\

Copyright (C) 1987 by Xerox, ParcPlace Systems. All rights reserved.
Nothir.g i this document constitutes a commitment by Xerox, ParcPiace
Systems to implement or support any facility discussed here.

Proposal for 1987 Smalltalk Standard: Processes

prepared by: ,
L. Peter Deutsch, Xerox, ParcPlace Systems

other contributors (alphabetical order, partial listing):
Mark Miller, Xerox PARC/ISL
Allen Wirfs-Brock, Tektronix

This is a working document specifying the standard behavior of Processes
and Semaphores for the 1987 version of the Smalitalk-80 language.
Comments are solicited.

Version history:

[1] 25 February 1987: first version, split off from exec87.text. This
is the version distributed at Feb. 26-27 implementors workshop.

Process

Processes are lightweight threads of control, as in Smalltalk-80 and
many Lisp systems: they are not protection domains or separate address
spaces, as in Unix, or separate naming environments or explicit linear
stack areas, as in ZetalLisp. (This is not meant to imply that such
facilities are not useful, only that the term "process"” as used in this
document, and the Smalltalk standard class Process, do not cover them.)

From the client's point of view, a process has just a few pieces of
visible state:

- A scheduling state: Dead, Suspended, Waiting
<Semaphore>, WaitingSuspended <Semaphore>, or Active.

- A numeric priority, a positive integer with an
implementation-dependent maximum value. Processes with higher priority
run in preference to those with lower priority: see below for more
details. We require that implementations provide at least 8 priority
levels.

- An execution state, consisting of a Context and
possibly some implementation-dependent information such as saved
registers. Each of these state components is the subject of sections
below.

In the current Smalltalk-80 system, there is a ProcessorScheduler that
holds the priority lists of runnable Processes, and also handles the
fine-grained timer. Since Smalltalk appears to be a promising language
for multiprocessors, we wish to specify its process facilities in a way

that does not limit it to execution on a uniprocessor. For this reason,

we deliberately choose not to define a Processor or ProcessorScheduler
object; instead, we reassign the functions of the current

1 processes87.text



ProcessorScheduler to class Process, except for the timer function which
We recommend be given to a new Timer opject.

Scheduling states

From the client’s point of view, a process is in one of four scheduling states:
- Dead: it cannot be run. The only time a process is
dead is after it has terminated.
- Suspended: it is potentially runnable, but it must be
explicitly resumed.
- Waiting: it can be run as soon as a particular
Semaphore is signalled.
- WaitingSuspended: it can be run as soon as a
particular Semaphore is signalled and it is explicitly resumed.
- Active: it can run at any time, according to the
priority decisions made by the scheduler. This includes any processes
that are running now (in a multi-processor system, there may be more
than one.)

The transitions between these scheduling states occur as follows:
Active -> Waiting: the process sends a wait message to a

Semaphore with no signals.
Active -> Suspended: the process receives a suspend message.
Waiting -> WaitingSuspended: the process receives a

suspend message.
Active -> Dead: the process returns from its root context.
(Active, Waiting, Suspended, WaitingSuspended) -> Dead:

the process receives a kill message.
Waiting -> Active: the process is waiting on a

Semaphore, and the Semaphore receives a signal message.
Suspended -> Active: the process receives a resume message.
WaitingSuspended -> Waiting: the process receives a

resume message.
WaitingSuspended -> Suspended: the process is waiting on

a Semaphore, and the Semaphore receives a signal message.
Dead -> Suspended: the process’ execution state is reset.

We have deliberately omitted any distinction between processes that CAN
run and processes that ARE running (aside from the ability for a running
process to find out its own identity), and any facilities for querying

the scheduler as to the current set of Active processes. This implies,

in particular, that the Smalltalk environment must explicitly keep track

of which process will be interrupted if the user types a control-C. We
consider this an improvement over the current haphazard selection of a
running process. '

Priorities

It has been observed that the current Smalktalk-80 notion of process
priorities doesn’t work very well for any of its intended uses: the

desire to provide fast response to I/O events (including user
interaction) would better be served by a deadline mechanism, and the
desire to allocate CPU shares would better be served by a bidding
mechanism or some other "soft" priority arrangement. While we agree

2 processes87.text



with these observations, limited time has prevented us from attempting
to specity a new scheduling mechanismi.

The current Smalltalk-80 scheduler makes some strong guarantees about
process priorities and non-preemption, on which a good bit of current
software unfortunately depends. These guarantees are not compatible
with multiprocessors, or even with most operating system schedulers.
Therefore, we propose only to guarantee a weaker set of properties:

- If all running processes are at priority M or lower, and a
process at priority N > M becomes ready, the latter process will run,
and one of the running processes may be preempted.

- If a process stops running, and the highest priority process
still running is at priority M, and a process at priority N > M is
ready, the latter process will run, and one of the running processes may
be preempted. This is not implied by the first property, since the
first property only deals with what happens when a new process becomes
ready.

Note that we do NOT guarantee the following, which is commonly assumed
by current Smalltalk systems:

- As long as a process at priority M is running, no (other)
process at priority N <= M will run.
(By convention, if there is no process running, we pretend there is a
process running at non-existent priority 0.) In a multi-processor
implementation, we cannot guarantee that the highest-priority processes
will always be the ones running: it may simply be too expensive to
exchange enough priority information between processors to always
maintain this property.

Process protocols

In the descriptions of protocol below, an attempt to send a
state-transition message to a process in the wrong state will cause an
error. The meaning of this is left unspecified: in the current
Smalltalk-80 system, it would normally mean an interactive error (a
Notifier), but in systems with exception handling facilities, it should
cause an exception which can be handled by a program.

Creation

<Process> := <Process class> forBlock: <BlockClosure>
priority: <Smallinteger>
Create a Suspended process that will start
execution in an activation of the closure when Activated. The process
is killed when it retums from the context created for the closure. (In
Mark Miller's meta-objects proposal, the first argument should be a
MetaClosure, not a BlockClosure.)

Scheduling

<Process class> current
Return the currently running Process, i.e. the
one whose execution sent this message.

3 processes87.text



<Process> resume
Make a Suspended process Active, and a
WaitingSuspended one Waiting.

<Process> suspend .
Suspend a process in any state except Dead. A
Waiting process becomes WaitingSuspended.

<Process> kill
Make a process in any scheduling state Dead. A
Dead process cannot be put into any other scheduling state until it has
had its execution state reset.

<Symbol> := <Process> schedulingState
Return the scheduling state of a process:
#active, #waiting, #suspended, #waitingSuspended, or #dead.

<Semaphore> := <Process> currentSemaphore
If the receiver is Waiting or WaitingSuspended,
return the Semaphore on which the receiver is Waiting. If the receiver
is not Waiting, return nil. Note that the Semaphore may be signalled at
any time -- there is no guarantee that the process will still be Waiting
the next time it is queried.

<Integer> := <Process> priority
Return the priority of a process.
<Process> priority: <Integer>
Set the priority of a process. Note that even
if a process has a priority higher than all other processes, there is no
guarantee that it will be the only running process: setting the priority
to the highest value is not an adequate means to guarantee mutual
exclusion.
<Integer> := <Process class> highestPriority
Return the highest acceptable priority value.

Semaphores

The semantics of Semaphores similar to those the current Smalitalk-80
system, except that we do not guarantee that processes waiting on a
Semaphore will be activated in FIFO order: instead, we only guarantee
that if a process P is waiting on a Semaphore, only a finite number of
other processes waiting on the same Semaphore will be activated before P
is activated. (This is called a "non-starvation” condition.)

<Semaphore> wait ,
If the receiver is holding any signals,
decrement its signal count. If the receiver is not holding any signals,
make Waiting the (Running) process sending the wait message.
<Semaphore> signal
If any processes are Waiting on the receiver,
make one of them Active. If no processes are Waiting, increment the

4 processes87.text



excess signal count of the receiver. If a process is WaitingSuspended,
make it Suspendea.
<Semaphore> waitingProcesses
Return a collection of the processes Waiting on
the receiver, if any. The order of processes in the collection, or even
whether the collection is ordered, is not guaranteed. If there are no
processes Waiting on the receiver, retum an empty collection.

It has been observed that Semaphores are a very low-level
synchronization mechanism, and that their use for /O devices in
particular leads to awkward arrangements where the synchronizing signal
and the data transfer must be handled separately. Two alternatives have
been proposed: request/reply, as in the V Kernel (an experimental
lightweight operating system kernel being developed at Stanford), or
monitors or serialized objects. We have tentatively rejected
request/reply because its semantics are more complex and more difficult
to specify fully and precisely, and monitors or serialized objects

because they seem to interact with the language in more complex ways.
However, we recognize that Semaphores are not a fully satisfactory
mechanism, and would welcome detailed proposals for better ones.

Execution state

<Context> := <Process> currentContext
Return the current context of a process, if
Suspended, or nil, if Dead. Attempting to read the current context of a
Waiting or Active process is an error: a performance monitor like the
current Smalltalk-80 MessageTally should suspend the process being
monitored, read or copy as much of its state as desired, and then resume
the process.
<Process> currentContext: <Context>
Set the current context of a Suspended or Dead
process. The context must be on the sender chain of the process. If
the process was Dead, it becomes Suspended.
- <Symbol> := <Process> nextStepAction
Return a symbol indicating what the (Suspended)
. process will do in response to the next 'step’ message: #send, #return,
or #advance (execute straight-line code).
<Process> step _
Single-step the (Suspended) process to the next
send or return (if executing straight-line code) or through the send or
return. Note that a send may cause the process to change state from
Suspended to Waiting, and a return may cause the process to die (if it
returns from its root context).
<Process> restartContext: <Context>
Adjust the state of a Suspended process so that
when it next becomes active, it will start executing the method of the
indicated context from the beginning again. The context must be on the
sender chain of the process.

S processes87.text



