
A High Performance Java GC
with Thread Private Heaps

Pat_Caudill@Instantiations.com

Allen_Wirfs-Brock@Instantiations.com

www.instantiations.com

JOVE
  Commercial static native compiler for Java.

–  V1.0 7/99, V1.5 1/00, V2.0 10/00

  Translates class files to Wintel native exe’s

  Veryaggressive global optimization
–  but no escape analysis (yet)

  Closed world, whole program assumptions

  JDK-level independent

  Suitable for real-world programs
–  (yes, it can handle SwingSet, Java2D Demo, Java 3D, ImageJ,

Jbuilder 4.0, etc.)

JOVE Garbage Collector
  Direct descendent of Tektronix Smalltalk Collector

described at OOPSLA’86:

–  Copying, multi-generational collector

–  Generation number/size dynamically adaptable

–  Non-movable large object space

–  Remembered sets track inter-generation references

–  Dual stacks segregate object references from primitive
data - no stack parsing

+ Compiler generated, type-specific, object scanners

GCBench Results

0

2000

4000

6000

8 000

10000

M
il
li
se

co
n
d
s

-­‐X m x25m -­‐X m x32m

J OVE 	
 J D K 	
 1.1.8
J OVE 	
 J D K 	
 1.2 .2
J OVE 	
 J D K 	
 1.3
J OVE 	
 J D K 	
 1.3 	
 F or c e 	
 M T
J D K 	
 1.3 	
 (Clie n t 	
 H ot s p ot)
I B M 	
 1.1.8

(300 MHz Pentium II, 128MB RAM, NT 4.0)

Multi-threaded GC

Static Objects
Created by Optimizer

Dynamic Objects
Shared by Multiple
Threads

Dynamic Objects
Private to Individual
Threads

Basic Strategy
  Assumes that “most” objects are only accessed by the thread

that creates them:
–  Each thread has a private multi-generational heap

–  All new objects allocated in a thread private heap

–  Private objects may reference same private heap or shared heap

–  Shared heap may only reference shared heap

–  Write barrier detects attempt to store private heap reference into shared
object, this triggers...

–  Promotion of private object to youngest shared generation (transitive
closure) --- no copying required

  Thread private heaps are locally collected- no synchronization

  Shared heap collection - stops the world

“Shared” GCBench Results

94
96
98

10 0
10 2
10 4
10 6
10 8
110
112

R e la t ive 	

E x ec u t ion 	

T im es
(%)

GCB enc h "S ha r ed"
GCB E NCH

J OVE 	
 J D K 	
 1.3
J OVE 	
 J D K 	
 1.3 	
 F or c e 	
 M T

(300 MHz Pentium II, 128MB RAM, NT 4.0)

Future
  How well does assumptions about thread

independence match real programs?

  Apply same basic idea to “single-threaded” phase
structured programs

0%

100%

200%

300%

400%

500%

600%

20
1_

Compres
s

20
2_

jes
s

20
5_

ray
tra

ce

20
9_

DB

21
3_

jav
ac

22
2_

mpeg
au

dio

22
7_

mtrt

22
8_

jac
k

JOVE 2.0
Client HotSpot 1.3.0-C
Server HotSpot 2.0E
HotSpot 1.0.1g
JDK 1.2.2-5 symcjit
IBM JDK 1.1.8

Relative Execution times for
SPECjvm98 Benchmarks on various JVMs

Normalized to JOVE 2.0

Smaller is better

JOVE 100%

“Shared” GCBench Results

4 70 0
4 8 0 0
4 90 0
50 0 0
510 0
520 0
53 0 0
54 0 0
550 0
560 0
570 0

M
il
li
se

co
n
d
s

GCB enc h "S ha r ed"
GCB E NCH

J OVE 	
 J D K 	
 1.3
J OVE 	
 J D K 	
 1.3 	
 F or c e 	
 M T

(300 MHz Pentium II, 128MB RAM, NT 4.0)

