Copyright (C) 1987 by Xerox, ParcPlace Systems All rights reserved.
Nothing in this aocument constitutes a commitment by Xerox, ParcPlace
Systems to implement or support any facility discussed here.

New scope mechanisms for the Smalltalk-80 language

L. Peter Deutsch
Xerox, ParcPlace Systems

This is a working document proposing mechanisms for more flexible
control of name scopes in the Smalltalk-80 language, including private
and nested name spaces for classes. :

Comments are solicited. For changes in successive versions, consult the
version history.

Version history:

[2] 7 May 1987: spilit off this document (scopes) from pkg87;
incorporated comments from Richard Steiger, Mark Miller, and February
implementors’ workshop (no substantive changes, only clarifications).

[1] 25 February 1987: first version (pkg87), distributed to implementors
at the Feb. 26-27 workshop.

Introduction

Conventional language systems support independent development of
application packages with encapsulation mechanisms (such as name hiding)
that allow them to be combined into a single executable program. The
Smalitalk-80 system currently does not provide facilities, which

substantially hinders the ability of developers to produce widely-usable
packages. This document proposes a more capable name scoping facility
for the Smalltalk-80 system. It does not address the other problem of
encapsulation, namely how to create truly protected objects using the

name scoping facilities in concert with object-oriented design.

In theory, an object-oriented language such as Smalltalk provides
excellent modularity, since messages are interpreted relative to the
class. In practice, there are several barriers to meeting this promise:

- All class names are global, so any object can send a message
to any class. This makes protection awkward, because typical
applications have both public and private classes. It also raises a
problem of name clashes between classes of different applications.

- The system facilities have been optimized for development
environments, where it is very valuable to have all relevant symbolic
information readily available (such as message and variable names), as
opposed to delivery environments, where it may be more desirable (for
reasons of both space and protection) to do without this information.

We propose to address these problems through a generalization of the
present class variable / pool dictionary mechanism, which allows the

‘1 scope..text



easy creation of private scopes for static variables and constants
(including classes).

Implementing the proposal Would involve very minor changes to the
Smalltalk compiler, and minor changes to the Debugger and Inspector.

The present proposal is designed primarily for helping to organize
large-scale systems composed of many weakly interacting application
areas, i.e. it is aimed primarily at the problem of name conflicts.

The present Smalltalk-80 language has four kinds of instantiable
variables (variables which can exist in multiple instances):

- Block variables (arguments and temporaries);

- Method variables (arguments and temporaries);

- Instance variables;

- Class instance variables.

The present system has three kinds of static variables (variables which
only exist in a single instance):

- Class variables;

- Pool variables;

- Global variables (in Smalltalk or Undeclared).
We believe that it is both feasible and desirable to collapse these
three kinds of static variables into a single notion of a static
variable dictionary: the proposals below indicate how to do this at an
implementation level, but do not specify what effect it might have on
the language.

In the long term, we believe that it is both feasible and highly

desirable to reduce the number of conceptually different kinds of
variable, ideally to a single concept of an instantiable variable and
instantiable scope. However, at this time we have no proposal for doing
this. In particular, we are not prepared to propose eliminating the
instantiable / static distinction, even though static variables are
conceptually at odds with the notion of instantiable scopes.

Independent of this issue, we observe that in order for the Debugger to
evaluate expressions relative to a particular context, it must be able
to invoke the compiler and pass it extra information describing how to
interpret and resolve names referring to local variables of the context.
We also note that the Tektronix Smalltalk system provides a facility for
defining static variables local to individual workspaces: this also
implies the ability to compile (or at least evaluate) expressions in a
specified naming context. We propose here to extend the compiler
interface in a way that allows programmers to construct arbitrary scope
structures involving static variables. This solves the problem at the
implementation level, but not the language level: we do not address the
latter problem here.

The key concept in our approach to more flexible name resolutions is to
identify an abstract class NameScope and its protocol. In the present
version of this proposal, we only deal with static scopes, i.e. those

for which supplying only the name is sufficient to obtain a value,

2 scopes.text



without needing any context information. We' hope to extend this to
inciude instantiable scopes in the future.

Conceptually, a NameScope is an ordered collection of dictionaries.
Dictionaries earlier in the ordering take precedence over those
appearing later, if the same name appears in more than one. (Allowing
the same name to appear more than once is important, since otherwise one
might have to change names in a local scope as a result of something
happening in an outer scope in which one has no interest.) However, a
NameScope behaves (through its public protocol) like a single
dictionary, i.e. as though it were a dictionary in which the keys are

all the names recognized within the scope. For example, an evaluator
can use the at: or at:ifAbsent: message to obtain the value of a
variable; a compiler can use the associationAt: message to obtain a
reference to the binding of a name. ‘

The only major public protocol distinction between NameScopes and
Dictionaries is how they are created. In particular, NameScopes are
created using the following messages:

<StaticNameScope> := <NameScope class> empty
- Returns a NameScope that recognizes no variables.
<StaticNameScope> := <StaticNameScope> precededBy: <Dictionary>

Returns a new NameScope which looks up names in the
Dictionary before looking them up in the receiver. In other words, if
we think of a NameScope as a sequence of Dictionaries, in which
Dictionaries appearing earlier in the list take precedence over those
appearing later, this message produces a new NameScope with the
Dictionary added at the head of the list. For example, the standard
Smalltalk-80 global name scope is produced by ((NameScope empty
precededBy: Undeclared) precededBy: Smalltalk). The Dictionaries are
incorporated into the NameScope by reference in the following sense:

- If a name is added or removed in a Dictionary, subsequent
compilations using any NameScope that includes that Dictionary will take
account of the change.

- I a name is added or removed in a Dictionary,
already-compiled methods that reference variables in that dictionary MAY
OR MAY NOT take account of the change. In other words, we do NOT
require that static variables be looked up in a chain of Dictionaries at
the moment of use, the way that messages are looked up in
MethodDictionaries at the moment of sending.

<InstantiableNameScope> := <Context> nameScope

Returns a NameScope appropriate for evaluating
expressions in the given Context.

<ExecutableMethod> := <Behavior> compile: <String> in:
<NameScope> ifError: <BlockClosure>

Compiles the String as a method for the given Behavior,

using the NameScope as the outer context for names not defined in the
Behavior or its superclasses. Note that the NameScope may have been

3 scopes.text



obtained from a Context: this makes it possible, for example, to compile
& new block relative to ar existing context. This is also the first

step in evaluating expressions relative to a context. We do not specify
what happens if a name is not defined in the NameScope: we encourage
implementors to provide a “soft" failure alterative such as the
Undeclared dictionary provided in the present Smalltalk-80 system.

Using this mechanism, an application can construct classes whose names
are entirely local to that application. Obviously one wants to have a
linguistic mechanism for this, not just a set of procedural or even

interactive tools. This is partly for user convenience, but also _
because there is a protection issue here: the messages for constructing
and accessing scopes, and compiling, must be protected from unauthorized
use. This question of so-called "meta-level" access is beyond the scope-

of this document.

4 scoves.text



