 'resumeWith:
theValue' to the object (presumably, but not necessarily, a context)

14 syntax87.text

being returned TO. For convenience in implementing non-standard control
structures, this message should be defined primitively in ciass Context.

The third change also affects A. Currently, A from within a block
invokes a complex algorithm that users have no control over. We propose
to change this so that A within a block is defined as sending the
message 'thisContext remoteRetum: theValue'. Normally this message
will be defined in class BlockContext as a primitive that carries out to
the current built-in algorithm, but future evolution of the system to
incorporate exception handling with unwind-protection might affect the
definition. In this regard, we allow (but do not require) ‘
implementations to disallow A-returns to contexts whose sender chain
terminates elsewhere than the root of the current process: situations of
this kind should be handled with explicit use of resumeWith:.

As indicated below, compilers may be able to avoid creating blocks
altogether under certain circumstances, such as in the standard
conditional message ifTrue:ifFalse:. As a consequence, however, the
value of thisContext would be an outer context rather than the actual
(textual) current context. We propose to require absolutely faithful
implementation, which may require constructing an actual context for a
conditional message if a thisContext appears within one of the
alternatives.

Pragmatics

While we require absolutely uniform message semantics for the
Smalltalk-80 language, we recognize the need to allow more efficient
implementation of messages whose meaning is very unlikely to change. To
this end, we propose that certain messages, while retaining the same
semantics as all others, are allowed to have substantially different
pragmatics. In particular:

- Certain messages, if sent to receivers whose classes are not
in a specified set, may execute much slower.

- Certain messages, if defined in new classes, or redefined or
undefined in existing classes, may suffer a substantial performance
penalty for some or all classes of receiver. In exchange for these
penalties, under normal circumstances these messages will execute
substantially faster than others.

In the list of standard messages defined above, the messages marked "P"
have the first pragmatic property ("P" indicating that the set of

classes for that message is Partially fixed); the messages marked "F"
have both the first and the second property (“F" indicating that the set

of classes for that message must stay Fully fixed to avoid losing
performance).

"Changing a definition" means that the new definition is not

operationally equivalent to the old. A sufficient (but not necessary)
condition for testing this is that the new definition compiles into the

same object code as the old one: we encourage implementors to use a test
such as this one, so that (for example) changing variable names or
comments is not considered “changing the definition". The pragmatic
consequences of (for example) not compiling ifTrue:ifFalse: in-line are

so severe that the user should be given an opportunity to confirm that

15 syntax87.text

this was actually the intended resut:. (This is a user interface
guesiion, not & mialter of language definition.) We note that no
existing Smallitalk-80 compiler known to us handles this possibility
properly.

We also note that the 'notBoolean’ exception, which results from
non-Boolean conditions in the present Smalltalk-80 definition, does not
conform to the proposed standard: if an implementation uses a mechanism
like a notBoolean message internally, it must convert this automatically

to a correct ifTrue:ifFalse: (or whatever) message, with two appropriate
blocks as arguments, without user intervention. '

Current Smalltalk-80 compilers that adopt the Blue Book's concept of
“special arithmetic selectors" do not properly handle redefinition of
these messages: this does not conform to the proposed standard.

Nothing in this standard precludes a given implementation from adding or
removing messages or receiver classes to the lists given above. Such
differences may be built into the implementation, or may be under user
control with a sufficiently sophisticated compiler. However, since such
enhancements are required to leave the semantics unchanged, we do not
specify anything about them here.

Static checking

Since supplying receivers or arguments of the wrong class to the
abovementioned messages will almost certainly result in a runtime error,
compilers may choose to issue wamings if they believe the user has
written a program that is likely to result in an error. For example, a
programmer unused to Smalltalk syntax might write something like

a < b ifTrue: trueStuff ifFalse: falseStuff
rather than

a < b ifTrue: [trueStuff] ifFalse: [falseStuff]
A compiler might plausibly ask for user confirmation if an argument to
ifTrue:ifFalse: is not an explicitly written block. However, the
proposed standard requires that all compilers must be willing to compile
programs even if they contain questionable constructs of this kind.
Most current Smalltalk-80 compilers do not do this.

Contexts

All existing compilers for the Smalltalk-80 language treat some or all

of the control messages specially by compiling them in a way that avoids
creating Context objects for them during execution. Since the language
standard does not specify anything about the creation of contexts, a
compiler is free to compile ANY message in a way that avoids creating
Contexts, so long as the semantics of the message are unaffected. We
note, however, that since Contexts are visible to the programmer at the

- meta-level, programs at the meta-level must be prepared for the
possibility that a given message send at the source level may not create
a Context at the object level.

Appendix: The Blue Book

16 syntax87.text

The foliowing syntax is the one that appears in the endpaper of the Blue
Book (slightly rearranged). A few notes on errors and omissions are
interspersed. This material is reprinted by permission of Xerox
Corporation.

Lexical Primitives

..................

digit="0'1...1'9’

digits = digit+

number = [digits 'r'] [-'] digits ['.’ digits] ['e’ [-'] digits]

letter="A'1...1'Z I'a’| ... 1’2’

identifier = letter (letter | digit)*

special-character ="+ |7 |\ |"™ '~ |'<' |'s' |
=1'@ 1'% 1T 1&

character =

digit | letter | special-character |
TITECUYECry 2wy
$IUrrE
keyword = identifier ’’
unary-selector = identifier
binary-selector = -’ | special-character [special-character]
character-constant = '$’ (character | " | '™
symbol = identifier | binary-selector | keyword+
string =" (character | " " | "")* *»
comment =" (character | ™ | " ")* '
separators = (non-printing-character | comment)*

The syntax for special-character and character have several errors. "
appears in both (it should only be in special-character); ’,’ appears in

~ character (it should be in special-character); '." appears in neither
(it should be in character); - and ' (backquote) appear in neither
(they should be in special-character).

There does not appear to be a good reason for limiting the length of

binary-selectors to two characters. '-' is apparently singled out
because of its special role in indicating negative numbers.

Atomic Terms

symbol-constant = '# symbol
array ='(’ (number | symbol | string | character-constant |
" array)*’)’
array-constant = '# array
literal = number | symbol-constant | character-constant |
string | array-constant
variable-name = identifier

Expressions and Statements

primary = variable-name | literal | block | '(’ expression ')’
unary-object-description = primary | unary-expression
binary-object-description = unary-object-description |

17 syntax87.text

binary-expression
Unary-expressior = unary-object-descristior, unary-selector
binary-expression = binary-object-description binary-selector
unary-object-description
keyword-expression = binary-object-description
(keyword binary-object-description)+
message-expression = unary-expression | binary-expression |
keyword-expression -
cascaded-message-expression = message-expression (*;'
(unary-selector | binary-selector unary-object-description |
(keyword binary-object-description)+)+
expression = (variable-name ’_")*
(primary | message-expression | cascaded-message-expression)
statements = [’ expression | expression [’ statements]]
block ="’ [("” variable-name)+ 'I' statements | statements] ')

Methods

temporaries ='I' variable-name* 'I’

message-pattemn = unary-selector | binary-selector variable-name |
(keyword variable-name)+

method = message-pattern [temporaries [statements] | statements)

The Blue Book omits the syntax for indicating primitive methods. (This
may be deliberate.)

18 syntax87.text

Copyright (C) 1987 by Xerox, ParcPlace Systems. All rights reserved.
Nothing in this document constitutes a commitment by Xerox, ParcPlace
Systems to implement or support any facility discussed here.

Protected applications in the Smalltalk-80 System

L. Peter Deutsch
Xerox, ParcPlace Systems

This is a working document proposing mechanisms for better encapsulation
and protection of independent applications for the Smalltalk-80 language
and system.

Comments are solicited. For changes in successive versions, consult the
version history.

Version history:

[2] 10 May 1987: split into three documents (scopes, pkg, and load);
incorporated comments by Richard Steiger, Mark Miller, and George
Bosworth; decoupled this document from the standards activity; added new
section on debugging and errors; added syntax for creating private
security area and name scope.

[1] 25 February 1987: first version (pkg87), distributed to implementors at the
Feb. 26-27 workshop.

Introduction

Conventional language systems support the development of applications
that can be made available in object code form only, and are thereby
protected from unwanted interference or scrutiny (subject to the ability

of the programmer to create pointers to arbitrary machine locations).

In contrast, the current Smalltalk-80 system is completely open: all

objects (including source code) are available for inspection and
modification, and anyone can send any message to any object to which the
sender has a reference. This greatly reduces the incentive to design in

a strongly modular way, and tends to lead to a tangled, monolithic

system. In order to alleviate this problem, and also to encourage the
development of third-party software, this document proposes a mechanism
for truly encapsulated applications within the Smalltalk-80 system.

In theory, an object-oriented language such as Smalitalk provides
excellent abstraction, since messages are interpreted relative to the
class, and inter-program protection, since there is no way to violate
the abstraction boundary of an object. In practice, there are several
barriers to meeting this promise: ')

- All class names are global, so any object can send a message
to any class. This makes protection awkward, because typical
applications have both public and private classes.

- Any object can send any message to any other object it has a
reference to. This makes protection awkward, because typically objects

1 Dkg.text

have both public and private protorols.

- Debuggers need a controiled way of breaching the abstraction
boundary, but in the current system there is no way to restrict access
to messages such as instVarAt:.

We propose to address these problems by a combination of language and
system facilities. A separate document describes new mechanisms for
more flexible control of name visibility, which addresses the first

problem mentioned above. Another document (in preparation) describes a
proposal, largely due to Mark Miller, for a systematic approach to
protecting objects from direct inspection other than by authorized
subsystems such as debuggers. Consequently, this document only deals
with the second problem: how to provide encapsulation without having to
add new mechanisms to restrict the ability of objects to send arbitrary
messages to arbitrary other objects.

Our solution to the encapsulation problem is based on separating public
and private protocols into different classes. This approach has

significant overhead, and we believe it is most appropriate for
applications with stringent information hiding needs. We believe that a
superior solution would be to allow message selectors to be more general
objects, not necessarily literal Symbols, which would allow a package to
have selectors that cannot be named by its clients or anyone else.
However, this approach appears to require more new machinery than the
one we propose here, as well as being less flexible in some ways (e.g.

it doesn’t directly provide for dynamic revocation of capability).

The proposed approach involves no changes to any existing part of the
Smalltalk language or system; however, it depends on the facilities for
flexible name scoping and meta-level protection.

Meta-level facilities

Mark Miller's proposal includes an explicit notion of a "security area",

an object that controls access to the representation of other objects.

We propose that this notion be implemented in a way that allows private
application classes and their instances to belong to security areas
different from the normal "open" area, and to different areas for
different applications. We only sketch some of the ideas here: for more
information on this concept, read Mark’s proposal.

For private messages to have any value as a protection mechanism, they
must be protected in the same way as an object's implementation. (This
is, for example, consistent with the Actors view that objects are
individually fully responsible for decoding their messages.) For this
reason, the operations that allow direct access to an object’s class
(including the method dictionary) are also placed in the *meta"

category.

Since Mark’s proposals are complex and far-reaching, we only discuss a
subset of them here. This subset is aimed specifically at the following
problems: ‘

- Controlling access to an object’s storage representation (the
functionality of instVarAt:, instVarAt:put:, become:, class).

- Controlling access to the state of a class (method

2 pkg.text

dictionary, class variables, superclass reference).

As in Mark’s proposal, we introduce the concept of a MetaObject. A
MetaObject holds a reference to an object (called the 'subject’ of the
MetaObject), and provides direct access to the instance variables of
the subject. Access is controlled by controlling the creation of
MetaObjects for a given subject. Rather than provide instVarAt: and
instVarAt:put:, we provide a message

<InstVarDictionary> := <MetaObject> instVarDictionary

that returns an object that provides Dictionary protocol to actually

access the instance variables of the MetaObject's subject by name. (We
do not specify how this occurs: presumably the InstVarDictionary invokes
protected messages of the MetaObject, that in turn call primitives

similar to the present instVarAt:[put].)

To control the creation of MetaObjects, we introduce the notion of a
SecurityArea, again as in Mark’s proposal. Only a SecurityArea can
create a MetaObject. The Smalltalk system starts out with a single
SecurityArea, which can create a MetaObject for any existing object.
Ideally, the primitives for creating objects should specify in what
SecurityArea the object is to be created. However, since we have had
no experience with the SecurityArea concept, we are unwilling to
require implementors to provide this capability, which may add
significant complexity to the memory manager. Instead, we adopt a much
more limited position that addresses some, but not all, the security
needs of protected applications: we divide objects among SecurityAreas
on a per-class basis, and propose that each class specify which
SecurityArea can access it and its instances, i.e.

<SecurityArea> := <Behavior> securityArea.

Protected interfaces

As mentioned above, and explained in more detail below, applications can
effectively control what objects are available to their clients by name.

In this section, we describe how they can use this facility to provide a
completely protected interface to clients. No new language or system
facilities are involved: this is purely a matter of convention. At the

end of this section, we provide a detailed example.

If an application wishes to present a protected interface, it is not
sufficient to only make a particular class or classes visible:<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>