
JOV Method Optimization

JOV performs two classes of optimization. It performs intra-procedural optimizations on
a single method and it performs inter-procedural optimizations on the entire program. For
clarity, intra-procedural optimization is called method optimization, while inter-
procedural optimization is called program optimization. This document describes the
method optimizations performed on IBIC code by JOV.

The term optimization is a misnomer. As typically used it refers to some program
transformation that is intended to improve the quality of the code in the program.
Sometimes a transformation can actually make things worse, which is definitely not an
optimization. Since this document describes both transformations and operations that are
not, strictly speaking, transformations the more generic term operation is used to refer to
both transformations and other analysis algorithms.

Overview of Operations
JOV performs, in order, the following operations:
· Class hierarchy analysis
· Polymorphic call-site reduction
· Procedure integration.
· Tail recursion elimination (not tail call optimization).
· Scalar replacement of aggregates.
· Sparse conditional constant propagation.
· Inter-procedural constant propagation (described elsewhere).
· Procedure specialization and cloning (described elsewhere).
· Sparse conditional constant propagation, again.
· Copy propagation.
· Global value numbering.
· Global code motion.
· Dead-code elimination.
· Induction-variable strength reduction.

Steve Messick prepared this document early in the development of JOVE (we were
still calling it JOV). This version was dated February 1998. It summarized the major
optimization techniques we planned on using. Essentially all of these techniques were
used in the completed versions of the compiler.

Allen Wirfs-Brock, March 2011.

· Linear-function test replacement.
· Induction-variable removal.
· Unnecessary bounds-checking elimination.
· Control-flow optimizations.

In addition, algebraic simplification, reassociation, and generic strength reduction are
performed in a number of places. Exception set trimming must be performed after
removal of code that could raise an exception. Many optimizations are described in detail
in Advanced Compiler Design and Implementation by Steven S. Muchnick. Others are
described in research reports that are referenced in the description. The reader is assumed
to be familiar with the original presentation. The goal of this document is to describe the
differences between JOV and other presentations.
The order is similar to that given by Muchnick. Copy propagation is moved ahead of
global value numbering to simplify the latter. The following sections describe each
operation. Each section has a header with three items:
· Benefit. This is a subjective estimate of how useful the operation is in improving

the code produced by JOV.
· Complexity. This refers to the complexity of implementing the operation, not to

the runtime complexity of the algorithm.
· Purpose. This is a short description of why the operation is included.

Benefit and complexity range from low to high. High-complexity operations require data
flow analysis. None of the operations described in the original sources allow for
exception handlers. If exception handlers complicate the operation that additional
analysis is described in the body of the section.
Interestingly, the only need for data flow analysis is to determine live variables. Live
variable analysis is needed in some induction-variable transformations and in register
allocation. Chow et al [PLDI 97] point out that SSA-form is a sparse representation of the
program. Data-flow algorithms typically use a dense representation that results in lots of
wasted space for SSA-form. Gerlek et al [OGI tech report] present a live variable analysis
algorithm based on a program representation that is related to SSA-form. We need to
investigate this further; if we can use it then we will not need a traditional data-flow
analyzer, nor will we need to convert out of SSA-form (which would be required? for
data-flow).

Class Hierarchy Analysis
Benefit: High.
Complexity: High.
Purpose: Determine minimal type-sets of variables.
This operation is described by Chambers, Dean, and Grove in Whole-Program
Optimization of Object-Oriented Languages.” It uses data-flow analysis to determine the
minimal (not necessarily minimum) set of classes that could appear in each variable of
the method.

Polymorphic Call-site Reduction
Benefit: High.
Complexity: Low.
Purpose: Increase opportunities for Procedure Integration; reduce dynamic invocation.
Polymorphic call-site reduction reduces a dynamic method invocation to one or more
static method invocations, with appropriate branches. This operation is not described by
Muchnick. Each call site in a method is examined. Those whose dynamically-resolved
method sets contain a sufficiently low number of elements are reduced to static
invocations. The three instructions required to implement a dynamic invocation (method
table fetching, method lookup, and dynamic invocation) are removed, provided their
results are not used elsewhere. If the method set contains only one element the instruction
to fetch the class of the receiver is also eliminated, and a static invocation of the method
is inserted. Otherwise a series of instructions to implement inheritance test, branch on
failure, static invocation, are inserted for each element of the method set. The inheritance
test checks that the receiver class inherits from the implementer of the method. The
branch skips to the instruction following the invocation. The test-and-branch can be
eliminated for the final method of the set. Each static invocation gets the same exception
handler information as the dynamic invocation had.
Initially, the call sites that qualify for this operation will have to satisfy the following
constraints: the selector must not raise a checked exception, it can have no more than two
implementers and, in the case of two implementers, if one of the implementing classes is
a subclass of the other then the subclass must also be a leaf class.

Procedure Integration
Benefit: High.
Complexity: Low.
Purpose: Eliminate invocation overhead; provide opportunities for much greater
optimization, especially with regard to loops.
Procedure integration replaces a static method invocation with the body of the method to
be invoked. The basic block containing the invocation is converted to an unconditional
branch block whose successor is the method entry node of the method being integrated.
The method entry node is converted to an unconditional branch node containing
assignments of method arguments (from the invoke statement) to method parameters. All
variables in the integrated method are renamed so as not to conflict with variable names
in the calling method. The method exit node of the integrated method is converted to an
unconditional branch node whose successor is the previous successor of the method
invocation node. Each return is converted to an unconditional branch node. If a value is
returned each of these nodes contains an assignment of the return value to a new variable.
(If the return value is a variable it is not necessary to create a new variable, the original
can be used.) The node that replaces the method exit node contains a phi-function that
selects the appropriate return variable from its predecessors an assigns it to the variable
that the original invoke statement assigned to. Throw nodes in the integrated method that
would cause control to transfer to an exception handler in the calling method are
converted to have the exception handler as an explicit handler.

The process of determining when to apply procedure integration has not been defined yet.
It is likely to be dependent on method size and loopiness. However, it will almost
certainly depend on the execution profile gathered during a previous training run, when
available. The profiling mechanism is described elsewhere.

Tail-recursion Elimination
Benefit: Low.
Complexity: Very low.
Purpose: Convert self-recursive methods to simple loops.
Eliminating tail recursion is very simple, except for one requirement imposed by the Java
Language Specification, page 337. Invocation frames cannot be eliminated if there is a
possibility that those frames could be “seen” by the program. Rather than do the full
analysis required to satisfy the conditions, JOV will not eliminate tail recursion if the
class SecurityManager is part of the program it is compiling.
This operation replaces recursive invocation of a method by a branch to the beginning of
the method, after inserting assignments designed to have the same effect as setting
method parameters to the proper value. An IBIC method begins with a series of
assignments of method parameters to local variables. These assignments must be replaced
with phi-functions. The first parameter to the phi-function is the method parameter.
Additional parameters are added for each recursive call that is eliminated. The parameter
variables are set at the point where the recursive call was made. The flow node containing
the recursive call is changed to a flow node that branches to the beginning of the method.
For implementation reasons, an additional node must be inserted after the first node of
the program, which contains all the code previously in the first node, and is the branch
target for any node branching to the beginning of the method.

Scalar Replacement of Aggregates
Purpose: Replace references to constant fields or array elements by the values held by
them.
Benefit: Medium.
Complexity: Medium.
The actual effort to replace a field access expression with the value held by the field is
quite small. However, determining that a field is constant and what value it holds is more
difficult. Fields that are declared final can only be assigned a value in an instance
initializer (for instance fields) or a class initializer (for static fields). In either case the
code of the initializer must be analyzed to determine the value that is assigned to the
field. In the case of final instance fields, each initializer may assign a different value,
which makes this operation inapplicable.
Scalar replacement of aggregates has two phases. The first phase requires analyzing
initializers, identifying updates to final fields, and determining the value that it is
assigned. That value is recorded with the field, unless another value is already recorded.
If so, the field is marked to identify it not being replaceable by its value (this can only
happen with instance fields). The only values that will be recorded are constant primitive
values, null, or string objects. If the initializer is a class initializer and the field is not

required to be present at runtime then the initialization code for the field can be removed.
This is easily accomplished by removing the update instruction that stores the field value,
then relying on Dead Code Removal to eliminate the remaining instructions.
The second phase applies to all methods in a class, including initializers. Each method is
scanned for accesses to fields that can be replaced by their value. When found the field
reference statement is removed if its value is used by nothing other than access
statements having the same memory state variable. The update statement is removed and
an assignment of its result variable to the replacement value is inserted in its place.

Sparse Conditional Constant Propagation
Benefit: Medium.
Complexity: Medium.
Purpose: Reduce register pressure; enable other optimizations; remove dead code.
This operation is described in Muchnick, section 12.6. The algorithm presented not only
requires SSA form, it also requires that each node in the flow graph contain only one
instruction. It introduces SSA edges, which are similar to the DU chains maintained by
IBICVariable. The DU chains record the definer and a set of user instructions. The SSA
edges record an edge from the definer node to one user node, with each node containing
one instruction. If there are n users in a DU chain there will be n SSA edges, one for each
user.
For JOV, we use a modification of Muchnick’s algorithm that operates on the flow graph
in its original form. The SSA edges are represented as a pair of instructions:
<definer,user>. (Recall that each instructions has a reference to the basic block that
contains it.) The block of code that processes FlowWL is replaced by a loop that
processes each instruction in a basic block. If the first instruction in a basic block is
executable (according to this algorithm) then every instruction in the block is executable.
In addition, any exception handler that could be invoked as a result of executing an
instruction must also be symbolically executed. An edge from the block containing the
instruction to the first block of the handler is added to FlowWL.
At the completion of the algorithm we have a list of variables that contain constant
values; the variables are replaced by those values and the assignment instruction is
deleted. We also have a set of basic blocks that get executed; any basic block not in this
set is removed. If one of the successors of a conditional branch node is deleted then that
node is converted to an unconditional branch node.
One side-effect of removing code that is not discussed in Muchnick is that the set of
exceptions that may be raised by a method could be reduced. This is covered in
Exception Set Trimming. For this reason this operation may be most effective when
applied to methods in a bottom-up traversal of the call graph.

Exception Set Trimming
Benefit: Medium.
Complexity: Low.
Purpose: Adjust the set of exceptions declared to be raised by a method.

Some IBIC instructions can cause a checked exception to be raised. When any of these
instructions are removed the method must be checked to see if that exception could still
be raised. We simply enumerate the instructions to see what checked exceptions are still
referenced. This set then becomes the list of exceptions that a MethodDeclaration holds,
which identifies the set of exceptions it can raise. Methods that invoke the modified
method may contain dead exception handlers if the modified method is no longer capable
of raising one or more of the exceptions it is declared to raise. Note that this operation
modifies the exceptions declaration of a single method. Polymorphic call-sites need to
examine the union of the exceptions declared by all methods that could be invoked at the
site.

Global Value Numbering
Benefit: High.
Complexity: Medium.
Purpose: Identify duplicate expressions as preparation to Global Code Motion.
This operation is described in Muchnick, section 12.4.2, and in Detecting Equality of
Variable in Programs, by Alpern, Wegman, and Zadeck; PoPL 1988. The algorithm
presented requires SSA form. The algorithm initially constructs a partition of the value
graph based on labels. Any copy-assignments cause both variables to share the same node
of the value graph. (Otherwise, the claims made for Fig. 12.11.a would not hold.)
Muchnick does not mention this point but the original research report does. However,
doing copy propagation prior to global value numbering eliminates that concern.
Each IBIC instruction has a unique opcode. It serves as the label of internal nodes in the
value graph for most instructions. Phi-assignments and method invocation require more
information in their labels. The label of a phi-function includes its basic block id and
number of operands. The label of a method invocation is composed of the fully-qualified
class name plus the method descriptor. Leaf nodes are labeled by their value if it is a
constant, or are unlabeled if it is a variable. Each node has a name in addition to its label.
The name is either the variable to which the value of a node is assigned, or some arbitrary
identifier if no variable is assigned that value. Copy-assignments may cause a single node
to have multiple names.
At the completion of the algorithm we have a maximal partition of shared computations.
Each partition containing more than one element is examined for congruent variables.
Elements whose names (not labels) are variables represent congruent variables, identified
by the name.
Muchnick claims that in order to use the results of Global Value Numbering we first have
to determine variable equivalencies. However, our GVN output is used to drive Global
Code Motion and nothing else. Since GCM is going to reschedule the instructions we can
ignore equivalencies and simply substitute uses of one congruent variable for uses of all
the others in the partition. For completeness, we substitute a reference to the instruction
that defines the variable that is preserved for the reference to the instruction that defined
the variable that is removed. This is not strictly necessary and doing so requires an
additional data structure that maps from instruction to a set of duplicate references. That
is necessary so that when an instruction is moved out of its basic block in final scheduling
it is also moved out of other blocks that hold duplicate references. In the production

compiler we will remove this data structure but we include it during development for
debugging.
In order to be able to use congruence instead of equivalence we may need to modify the
GVN algorithm slightly. Click’s paper makes a point of requiring certain Phi-functions
that might seem removable to always be present. [I’ll have to study that.]
The final result is code that has the minimum number of variables. Each value is
computed once; it is associated with single variable. The ordering of instructions is
invalid at the end of this operation but it will be immediately corrected by Global Code
Motion.
[Alternatively, implement the GVN algorithm from Click’s paper. The comparisons in
his paper used the above algorithm with PRE against the GVN-GCM combo. This may
be a good strategy for getting an impressive demo quickly: do Click’s GVN-GCM for the
Feb. demo, then consider the more precise GVN above for later. The unknown is loop
detection. I was planning to use structural analysis, but it may be sufficient to follow
Click’s example. Muchnick describes a fairly simple loop identifier in chapter 7.]

Global Code Motion
Benefit: High.
Complexity: Medium.
Purpose: Rearrange computations to move code out of loops and into conditional
branches where ever possible.
This operation is described by C. Click in Global Code Motion, Global Value
Numbering, PLDI 1995. It replaces two operations described by Muchnick, namely
Partial-Redundancy Elimination and Code Hoisting. It does not require data-flow
analysis, which PRE does require, so is much easier to implement. Click’s experimental
results indicate that GCM produces better code that PRE more often than not. The
algorithm requires the code to be in SSA form.
GCM uses the results of GVN. It is not required that GVN be run before GCM but much
better code is likely to be produced if it is. GCM reschedules instructions in a three-pass
operation. The first pass is to schedule early. Each instruction is moved as early in the
control flow graph as possible (see the paper for details). The second pass is to schedule
late. While preserving the results of the first pass, this pass moves each instruction as late
in the control flow graph as possible. After finding the “minimum” and “maximum”
scheduling points the third pass chooses a final schedule for each instruction that is
somewhere between the minimum and maximum. The final point is chosen to move code
out of loops and into the most control-dependent basic block available. The dominator
tree is used to determine “early” and “late.” The control dependence tree is needed to
determine the most control-dependent point. A loop-finding algorithm is required to
know when code is within a loop and what the loop nesting level is. The dominator tree is
produced during transformation to SSA form. The control dependence tree is a minor
variation on the dominator tree (see Cytron et al). Muchnick describes several algorithms
that can be used to determine more or less structural information about a program,
including loops. JOV uses structural analysis for this purpose. [We may want to start with

a simpler algorithm such as section 7.4 of Muchnick that simply identifies strongly-
connected components by analyzing the dominator tree.]
In order to get the best effect from GCM the control flow graph must be conditioned prior
to beginning the analysis. The conditioning is the same as that for PRE: insert loop pre-
headers before each loop; identify and split critical edges. See Muchnick section 7.4 and
13.3, respectively, for details. This means that the dominator-dependent data structures
must be recomputed prior to beginning GCM. There are incremental dominator tree
management algorithms available, but they do not appear to be practical yet. In practice,
it may be simplest to condition the graph prior to GVN.

Dead-Code Elimination
Benefit: Medium.
Complexity: Low.
Purpose: Eliminate code that cannot execute or does not contribute to any useful
computation.
This operation is described in Muchnick, section 18.10. It is most likely to have a
significant effect on code that has already been subjected to other optimizations. This is
often formulated as a data-flow problem but Muchnick presents an algorithm based on
DU- and UD-chains that is better suited to code in SSA-form. The algorithm is
straightforward. The sets composed of block-index pairs of integers are replaced by sets
of IBICInstruction instances. The initial set Mark that identifies the essential values is
constructed by scanning the instructions for return and throw statements and adding them
to Mark. Since DU chains are maintained by the objects that represent variables it is
trivial to add users and definers of a variable to the worklist. Instructions that are marked
by the algorithm will be added to a set, to indicate that they are marked.
Muchnick also describes a related operation, unreachable code elimination. Unreachable
code is eliminated during control flow graph management in JOV.

Induction-Variable Strength Reduction
Benefit: Low.
Complexity: Medium.
Purpose: Replace expensive address and array expressions with cheaper calculations.
This operation is described in Muchnick, section 14.1.2. Since the full address expression
needed at the machine code level is not visible to IBIC this operation has limited
usefulness. It may be applicable to array-processing applications. We do not plan to
implement it during initial JOV development.

Linear-Function Test Replacement & Induction-Variable Removal
Benefit: Low.
Complexity: High.
Purpose: Remove unneeded induction variables; replace loop-closing tests requiring
otherwise unused independent induction variables with tests based on dependent
induction variables.

This operation is described in Muchnick, section 14.1.4. It requires live variable analysis
(section 14.1.3), which in turn requires data flow analysis.

Unnecessary Bounds-Checking Elimination
Benefit: Medium.
Complexity: Medium.
Purpose: Eliminate array bounds checking, or make it less expensive.
This operation is described in Muchnick, section 14.2. Global Code Motion is responsible
for moving invariant bounds-checking code out of loops. This operation relies on the
induction variable transformations performed by Induction-Variable Strength Reduction
and Linear-Function Test Replacement. Until they are implemented this operation will
not be as effective as it should be.

Control-Flow Optimizations
Muchnick describes in chapter 18 a number of control-flow transformations. Some of
these, such as unreachable-code elimination and straightening, are handled as part of
other operations in JOV. Others are only applicable to low-level code; branch prediction
and machine idioms are examples. Unswitching, which moves loop-invariant conditional
code out of loops, looks promising as a later addition to JOV.

