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JOV performs two classes of optimization. It performs intra-procedural optimizations on 
a single method and it performs inter-procedural optimizations on the entire program. For 
clarity, intra-procedural optimization is called method optimization, while inter-
procedural optimization is called program optimization. This document describes the 
method optimizations performed on IBIC code by JOV. 

The term optimization is a misnomer. As typically used it refers to some program 
transformation that is intended to improve the quality of the code in the program. 
Sometimes a transformation can actually make things worse, which is definitely not an 
optimization. Since this document describes both transformations and operations that are 
not, strictly speaking, transformations the more generic term operation is used to refer to 
both transformations and other analysis algorithms. 

Overview of Operations 
JOV performs, in order, the following operations: 
· Class hierarchy analysis 
· Polymorphic call-site reduction 
· Procedure integration. 
· Tail recursion elimination (not tail call optimization). 
· Scalar replacement of aggregates. 
· Sparse conditional constant propagation. 
· Inter-procedural constant propagation (described elsewhere). 
· Procedure specialization and cloning (described elsewhere). 
· Sparse conditional constant propagation, again. 
· Copy propagation. 
· Global value numbering. 
· Global code motion. 
· Dead-code elimination. 
· Induction-variable strength reduction. 

Steve Messick prepared this document early in the development of JOVE (we were 
still calling it JOV). This version was dated February 1998. It summarized the major 
optimization techniques we planned on using. Essentially all of these techniques were 
used in the completed versions of the compiler. 
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· Linear-function test replacement. 
· Induction-variable removal. 
· Unnecessary bounds-checking elimination. 
· Control-flow optimizations. 

In addition, algebraic simplification, reassociation, and generic strength reduction are 
performed in a number of places. Exception set trimming must be performed after 
removal of code that could raise an exception. Many optimizations are described in detail 
in Advanced Compiler Design and Implementation by Steven S. Muchnick. Others are 
described in research reports that are referenced in the description. The reader is assumed 
to be familiar with the original presentation. The goal of this document is to describe the 
differences between JOV and other presentations. 
The order is similar to that given by Muchnick. Copy propagation is moved ahead of 
global value numbering to simplify the latter. The following sections describe each 
operation. Each section has a header with three items: 
· Benefit. This is a subjective estimate of how useful the operation is in improving 

the code produced by JOV. 
· Complexity. This refers to the complexity of implementing the operation, not to 

the runtime complexity of the algorithm. 
· Purpose. This is a short description of why the operation is included. 

Benefit and complexity range from low to high. High-complexity operations require data 
flow analysis. None of the operations described in the original sources allow for 
exception handlers. If exception handlers complicate the operation that additional 
analysis is described in the body of the section. 
Interestingly, the only need for data flow analysis is to determine live variables. Live 
variable analysis is needed in some induction-variable transformations and in register 
allocation. Chow et al [PLDI 97] point out that SSA-form is a sparse representation of the 
program. Data-flow algorithms typically use a dense representation that results in lots of 
wasted space for SSA-form. Gerlek et al [OGI tech report] present a live variable analysis 
algorithm based on a program representation that is related to SSA-form. We need to 
investigate this further; if we can use it then we will not need a traditional data-flow 
analyzer, nor will we need to convert out of SSA-form (which would be required? for 
data-flow). 

Class Hierarchy Analysis 
Benefit: High. 
Complexity: High. 
Purpose: Determine minimal type-sets of variables. 
This operation is described by Chambers, Dean, and Grove in Whole-Program 
Optimization of Object-Oriented Languages.”  It uses data-flow analysis to determine the 
minimal (not necessarily minimum) set of classes that could appear in each variable of 
the method. 



Polymorphic Call-site Reduction 
Benefit: High. 
Complexity: Low. 
Purpose: Increase opportunities for Procedure Integration; reduce dynamic invocation.  
Polymorphic call-site reduction reduces a dynamic method invocation to one or more 
static method invocations, with appropriate branches. This operation is not described by 
Muchnick. Each call site in a method is examined. Those whose dynamically-resolved 
method sets contain a sufficiently low number of elements are reduced to static 
invocations. The three instructions required to implement a dynamic invocation (method 
table fetching, method lookup, and dynamic invocation) are removed, provided their 
results are not used elsewhere. If the method set contains only one element the instruction 
to fetch the class of the receiver is also eliminated, and a static invocation of the method 
is inserted. Otherwise a series of instructions to implement inheritance test, branch on 
failure, static invocation, are inserted for each element of the method set. The inheritance 
test checks that the receiver class inherits from the implementer of the method. The 
branch skips to the instruction following the invocation. The test-and-branch can be 
eliminated for the final method of the set. Each static invocation gets the same exception 
handler information as the dynamic invocation had. 
Initially, the call sites that qualify for this operation will have to satisfy the following 
constraints: the selector must not raise a checked exception, it can have no more than two 
implementers and, in the case of two implementers, if one of the implementing classes is 
a subclass of the other then the subclass must also be a leaf class. 

Procedure Integration 
Benefit: High. 
Complexity: Low. 
Purpose: Eliminate invocation overhead; provide opportunities for much greater 
optimization, especially with regard to loops. 
Procedure integration replaces a static method invocation with the body of the method to 
be invoked. The basic block containing the invocation is converted to an unconditional 
branch block whose successor is the method entry node of the method being integrated. 
The method entry node is converted to an unconditional branch node containing 
assignments of method arguments (from the invoke statement) to method parameters. All 
variables in the integrated method are renamed so as not to conflict with variable names 
in the calling method. The method exit node of the integrated method is converted to an 
unconditional branch node whose successor is the previous successor of the method 
invocation node. Each return is converted to an unconditional branch node. If a value is 
returned each of these nodes contains an assignment of the return value to a new variable. 
(If the return value is a variable it is not necessary to create a new variable, the original 
can be used.) The node that replaces the method exit node contains a phi-function that 
selects the appropriate return variable from its predecessors an assigns it to the variable 
that the original invoke statement assigned to. Throw nodes in the integrated method that 
would cause control to transfer to an exception handler in the calling method are 
converted to have the exception handler as an explicit handler. 



The process of determining when to apply procedure integration has not been defined yet. 
It is likely to be dependent on method size and loopiness. However, it will almost 
certainly depend on the execution profile gathered during a previous training run, when 
available. The profiling mechanism is described elsewhere. 

Tail-recursion Elimination 
Benefit: Low. 
Complexity: Very low. 
Purpose: Convert self-recursive methods to simple loops. 
Eliminating tail recursion is very simple, except for one requirement imposed by the Java 
Language Specification, page 337. Invocation frames cannot be eliminated if there is a 
possibility that those frames could be “seen” by the program. Rather than do the full 
analysis required to satisfy the conditions, JOV will not eliminate tail recursion if the 
class SecurityManager is part of the program it is compiling. 
This operation replaces recursive invocation of a method by a branch to the beginning of 
the method, after inserting assignments designed to have the same effect as setting 
method parameters to the proper value. An IBIC method begins with a series of 
assignments of method parameters to local variables. These assignments must be replaced 
with phi-functions. The first parameter to the phi-function is the method parameter. 
Additional parameters are added for each recursive call that is eliminated. The parameter 
variables are set at the point where the recursive call was made. The flow node containing 
the recursive call is changed to a flow node that branches to the beginning of the method. 
For implementation reasons, an additional node must be inserted after the first node of 
the program, which contains all the code previously in the first node, and is the branch 
target for any node branching to the beginning of the method. 

Scalar Replacement of Aggregates 
Purpose: Replace references to constant fields or array elements by the values held by 
them. 
Benefit: Medium. 
Complexity: Medium. 
The actual effort to replace a field access expression with the value held by the field is 
quite small. However, determining that a field is constant and what value it holds is more 
difficult. Fields that are declared final can only be assigned a value in an instance 
initializer (for instance fields) or a class initializer (for static fields). In either case the 
code of the initializer must be analyzed to determine the value that is assigned to the 
field. In the case of final instance fields, each initializer may assign a different value, 
which makes this operation inapplicable. 
Scalar replacement of aggregates has two phases. The first phase requires analyzing 
initializers, identifying updates to final fields, and determining the value that it is 
assigned. That value is recorded with the field, unless another value is already recorded. 
If so, the field is marked to identify it not being replaceable by its value (this can only 
happen with instance fields). The only values that will be recorded are constant primitive 
values, null, or string objects. If the initializer is a class initializer and the field is not 



required to be present at runtime then the initialization code for the field can be removed. 
This is easily accomplished by removing the update instruction that stores the field value, 
then relying on Dead Code Removal to eliminate the remaining instructions. 
The second phase applies to all methods in a class, including initializers. Each method is 
scanned for accesses to fields that can be replaced by their value. When found the field 
reference statement is removed if its value is used by nothing other than access 
statements having the same memory state variable. The update statement is removed and 
an assignment of its result variable to the replacement value is inserted in its place. 

Sparse Conditional Constant Propagation 
Benefit: Medium. 
Complexity: Medium. 
Purpose: Reduce register pressure; enable other optimizations; remove dead code. 
This operation is described in Muchnick, section 12.6. The algorithm presented not only 
requires SSA form, it also requires that each node in the flow graph contain only one 
instruction. It introduces SSA edges, which are similar to the DU chains maintained by 
IBICVariable. The DU chains record the definer and a set of user instructions. The SSA 
edges record an edge from the definer node to one user node, with each node containing 
one instruction. If there are n users in a DU chain there will be n SSA edges, one for each 
user. 
For JOV, we use a modification of Muchnick’s algorithm that operates on the flow graph 
in its original form. The SSA edges are represented as a pair of instructions: 
<definer,user>. (Recall that each instructions has a reference to the basic block that 
contains it.) The block of code that processes FlowWL is replaced by a loop that 
processes each instruction in a basic block. If the first instruction in a basic block is 
executable (according to this algorithm) then every instruction in the block is executable. 
In addition, any exception handler that could be invoked as a result of executing an 
instruction must also be symbolically executed. An edge from the block containing the 
instruction to the first block of the handler is added to FlowWL. 
At the completion of the algorithm we have a list of variables that contain constant 
values; the variables are replaced by those values and the assignment instruction is 
deleted. We also have a set of basic blocks that get executed; any basic block not in this 
set is removed. If one of the successors of a conditional branch node is deleted then that 
node is converted to an unconditional branch node. 
One side-effect of removing code that is not discussed in Muchnick is that the set of 
exceptions that may be raised by a method could be reduced. This is covered in 
Exception Set Trimming. For this reason this operation may be most effective when 
applied to methods in a bottom-up traversal of the call graph. 

Exception Set Trimming 
Benefit: Medium. 
Complexity: Low. 
Purpose: Adjust the set of exceptions declared to be raised by a method. 



Some IBIC instructions can cause a checked exception to be raised. When any of these 
instructions are removed the method must be checked to see if that exception could still 
be raised. We simply enumerate the instructions to see what checked exceptions are still 
referenced. This set then becomes the list of exceptions that a MethodDeclaration holds, 
which identifies the set of exceptions it can raise. Methods that invoke the modified 
method may contain dead exception handlers if the modified method is no longer capable 
of raising one or more of the exceptions it is declared to raise. Note that this operation 
modifies the exceptions declaration of a single method. Polymorphic call-sites need to 
examine the union of the exceptions declared by all methods that could be invoked at the 
site. 

Global Value Numbering 
Benefit: High. 
Complexity: Medium. 
Purpose: Identify duplicate expressions as preparation to Global Code Motion. 
This operation is described in Muchnick, section 12.4.2, and in Detecting Equality of 
Variable in Programs, by Alpern, Wegman, and Zadeck; PoPL 1988. The algorithm 
presented requires SSA form. The algorithm initially constructs a partition of the value 
graph based on labels. Any copy-assignments cause both variables to share the same node 
of the value graph. (Otherwise, the claims made for Fig. 12.11.a would not hold.) 
Muchnick does not mention this point but the original research report does. However, 
doing copy propagation prior to global value numbering eliminates that concern. 
Each IBIC instruction has a unique opcode. It serves as the label of internal nodes in the 
value graph for most instructions. Phi-assignments and method invocation require more 
information in their labels. The label of a phi-function includes its basic block id and 
number of operands. The label of a method invocation is composed of the fully-qualified 
class name plus the method descriptor. Leaf nodes are labeled by their value if it is a 
constant, or are unlabeled if it is a variable. Each node has a name in addition to its label. 
The name is either the variable to which the value of a node is assigned, or some arbitrary 
identifier if no variable is assigned that value. Copy-assignments may cause a single node 
to have multiple names. 
At the completion of the algorithm we have a maximal partition of shared computations. 
Each partition containing more than one element is examined for congruent variables. 
Elements whose names (not labels) are variables represent congruent variables, identified 
by the name. 
Muchnick claims that in order to use the results of Global Value Numbering we first have 
to determine variable equivalencies. However, our GVN output is used to drive Global 
Code Motion and nothing else. Since GCM is going to reschedule the instructions we can 
ignore equivalencies and simply substitute uses of one congruent variable for uses of all 
the others in the partition. For completeness, we substitute a reference to the instruction 
that defines the variable that is preserved for the reference to the instruction that defined 
the variable that is removed. This is not strictly necessary and doing so requires an 
additional data structure that maps from instruction to a set of duplicate references. That 
is necessary so that when an instruction is moved out of its basic block in final scheduling 
it is also moved out of other blocks that hold duplicate references. In the production 



compiler we will remove this data structure but we include it during development for 
debugging. 
In order to be able to use congruence instead of equivalence we may need to modify the 
GVN algorithm slightly. Click’s paper makes a point of requiring certain Phi-functions 
that might seem removable to always be present. [I’ll have to study that.] 
The final result is code that has the minimum number of variables. Each value is 
computed once; it is associated with single variable. The ordering of instructions is 
invalid at the end of this operation but it will be immediately corrected by Global Code 
Motion. 
[Alternatively, implement the GVN algorithm from Click’s paper. The comparisons in 
his paper used the above algorithm with PRE against the GVN-GCM combo. This may 
be a good strategy for getting an impressive demo quickly: do Click’s GVN-GCM for the 
Feb. demo, then consider the more precise GVN above for later. The unknown is loop 
detection. I was planning to use structural analysis, but it may be sufficient to follow 
Click’s example. Muchnick describes a fairly simple loop identifier in chapter 7.] 

Global Code Motion 
Benefit: High. 
Complexity: Medium. 
Purpose: Rearrange computations to move code out of loops and into conditional 
branches where ever possible. 
This operation is described by C. Click in Global Code Motion, Global Value 
Numbering, PLDI 1995. It replaces two operations described by Muchnick, namely 
Partial-Redundancy Elimination and Code Hoisting. It does not require data-flow 
analysis, which PRE does require, so is much easier to implement. Click’s experimental 
results indicate that GCM produces better code that PRE more often than not. The 
algorithm requires the code to be in SSA form. 
GCM uses the results of GVN. It is not required that GVN be run before GCM but much 
better code is likely to be produced if it is. GCM reschedules instructions in a three-pass 
operation. The first pass is to schedule early. Each instruction is moved as early in the 
control flow graph as possible (see the paper for details). The second pass is to schedule 
late. While preserving the results of the first pass, this pass moves each instruction as late 
in the control flow graph as possible. After finding the “minimum” and “maximum” 
scheduling points the third pass chooses a final schedule for each instruction that is 
somewhere between the minimum and maximum. The final point is chosen to move code 
out of loops and into the most control-dependent basic block available. The dominator 
tree is used to determine “early” and “late.” The control dependence tree is needed to 
determine the most control-dependent point. A loop-finding algorithm is required to 
know when code is within a loop and what the loop nesting level is. The dominator tree is 
produced during transformation to SSA form. The control dependence tree is a minor 
variation on the dominator tree (see Cytron et al). Muchnick describes several algorithms 
that can be used to determine more or less structural information about a program, 
including loops. JOV uses structural analysis for this purpose. [We may want to start with 



a simpler algorithm such as section 7.4 of Muchnick that simply identifies strongly-
connected components by analyzing the dominator tree.] 
In order to get the best effect from GCM the control flow graph must be conditioned prior 
to beginning the analysis. The conditioning is the same as that for PRE: insert loop pre-
headers before each loop; identify and split critical edges. See Muchnick section 7.4 and 
13.3, respectively, for details. This means that the dominator-dependent data structures 
must be recomputed prior to beginning GCM. There are incremental dominator tree 
management algorithms available, but they do not appear to be practical yet. In practice, 
it may be simplest to condition the graph prior to GVN. 

Dead-Code Elimination 
Benefit: Medium. 
Complexity: Low. 
Purpose: Eliminate code that cannot execute or does not contribute to any useful 
computation. 
This operation is described in Muchnick, section 18.10. It is most likely to have a 
significant effect on code that has already been subjected to other optimizations. This is 
often formulated as a data-flow problem but Muchnick presents an algorithm based on 
DU- and UD-chains that is better suited to code in SSA-form. The algorithm is 
straightforward. The sets composed of block-index pairs of integers are replaced by sets 
of IBICInstruction instances. The initial set Mark that identifies the essential values is 
constructed by scanning the instructions for return and throw statements and adding them 
to Mark. Since DU chains are maintained by the objects that represent variables it is 
trivial to add users and definers of a variable to the worklist. Instructions that are marked 
by the algorithm will be added to a set, to indicate that they are marked. 
Muchnick also describes a related operation, unreachable code elimination. Unreachable 
code is eliminated during control flow graph management in JOV. 

Induction-Variable Strength Reduction 
Benefit: Low. 
Complexity: Medium. 
Purpose: Replace expensive address and array expressions with cheaper calculations. 
This operation is described in Muchnick, section 14.1.2. Since the full address expression 
needed at the machine code level is not visible to IBIC this operation has limited 
usefulness. It may be applicable to array-processing applications. We do not plan to 
implement it during initial JOV development. 

Linear-Function Test Replacement & Induction-Variable Removal 
Benefit: Low. 
Complexity: High. 
Purpose: Remove unneeded induction variables; replace loop-closing tests requiring 
otherwise unused independent induction variables with tests based on dependent 
induction variables. 



This operation is described in Muchnick, section 14.1.4. It requires live variable analysis 
(section 14.1.3), which in turn requires data flow analysis. 

Unnecessary Bounds-Checking Elimination 
Benefit: Medium. 
Complexity: Medium. 
Purpose: Eliminate array bounds checking, or make it less expensive. 
This operation is described in Muchnick, section 14.2. Global Code Motion is responsible 
for moving invariant bounds-checking code out of loops. This operation relies on the 
induction variable transformations performed by Induction-Variable Strength Reduction 
and Linear-Function Test Replacement. Until they are implemented this operation will 
not be as effective as it should be. 

Control-Flow Optimizations 
Muchnick describes in chapter 18 a number of control-flow transformations. Some of 
these, such as unreachable-code elimination and straightening, are handled as part of 
other operations in JOV. Others are only applicable to low-level code; branch prediction 
and machine idioms are examples. Unswitching, which moves loop-invariant conditional 
code out of loops, looks promising as a later addition to JOV. 


