A High Performance Java GC
with Thread Private Heaps

Pat Caudill@Instantiations.com

Allen_Wirfs-Brock@Instantiations.com

www.instantiations.com



JOVE

Commercial static native compiler for Java.
- V1.07/99, V1.51/00, V2.0 10/00

Translates class files to Wintel native exe’ s

Veryaggressive global optimization

- but no escape analysis (yet)
Closed world, whole program assumptions
JDK-level independent

Suitable for real-world programs

- (yes, it can handle SwingSet, Java2D Demo, Java 3D, Image],
Jbuilder 4.0, etc.)



JOVE Garbage Collector

® Direct descendent of Tektronix Smalltalk Collector
described at OOPSLA’ 86:

- Copying, multi-generational collector

- Generation number/size dynamically adaptable

- Non-movable large object space

- Remembered sets track inter-generation references

- Dual stacks segregate object references from primitive
data - no stack parsing

+ Compiler generated, type-specific, object scanners



GCBench Results

CJOVE JDK 1.1.8
EJOVE JDK 1.2.2

10000 - W JOVE JDK 1.3
B JOVE JDK 1.3 Force MT
% 8000 - BJDK 1.3 (Client Hotspot)
g HIBM 1.1.8
o 6000 -
)
(V)]
'é 4000 -
=
2000 -
0_

-Xmx25m -Xmx32m

(300 MHz Pentium II, 128MB RAM, NT 4.0)



Multi-threaded GC

Created by Optimizer

Dynamic Objects
Shared by Multiple

Threads

Dynamic Objects
Private to Individua
Threads



Basic Strategy

® Assumes that “most” objects are only accessed by the thread
that creates them:

Each thread has a private multi-generational heap

All new objects allocated in a thread private heap

Private objects may reference same private heap or shared heap
Shared heap may only reference shared heap

Write barrier detects attempt to store private heap reference into shared
object, this triggers...

Promotion of private object to youngest shared generation (transitive
closure) --- no copying required

® Thread private heaps are locally collected- no synchronization

® Shared heap collection - stops the world



“Shared” GCBench Results

112 -
110 -
108 -

Relative 1064
Execution 104 -
Times 102
(%)  100-
98 -

96 -

94 -

N N NN N

GCBench "Shared”
GCBENCH

(300 MHz Pentium II, 128MB RAM, NT 4.0)

B JOVE JDK 1.3
EJOVE JDK 1.3 Force MT




Future

® How well does assumptions about thread
independence match real programs?

® Apply same basic idea to “single-threaded” phase
structured programs



Relative Execution times for
SPECjvm98 Benchmarks on various JVMs
Normalized to JOVE 2.0

400%

B JOVE 2.0

@ Client HotSpot 1.3.0-C
@ Server HotSpot 2.0E
@ HotSpot 1.0.1g

B JDK 1.2.2-5 symcijit

300%

u @ IBMJDK 1.1.8
200% a m
0% T T T T T T T T —1
&Q&g 54 & 9 ¢ & N o5
N > %) Vv
8 D) goj v N ®Qz@ o B

Q'\/ v a7

v P

Smaller 1s better



“Shared” GCBench Results

5700 -

5600 -
5500 -

B JOVE JDK 1.3
B JOVE JDK 1.3 Force MT

5400
5300 -
5200 -
5100 -
5000 -
4900 -
4800 -
4700 -

Milliseconds

NN N N NN

GCBench "Shared"”
GCBENCH

(300 MHz Pentium II, 128MB RAM, NT 4.0)



