
An
Optimizing

Compiler for Java

JOVE

Allen Wirfs-Brock
Instantiations Inc.

™

JOVE

Object-Orient Languages
Provide a Breakthrough in
Programmer Productivity

  Reusable software components

  Higher level abstractions

  Yield significant productivity improvements

JOVE

The “Rap” on Object-Oriented
Languages

  They’re slow!!!
–  C++ slower than C

–  Smalltalk slower than C++

–  Java slower than C++

JOVE

Why are OO Languages
slow?

  Unconventional implementation techniques

  New, expensive fundamental operations

  Object-oriented design and programming
techniques

JOVE

There seems to be a delicate
balancing act between OO
productivity and execution

performance

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then
insert it again.

JOVE

Why?
  Productivity comes from generalization

–  Reusable class libraries

–  Extensible frameworks

–  Plugable components

–  Abstract algorithms

  Implemented using

–  Subclass refinement

–  Polymorphic typing

–  Polymorphic methods

–  Accessor Methods

–  Chains of delegation

JOVE

Generality = Inefficiency

  Extra functionality that is present but not used

  Many calls of tiny methods

  Accessors methods

  Generic algorithms depend upon dynamic
(polymorphic) method dispatch

  Late binding via polymorphism precludes static
optimizations

JOVE

It’s an issue of binding time.
  Procedural designs and languages are fast, but

inflexible because most decisions are bound very
early, during coding.

  Object oriented designs are slow, but flexible because
many decisions are bound very late, during program
execution.

Early Binding Late Binding

Decisions made during coding Decisions made during execution

Flexibility Performance

JOVE

The Dilemma
  Late bound OO code is highly reusable, making

programmer more productive over the course of
developing several applications.

  Late bound OO code is inefficient.

  Early bound procedural code is generally not very
reusable.

  Early bound procedural code can be very efficient.

JOVE

Why can’t we have both?
  Write program using, highly reusable object-oriented

code.

  Execute them as very efficient, procedural code.

Early Binding Late Binding

Decisions made during coding Decisions made during execution

Move object-oriented binding decisions
earlier by making decisions at

compilation time instead of during
execution

JOVE

Don’t OO Language
Compilers already do this?

  No

  Conventional C++, Eiffel, Java, etc. compilers
generally don’t perform compile-time bindings of
object-oriented constructed.

  They don’t know enough about a program to make
these decisions so…

  They implement object-oriented constructs via late
binding during execution

JOVE

What does a compiler need to
know

  Complete class hierarchy

  All possible control paths through the program

  Initial values of variables

The compiler needs to “understand” the
whole program.

JOVE

Whole Program Optimization
  By examining a whole program a compiler can:

–  Determine exactly which classes, methods, and fields are
actually used by the program.

–  Which classes are actually instantiated

–  The specific classes of objects that will be used at each
expression within the program.

–  The possible “receivers” for every method invocation

–  Whether a method invocation actually needs to be
polymorphic

–  Determine which objects may be shared between threads

–  etc...

JOVE

Why is the time right for
Whole Program Optimizing

compilers?
  Very fast processors

  With very large main memories

  Wide spread use of object-oriented languages

JOVE

Experimental Whole Program
Optimizing Compilers for Object-

oriented language

  Vortex Compiler
–  University of Washington - Craig Chambers, Jeffrey Dean, et al

  Marmot
–  Microsoft Research - Robert Fitzgerald, et al

JOVE

JOVE

 First production-quality whole program
optimizing compiler for Java
–  Static deployment compiler for Java

–  Aggressive, whole-program optimizer
–  Creates single-file, native executables for

deployment

– Supports JDK 1.1, 1.2, and 1.3 client or
server Java applications

JOVE

Java
Development & Deployment

Java
Development
Environment

Java
Virtual Machine

Host Processor

Java Class Files

Native (.exe)
Application

Windows 9x/NT

JOVE
Optimizer

JOVE Runtime
Support

JOVE

Jove Conceptual Architecture

C

C C C

C C C

I I SSA

SSA

SSA

SSA SSA

SSA

Whole Program Model:
 Class Hierarchy
 SSA Method Representation
 Type Info

Bytecode loader
and translator

Native Code Generator

Java
Class
Files

Classic
Compiler

Optimizations

Procedure
Integration

Generality
Elimination

Polymorphic
Strength

Reduction

Data Flow
Analysis

Class
Hierarchy
Analysis

Native
.exe file

JOVE

Whole Program Object-Oriented
Optimizations

  Generality elimination

  Class hierarchy analysis

  Polymorphic type elimination

  Polymorphic strength reduction

  Type check elimination, etc.

JOVE

Generality Elimination
class Customer refines Person{

 public static Customer nextCustomer{…}
 protected String name;
 protected String address;
 protected int id;
 public String name() {return name;}
 public String address() {return address;}
 public String id() {return id;}}

while ((c= Customer.nextCustomer()) != null)
 System.out.println(c.name());

JOVE

Generality Elimination
class Customer refines Person{

 public static Customer nextCustomer{…}
 protected String name;
 protected String address;
 protected int id;
 public String name() {return name;}
 public String address() {return address;}
 public String id() {return id;}}

… while ((c= Customer.nextCustomer()) != null)

 System.out.println(c.name());...

Assume that some program only uses the nextCustomer
and name methods of Customer as shown above.

JOVE

Generality Elimination
class Customer refines Person{

 public static Customer nextCustomer{…}
 protected String name;
 protected String address;
 protected int id;
 public String name() {return name;}
 public String address() {return address;}
 public String id() {return id;}}

… while ((c= Customer.nextCustomer()) != null)

 System.out.println(c.name());...

The program does not need the methods id() and address()
or the fields address and id. Generality elimination will
remove these from the program model.

JOVE

Generality Elimination

1028

6782

1160

941

1899

762

819 345

0

2000

4000

6000

8000

10000

Methods Fields Methods Fields

Eliminated
Used

48% Reduction in Methods &
31% Reduction in Fields

Program 1
22% Reduction

in Methods* &
41% Reduction

in Fields

Program 2

*Eliminated 55% of java.lang methods

JOVE

Class Hierarchy Analysis

abstract class Person{
 public String name() {return “John Doe”; }

class Customer refines Person{
 public static Customer nextCustomer(){…}
 protected String name;
 public String name() {return name;} }

Person is an abstract class whose only subclass is
Customer. Customer.name() overrides Person.name()
hence Person.name() can be eliminated and Customer.name()
is not polymorphic.

JOVE

Class Hierarchy Analysis

abstract class Person{
 public String name() {return “John Doe”; }

class Customer refines Person{
 public static Customer nextCustomer(){…}
 protected String name;
 public String name() {return name;} }

Person is an abstract class whose only subclass is
Customer. Customer.name() overrides Person.name().

JOVE

Class Hierarchy Analysis

abstract class Person{
 public String name() {return “John Doe”; }

class Customer refines Person{
 public static Customer nextCustomer(){…}
 protected String name;
 public String name() {return name;} }

Because Customer.name() overrides Person.name() which is
an instance method of an abstract class and because there are
no other subclasses of Person, Person.name() can be
eliminated and Customer.name() is not polymorphic.

JOVE

Polymorphic Type Elimination
String Classify (Object p) {

 if (p instanceof Customer) return “Customer”;
 if (p instanceof Employee) return “Employee”;
 return “Generic Person”;}

...Classify(Customer.nextCustomer())...

String Classify (Object p) {
 if (p instanceof Customer) return “Customer”;
 if (p instanceof Employee) return “Employee”;
 return “Generic Person”;}

...Classify(Customer.nextCustomer())...

Classify is method whose parameter is declared as type
Object but its only invocation is passing the result of a
methods whose result type is Customer.

JOVE

Polymorphic Type Elimination
String Classify (Object Customer p {

 if (p instanceof Customer) return “Customer”;
 if (p instanceof Employee) return “Employee”;
 return “Generic Person”;}

...Classify(Customer.nextCustomer())...

The compiler can now treat the argument type of Classify
as if it was declared to be Customer which has been determined
to be a non-polymorphic type for this program. Under this
assumption the first instanceof test will always be true and
it and subsequent code can be eliminated.

JOVE

Polymorphic Type Elimination
String Classify (Customer p {

 return “Customer”;
 }

...Classify(Customer.nextCustomer())...

The simplified version of Classify can then be easily inlined
at its call site. Because the result of nextCustomer() is not
used that call is also eliminated.

…”Customer” … // inlined call to Classify

JOVE

String Classify2 (Object Customer p) {
 if (hashtable[p.hashCode()] ==p {
 …

}

...Classify2(Customer.nextCustomer())...

Polymorphic Strength
Reduction

hashCode() can be strength
reduced from a dynamic
polymorphic call into
a static call (and probably
inlined)

JOVE

Call Site Optimization

5209 6102
1938 1111

1441

15828

130 3470

0

5000

10000

15000

20000

25000

Before After Before After

Program 1 Program 2

Dynamic Call Sites
Static Call Sites

96% Reduction in
 Dynamic Call Sites

55% Overall
Reduction in

Call Sites

91% Reduction in
 Dynamic Call Sites

70% Overall
Reduction in

Call Sites

JOVE

The JOVE Runtime

  Low memory overhead objects

  Precise multi-generational garbage collection

  Native multi-threading or single threaded

  Multi-threaded garbage collection

  Fast method dispatch and type checks

Scalable Runtime Architecture designed to support
extremely large Java programs

JOVE

Message Dispatch
Type Inclusion Testing

  Selector table dispatch for polymorphic calls
–  Row displacement compacting

–  No extra dispatch overhead for interfaces

  Compact encoded tables for very fast type
inclusion testing (checkcast & instanceof)

–  Constant time tests

–  Test is a 4 instruction sequence on Intel
architecture

JOVE

Why are OO Languages
slow?

  Unconventional implementation techniques

–  Compiled native code instead of a virtual machine
  New, expensive fundamental operations

–  Implemented by efficient runtime system

  Object-oriented design and programming techniques

–  Overhead eliminated using whole program
optimizations.

Using JOVE, Java programs
are fast!

JOVE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Gibb
on

s

Gibb
on

s_
fin

al

Gibb
on

s_
no

_s
witc

h

Deu
tsc

h_
no

_a
cc

Deu
tsc

h_
ac

c_
fin

al

Deu
tsc

h_
ac

c_
vir

tua
l

Deu
tsc

h_
ac

c_
int

erf
ac

e

JOVE 2.0
Client HotSpot 1.3.0-C
HotSpot 1.0.1g
JDK 1.2.2-5 symcjit
IBM JDK 1.1.8

Smaller is better
More object-oriented

Richards Benchmarks

JOVE

JOVE 2.0 vs. Hotspot 1.3.0
Running a Complex Object-Oriented Program

(JOVE itself)

292

493

0

100

200

300

400

500

600

Elapsed Time

JOVE
Optimized by JOVE
Compiling javac 1.3

JOVE
Running on Hotspot
Compiling javac 1.3

Smaller is better

JOVE

0%

50%

100%

150%

200%

250%

300%

350%

400%

20
1_

Compres
s

20
2_

jes
s

20
5_

ray
tra

ce

20
9_

DB

21
3_

jav
ac

22
2_

mpeg
au

dio

22
7_

mtrt

22
8_

jac
k

JOVE 2.0
Client HotSpot 1.3.0-C
HotSpot 1.0.1g
JDK 1.2.2-5 symcjit
IBM JDK 1.1.8

SPECjvm Benchmarks for Various JVMs
Normalized to JOVE 2.0

Smaller is better

JOVE 100%

JOVE

Applicability
  Whole program optimization requires a static

program structure.

  Unconstrained reflection impedes optimizations.

  Dynamically composed programs not supported.

All classes are available at deployment time.

New classes loaded from network during execution.

Use JOVE

Use a JIT

JOVE

But…Many existing Java
programs use:

  Class.forName()

  Reflection

  Depend upon native methods that use reflection (via
JNI)

Jove accommodates such programs by providing a declarative
mechanism for:

•  Identifying classes that will be “dynamically” loaded
•  Identifying specific classes, methods, and fields that
are accessed via reflection
•  Identifying classes, methods, and fields that are accessed
from native methods using JNI

JOVE

Beware of “Attractive
Nuisance” Features

  Don’t use dynamic class loading to initialize data
arrays

  Use interfaces instead of method reflection

  Don’t use reflection to implement polymorphic static
methods

  Don’t use reflection to implement configuration flags
- instead use interfaces for actual data flags.

JOVE

Conclusion

Using Static, whole-program optimization
techniques we can reap the full
productivity benefits of Object-Oriented
programming without sacrificing
runtime performance

Allen Wirfs-Brock
Instantiations, Inc.
www.Instantiations.com
Allen_Wirfs-Brock@Instantiations.com

