
A High Performance Java GC
with Thread Private Heaps

Pat_Caudill@Instantiations.com

Allen_Wirfs-Brock@Instantiations.com

www.instantiations.com

JOVE
  Commercial static native compiler for Java.

–  V1.0 7/99, V1.5 1/00, V2.0 10/00

  Translates class files to Wintel native exe’s

  Veryaggressive global optimization
–  but no escape analysis (yet)

  Closed world, whole program assumptions

  JDK-level independent

  Suitable for real-world programs
–  (yes, it can handle SwingSet, Java2D Demo, Java 3D, ImageJ,

Jbuilder 4.0, etc.)

JOVE Garbage Collector
  Direct descendent of Tektronix Smalltalk Collector

described at OOPSLA’86:

–  Copying, multi-generational collector

–  Generation number/size dynamically adaptable

–  Non-movable large object space

–  Remembered sets track inter-generation references

–  Dual stacks segregate object references from primitive
data - no stack parsing

+ Compiler generated, type-specific, object scanners

GCBench Results

0

2000

4000

6000

8 000

10000

M
il
li
se

co
n
d
s

-‐X m x25m -‐X m x32m

J OVE 	 J D K 	 1.1.8
J OVE 	 J D K 	 1.2 .2
J OVE 	 J D K 	 1.3
J OVE 	 J D K 	 1.3 	 F or c e 	 M T
J D K 	 1.3 	 (Clie n t 	 H ot s p ot)
I B M 	 1.1.8

(300 MHz Pentium II, 128MB RAM, NT 4.0)

Multi-threaded GC

Static Objects
Created by Optimizer

Dynamic Objects
Shared by Multiple
Threads

Dynamic Objects
Private to Individual
Threads

Basic Strategy
  Assumes that “most” objects are only accessed by the thread

that creates them:
–  Each thread has a private multi-generational heap

–  All new objects allocated in a thread private heap

–  Private objects may reference same private heap or shared heap

–  Shared heap may only reference shared heap

–  Write barrier detects attempt to store private heap reference into shared
object, this triggers...

–  Promotion of private object to youngest shared generation (transitive
closure) --- no copying required

  Thread private heaps are locally collected- no synchronization

  Shared heap collection - stops the world

“Shared” GCBench Results

94
96
98

10 0
10 2
10 4
10 6
10 8
110
112

R e la t ive 	
E x ec u t ion 	

T im es
(%)

GCB enc h "S ha r ed"
GCB E NCH

J OVE 	 J D K 	 1.3
J OVE 	 J D K 	 1.3 	 F or c e 	 M T

(300 MHz Pentium II, 128MB RAM, NT 4.0)

Future
  How well does assumptions about thread

independence match real programs?

  Apply same basic idea to “single-threaded” phase
structured programs

0%

100%

200%

300%

400%

500%

600%

20
1_

Compres
s

20
2_

jes
s

20
5_

ray
tra

ce

20
9_

DB

21
3_

jav
ac

22
2_

mpeg
au

dio

22
7_

mtrt

22
8_

jac
k

JOVE 2.0
Client HotSpot 1.3.0-C
Server HotSpot 2.0E
HotSpot 1.0.1g
JDK 1.2.2-5 symcjit
IBM JDK 1.1.8

Relative Execution times for
SPECjvm98 Benchmarks on various JVMs

Normalized to JOVE 2.0

Smaller is better

JOVE 100%

“Shared” GCBench Results

4 70 0
4 8 0 0
4 90 0
50 0 0
510 0
520 0
53 0 0
54 0 0
550 0
560 0
570 0

M
il
li
se

co
n
d
s

GCB enc h "S ha r ed"
GCB E NCH

J OVE 	 J D K 	 1.3
J OVE 	 J D K 	 1.3 	 F or c e 	 M T

(300 MHz Pentium II, 128MB RAM, NT 4.0)

