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Object-Orient Languages 
Provide a Breakthrough in 
Programmer Productivity 

  Reusable software components 

  Higher level abstractions 

  Yield significant productivity improvements 
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The “Rap” on Object-Oriented 
Languages 

  They’re slow!!! 
–  C++ slower than C 

–  Smalltalk slower than C++ 

–  Java slower than C++ 
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Why are OO Languages 
slow? 

  Unconventional implementation techniques 

  New, expensive fundamental operations 

  Object-oriented design and programming 
techniques 
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There seems to be a delicate 
balancing act between OO 
productivity and execution 

performance 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then 
insert it again.
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Why? 
  Productivity comes from generalization 

–  Reusable class libraries 

–  Extensible frameworks 

–  Plugable components 

–  Abstract algorithms 

  Implemented using 

–  Subclass refinement 

–  Polymorphic typing 

–  Polymorphic methods 

–  Accessor Methods 

–  Chains of delegation 
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Generality = Inefficiency 

  Extra functionality that is present but not used 

  Many calls of tiny methods 

  Accessors methods 

  Generic algorithms depend upon dynamic 
(polymorphic) method dispatch 

  Late binding via polymorphism precludes static 
optimizations 
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It’s an issue of binding time. 
  Procedural designs and languages are fast, but 

inflexible because most decisions are bound very 
early, during coding. 

  Object oriented designs are slow, but flexible because 
many decisions are bound very late, during program 
execution. 

Early Binding Late Binding 

Decisions made during coding Decisions made during execution 

Flexibility Performance 
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The Dilemma 
  Late bound OO code is highly reusable, making 

programmer more productive over the course of 
developing several applications. 

  Late bound OO code is inefficient. 

  Early bound procedural code is generally not very 
reusable. 

  Early bound procedural code can be very efficient. 
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Why can’t we have both? 
  Write program using, highly reusable object-oriented 

code. 

  Execute them as very efficient, procedural code. 

Early Binding Late Binding 

Decisions made during coding Decisions made during execution 

Move object-oriented binding decisions 
earlier by making decisions at 

compilation time instead of during 
execution 



JOVE 

Don’t OO Language 
Compilers already do this? 

  No 

  Conventional C++, Eiffel, Java, etc. compilers 
generally don’t perform compile-time bindings of 
object-oriented constructed. 

  They don’t know enough about a program to make 
these decisions so… 

  They implement object-oriented constructs via late 
binding during execution 
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What does a compiler need to 
know 

  Complete class hierarchy 

  All possible control paths through the program 

  Initial values of variables 

The compiler needs to “understand” the 
whole program. 
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Whole Program Optimization 
  By examining a whole program a compiler can: 

–  Determine exactly which classes, methods, and fields are 
actually used by the program. 

–  Which classes are actually instantiated 

–  The specific classes of objects that will be used at each 
expression within the program. 

–  The possible “receivers” for every method invocation 

–  Whether a method invocation actually needs to be 
polymorphic 

–  Determine which objects may be shared between threads 

–  etc... 
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Why is the time right for 
Whole Program Optimizing 

compilers? 
  Very fast processors 

  With very large main memories 

  Wide spread use of object-oriented languages 
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Experimental Whole Program  
Optimizing Compilers for Object-

oriented language 

  Vortex Compiler 
–  University of Washington - Craig Chambers, Jeffrey Dean, et al 

  Marmot 
–  Microsoft Research - Robert Fitzgerald, et al 
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JOVE 

 First production-quality whole program 
optimizing compiler for Java 
–  Static deployment compiler for Java 

–  Aggressive, whole-program optimizer 
–  Creates single-file, native executables for 

deployment 

– Supports JDK 1.1, 1.2, and 1.3 client or 
server Java applications 
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Java 
Development & Deployment 

Java 
Development 
Environment 

Java 
Virtual Machine 

Host Processor 

Java Class Files 

Native (.exe) 
Application 

Windows 9x/NT 

JOVE 
Optimizer 

JOVE Runtime 
Support 
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Jove Conceptual Architecture 

C 

C C C 

C C C 

I I SSA 

SSA 

SSA 

SSA SSA 

SSA 

Whole Program Model: 
 Class Hierarchy 
 SSA Method Representation 
 Type Info 

Bytecode loader 
and  translator 

Native Code Generator 

Java 
Class 
Files 

Classic 
Compiler 

Optimizations 

Procedure 
Integration 

Generality 
Elimination 

Polymorphic 
Strength 

Reduction 

Data Flow 
Analysis 

Class 
Hierarchy 
Analysis 

Native 
.exe file 
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Whole Program Object-Oriented 
Optimizations 

   Generality elimination 

   Class hierarchy analysis 

   Polymorphic type elimination 

   Polymorphic strength reduction 

   Type check elimination, etc. 
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Generality Elimination 
class Customer refines Person{ 

 public static Customer nextCustomer{…} 
 protected String name; 
 protected String address; 
 protected int id; 
 public String name() {return name;} 
 public String address() {return address;} 
 public String id() {return id;}} 

while ((c= Customer.nextCustomer())  != null) 
 System.out.println(c.name()); 
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Generality Elimination 
class Customer refines Person{ 

 public static Customer nextCustomer{…} 
 protected String name; 
 protected String address; 
 protected int id; 
 public String name() {return name;} 
 public String address() {return address;} 
 public String id() {return id;}} 

 
… while ((c= Customer.nextCustomer())  != null) 

 System.out.println(c.name());... 

Assume that some program only uses the nextCustomer 
and name methods of Customer as shown above. 
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Generality Elimination 
class Customer refines Person{ 

 public static Customer nextCustomer{…} 
 protected String name; 
 protected String address; 
 protected int id; 
 public String name() {return name;} 
 public String address() {return address;} 
 public String id() {return id;}} 

 
… while ((c= Customer.nextCustomer())  != null) 

 System.out.println(c.name());... 

The program does not need the methods id() and address() 
or the fields address and id. Generality elimination will 
remove these from the program model. 
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Generality Elimination 
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Class Hierarchy Analysis 

abstract class Person{ 
 public String name() {return “John Doe”; } 
  

class Customer refines Person{ 
 public static Customer nextCustomer(){…} 
 protected String name; 
 public String name() {return name;} } 

Person is an abstract class whose only subclass is  
Customer. Customer.name() overrides Person.name() 
hence Person.name() can be eliminated and Customer.name() 
is not polymorphic. 
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Class Hierarchy Analysis 

abstract class Person{ 
 public String name() {return “John Doe”; } 
  

class Customer refines Person{ 
 public static Customer nextCustomer(){…} 
 protected String name; 
 public String name() {return name;} } 

Person is an abstract class whose only subclass is  
Customer. Customer.name() overrides Person.name(). 
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Class Hierarchy Analysis 

abstract class Person{ 
 public String name() {return “John Doe”; } 
  

class Customer refines Person{ 
 public static Customer nextCustomer(){…} 
 protected String name; 
 public String name() {return name;} } 

Because Customer.name() overrides Person.name() which is 
an instance method of an abstract class and because there are 
no other subclasses of Person, Person.name() can be 
eliminated and Customer.name() is not polymorphic. 
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Polymorphic Type Elimination 
String Classify (Object p) { 

 if (p instanceof Customer) return “Customer”; 
 if (p instanceof Employee) return “Employee”; 
 return “Generic Person”;} 

 
 
 
...Classify(Customer.nextCustomer())... 

String Classify (Object p) { 
 if (p instanceof Customer) return “Customer”; 
 if (p instanceof Employee) return “Employee”; 
 return “Generic Person”;} 

 
 
 
...Classify(Customer.nextCustomer())... 

Classify is method whose parameter is declared as type 
Object but its only invocation is passing the result of a 
methods whose result type is Customer. 
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Polymorphic Type Elimination 
String Classify (Object  Customer p { 

 if (p instanceof Customer) return “Customer”; 
 if (p instanceof Employee) return “Employee”; 
 return “Generic Person”;} 

 
 
 
...Classify(Customer.nextCustomer())... 

The compiler can now treat the argument type of Classify 
as if it was declared to be Customer which has been determined 
to be a non-polymorphic type for this program. Under this 
assumption the first instanceof test will always be true and 
it and subsequent code can be eliminated. 
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Polymorphic Type Elimination 
String Classify (Customer p { 

 return “Customer”; 
 } 

 
 
 
...Classify(Customer.nextCustomer())... 

The simplified version of Classify can then be easily inlined 
at its call site. Because the result of nextCustomer() is not 
used that call is also eliminated. 

…”Customer” …                        // inlined call to Classify 
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String Classify2 (Object Customer p) { 
 if (hashtable[p.hashCode()] ==p { 
  … 

} 
 
 
 
...Classify2(Customer.nextCustomer())... 

Polymorphic Strength 
Reduction 

hashCode() can be strength 
reduced from a dynamic 
polymorphic call into 
a static call (and probably 
inlined) 
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Call Site Optimization 
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The JOVE Runtime 

  Low memory overhead objects 

  Precise multi-generational garbage collection 

  Native multi-threading or single threaded 

  Multi-threaded garbage collection 

  Fast method dispatch and type checks 

Scalable Runtime Architecture designed to support 
extremely large Java programs 
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Message Dispatch  
Type Inclusion Testing 

  Selector table dispatch for polymorphic calls 
–  Row displacement compacting 

–  No extra dispatch overhead for interfaces 

  Compact encoded tables for very fast type 
inclusion testing (checkcast & instanceof) 

–  Constant time tests 

–  Test is a 4 instruction sequence on Intel 
architecture 
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Why are OO Languages 
slow? 

  Unconventional implementation techniques 

–  Compiled native code instead of a virtual machine 
  New, expensive fundamental operations 

–  Implemented by efficient runtime system 

  Object-oriented design and programming techniques 

–  Overhead eliminated using whole program 
optimizations. 

Using JOVE, Java programs 
are fast! 
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JOVE  2.0
Client HotSpot 1.3.0-C
HotSpot 1.0.1g
JDK 1.2.2-5 symcjit
IBM JDK 1.1.8

Smaller is better 
More object-oriented 

Richards Benchmarks 
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JOVE 2.0 vs. Hotspot 1.3.0
Running a Complex Object-Oriented Program
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Applicability 
  Whole program optimization requires a static 

program structure. 

  Unconstrained reflection impedes optimizations. 

  Dynamically composed programs not supported. 

All classes are available at deployment time. 

New classes loaded from network during execution. 

Use JOVE 

Use a JIT 



JOVE 

But…Many existing Java 
programs use: 

  Class.forName() 

  Reflection 

  Depend upon native methods that use reflection (via 
JNI) 

Jove accommodates such programs by providing a declarative 
mechanism for: 

•  Identifying classes that will be “dynamically” loaded 
•  Identifying specific classes, methods, and fields that 
are accessed via reflection 
•  Identifying classes, methods, and fields that are accessed 
from native methods using JNI 
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Beware of “Attractive 
Nuisance” Features 

  Don’t use dynamic class loading to initialize data 
arrays 

  Use interfaces instead of method reflection 

  Don’t use reflection to implement polymorphic static 
methods 

  Don’t use reflection to implement configuration flags 
- instead use interfaces for actual data flags. 
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Conclusion 

Using Static, whole-program optimization 
techniques we can reap the full 
productivity benefits of Object-Oriented 
programming without sacrificing 
runtime performance 

Allen Wirfs-Brock 
Instantiations, Inc. 
www.Instantiations.com 
Allen_Wirfs-Brock@Instantiations.com 


