Copyright (C) 1987 by Xerox, ParcPlace Systems. All rights reserved.
Nothing in this document constitutes a commitment by Xerox, ParcPlace
Systems to implement or support any facility discussed here.

Protected applications in the Smalltalk-80 System

L. Peter Deutsch
Xerox, ParcPlace Systems

This is a working document proposing mechanisms for better encapsulation
and protection of independent applications for the Smalltalk-80 language
and system.

Comments are solicited. For changes in successive versions, consult the
version history.

Version history:

[2] 10 May 1987: split into three documents (scopes, pkg, and load);
incorporated comments by Richard Steiger, Mark Miller, and George
Bosworth; decoupled this document from the standards activity; added new
section on debugging and errors; added syntax for creating private
security area and name scope.

[1] 25 February 1987: first version (pkg87), distributed to implementors at the
Feb. 26-27 workshop.

Introduction

Conventional language systems support the development of applications
that can be made available in object code form only, and are thereby
protected from unwanted interference or scrutiny (subject to the ability

of the programmer to create pointers to arbitrary machine locations).

In contrast, the current Smalltalk-80 system is completely open: all

objects (including source code) are available for inspection and
modification, and anyone can send any message to any object to which the
sender has a reference. This greatly reduces the incentive to design in

a strongly modular way, and tends to lead to a tangled, monolithic

system. In order to alleviate this problem, and also to encourage the
development of third-party software, this document proposes a mechanism
for truly encapsulated applications within the Smalltalk-80 system.

In theory, an object-oriented language such as Smalitalk provides
excellent abstraction, since messages are interpreted relative to the
class, and inter-program protection, since there is no way to violate
the abstraction boundary of an object. In practice, there are several
barriers to meeting this promise: ')

- All class names are global, so any object can send a message
to any class. This makes protection awkward, because typical
applications have both public and private classes.

- Any object can send any message to any other object it has a
reference to. This makes protection awkward, because typically objects

1 Dkg.text

have both public and private protorols.

- Debuggers need a controiled way of breaching the abstraction
boundary, but in the current system there is no way to restrict access
to messages such as instVarAt:.

We propose to address these problems by a combination of language and
system facilities. A separate document describes new mechanisms for
more flexible control of name visibility, which addresses the first

problem mentioned above. Another document (in preparation) describes a
proposal, largely due to Mark Miller, for a systematic approach to
protecting objects from direct inspection other than by authorized
subsystems such as debuggers. Consequently, this document only deals
with the second problem: how to provide encapsulation without having to
add new mechanisms to restrict the ability of objects to send arbitrary
messages to arbitrary other objects.

Our solution to the encapsulation problem is based on separating public
and private protocols into different classes. This approach has

significant overhead, and we believe it is most appropriate for
applications with stringent information hiding needs. We believe that a
superior solution would be to allow message selectors to be more general
objects, not necessarily literal Symbols, which would allow a package to
have selectors that cannot be named by its clients or anyone else.
However, this approach appears to require more new machinery than the
one we propose here, as well as being less flexible in some ways (e.g.

it doesn’t directly provide for dynamic revocation of capability).

The proposed approach involves no changes to any existing part of the
Smalltalk language or system; however, it depends on the facilities for
flexible name scoping and meta-level protection.

Meta-level facilities

Mark Miller's proposal includes an explicit notion of a "security area",

an object that controls access to the representation of other objects.

We propose that this notion be implemented in a way that allows private
application classes and their instances to belong to security areas
different from the normal "open" area, and to different areas for
different applications. We only sketch some of the ideas here: for more
information on this concept, read Mark’s proposal.

For private messages to have any value as a protection mechanism, they
must be protected in the same way as an object's implementation. (This
is, for example, consistent with the Actors view that objects are
individually fully responsible for decoding their messages.) For this
reason, the operations that allow direct access to an object’s class
(including the method dictionary) are also placed in the *meta"

category.

Since Mark’s proposals are complex and far-reaching, we only discuss a
subset of them here. This subset is aimed specifically at the following
problems: ‘

- Controlling access to an object’s storage representation (the
functionality of instVarAt:, instVarAt:put:, become:, class).

- Controlling access to the state of a class (method

2 pkg.text

dictionary, class variables, superclass reference).

As in Mark’s proposal, we introduce the concept of a MetaObject. A
MetaObject holds a reference to an object (called the 'subject’ of the
MetaObject), and provides direct access to the instance variables of
the subject. Access is controlled by controlling the creation of
MetaObjects for a given subject. Rather than provide instVarAt: and
instVarAt:put:, we provide a message

<InstVarDictionary> := <MetaObject> instVarDictionary

that returns an object that provides Dictionary protocol to actually

access the instance variables of the MetaObject's subject by name. (We
do not specify how this occurs: presumably the InstVarDictionary invokes
protected messages of the MetaObject, that in turn call primitives

similar to the present instVarAt:[put].)

To control the creation of MetaObjects, we introduce the notion of a
SecurityArea, again as in Mark’s proposal. Only a SecurityArea can
create a MetaObject. The Smalltalk system starts out with a single
SecurityArea, which can create a MetaObject for any existing object.
Ideally, the primitives for creating objects should specify in what
SecurityArea the object is to be created. However, since we have had
no experience with the SecurityArea concept, we are unwilling to
require implementors to provide this capability, which may add
significant complexity to the memory manager. Instead, we adopt a much
more limited position that addresses some, but not all, the security
needs of protected applications: we divide objects among SecurityAreas
on a per-class basis, and propose that each class specify which
SecurityArea can access it and its instances, i.e.

<SecurityArea> := <Behavior> securityArea.

Protected interfaces

As mentioned above, and explained in more detail below, applications can
effectively control what objects are available to their clients by name.

In this section, we describe how they can use this facility to provide a
completely protected interface to clients. No new language or system
facilities are involved: this is purely a matter of convention. At the

end of this section, we provide a detailed example.

If an application wishes to present a protected interface, it is not
sufficient to only make a particular class or classes visible:

- The client can instantiate the class in an uncontrolied way.

- The client can send any message to instances of the class, not
just those intended for public use.

- The client can do other operations on the class, such as
changing its methods.

To prevent clients from instantiating an application class, we propose
that the application not make classes available to the client. Instead,

the application should export a "factory"-object that only understands a
few object-creation messages. This factory, having been compiled in the
naming environment of the application, can refer to and instantiate

"3 pkg.text

arolication classes as needed. As we will see below, factories are
sufficiently stylized that they can be generated automatically from
declarations of what messages should be public.

To prevent clients from sending private messages, we propose that the
objects provided dynamically by the application to the client not be
instances of the application classes that actually do the work.

Instead, the application should provide interface objects that only
understand the public messages. The interface object should hold, in an
instance variable, a reference to an object that actually provides the
functionality, and forward the public messages to it. Interface objects
obviously need an initialization message to set this reference, and this
message must be protected in some way so that clients cannot change the
reference once it has been set. For this message, we propose a
different technique, based on checking a "key" against an object not
visible to clients: see the example below for details. Again, most of

the code for interface classes can be generated automatically from
declarations. '

It has been suggested we do not actually need to use a key for
validating the initialization message for the interface object: we can
simply check whether the instance has been initialized yet (i.e. the
instance variable holding the real object is non-nil), and signal an
error if this is the case. This approach seems to work for the simple
case presented below, but may not be adequate for more complex
situations.

As discussed in the section on meta-level facilities above, by placing
an application in a different security area, we can prevent clients from
accessing its machinery (such as the method dictionaries of its classes,
or the instance variables of its instances) in an uncontrolled way.

Here we give a very simple example of a protected application: a Counter
that is initially zero, and can only be incremented and read. Even in

this simple example, an interface class is required, because the
initialization message to the Counter must be protected. None of the
three classes exhibited below are visible to clients: only the static
variable named CounterMaker is exported. The static variables (classes)
CounterFactory, Counterinterface, and Counter exist only in a scope
private to the application, as does the variable CounterKey.

The code given here for creating security areas and name scopes is
completely speculative, and may not be at all appropriate in general.
Indeed, the syntax is not quite acceptable, since it includes temporary
variables declared in the middle of a statement sequence, and a mixture
of language syntax and file "chunk” delimiters.

| myArea |
myArea := SecurityArea current newArea.
myArea control: |

| myGlobals |

4 pkg.text

myGilobals := Dictionary new.

globals at: #CounterArea put: area.
globals at: #CounterGlobals put: globals.
globals enclose: ’

" **** ALL THE 'S SHOULD BE DOUBLED FROM HERE ON *******

CounterFactory := Behavior
newSuperclass: Object
instanceVariables: #()
classVariables: #()
poolDictionaries: #().

!CounterFactory methods forCategory: 'Counter creation’!
new
"Make a new Counter for the client"
~Counterinterface new initialize: CounterKey! !

Counterinterface := Behavior
newSuperclass: Object
instanceVariables: #(#counter)
classVariables: #()
poolDictionaries: #().

!Counterinterface methods forCategory: 'Counter creation’!
initialize: aKey
CounterKey == aKey
ifFalse: [self error: 'Unauthorized message’].
counter := Counter new.
counter initialize.
Aself! |

!Counterinterface methods forCategory: 'client accessing’!
increment

counter increment!
value

Acounter value! !

Counter := Behavior
newSuperclass: Object
instanceVariables: #(#count)
classVariables: #()
poolDictionaries: #().

ICounter methods forCategory: ’accessing'!

initialize

count := 0!
increment

count := count + 1!
value

S pkg.text

Acount! !

"Create the key. This can be any mutable object whatever. It
can't be an immutable object, since we can’t be guaranteed that
two immutable objects with the same contents won't be ==."

CounterKey := Array with #Counter *a mutable array”!

"Create the CounterMaker. CounterMaker is the only static
variable defined here that is visible to clients."

CounterMaker := CounterFactory new!

Smalltalk at: #CounterMaker put: CounterMaker!

If an error occurs inside a protected application, we must ensure that

the debugger does not allow us to violate a protection boundary. For
example, Contexts probably need to be created in the SecurityArea of
their receiver. The debugger probably should not even show Contexts in
SecurityAreas to which the user does not have access. A complete
discussion of this problem is beyond the scope of this document.

'6 pkg.text

