
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Enabling Change

Rebecca J. Wirfs-Brock

Vol. 25, No. 5

Sept./Oct. 2008

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

70	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

Enabling Change
Rebecca J. Wirfs-Brock

A designer is an emerging synthesis of artist, inventor, mechanic, objective economist and evolutionary
strategist. —R. Buckminster Fuller

H
andling a requirements change or imple-
menting new functionality can be an op-
portunity to leverage increased understand-
ing to improve your design. But, more often
than not, designs don’t improve, so aging
software systems become increasingly dif-

ficult to change. What can we do so that the qual-
ity of a significant code base won’t degrade and turn

into a cluttered, crufty (unpleas-
antly built-up) relic riddled with
unnecessary design complexity?

Taking responsibility
Scott Bain, in Emergent Design:
The Evolutionary Nature of Pro-
fessional Software Development
(Addison-Wesley, 2008), suggests
that design deterioration isn’t in-
evitable if we

follow the creed of “do no harm,” holding our-
selves to a basic standard of not consciously
making our software any worse anytime we
make a change,
integrate validation of our software with users
and stakeholders into our software develop-
ment process, and
code in a style that allows us and others to do
no harm.

Software doesn’t have to rot if we refuse to ac-
cept decay as inevitable. As designers, it isn’t enough
for us to deliver working code. We should be ac-
countable for our software’s continued health and
well-being.

Taking personal responsibility is important. But
maintaining code habitability and keeping a design

n

n

n

clean requires effort. I’m acutely aware that when
I let my design slide, I’m creating technical debt.
Sometimes there’s no choice—we’re in a crunch,
and there’s not enough time to regroup and fix quick
hacks. But design decisions, good or bad, hastily
made or not, tend to compound and constrain fur-
ther choices. Technical design debt becomes increas-
ingly difficult to repay as more decisions pile onto a
design based on less-than-optimal choices.

The whole development team should strive to
employ techniques and practices that preserve our
software’s ability to change. But what should we do
when we disagree? Others might not share my val-
ues or design goals. Many design choices are subtle
and nuanced. One solution might be better, and sev-
eral others will likely be reasonable. We might not
know whether a design will hold up until we’ve im-
plemented it and tried to make some changes (with
increasing difficulty). When should I argue for one
solution over another?

Refactoring
Scott Bain suggests that we consider the cost of
refactoring as part of the decision to support one
option over another. Assess the consequences of
waiting until later to rework your design in order to
bring it back to a state where it more readily accom-
modates known, tangible changes. If you think re-
work will be inevitable and extremely difficult, hold
your ground.

Some refactorings involve simple, local decisions.
These have little impact on other developers or other
parts of the software. I consider simple refactorings
as a matter of course whenever I repair or extend
overly complex code. That’s part of my ongoing re-
sponsibility to keep my design clean and ready to
absorb change. I find www.refactoring.com a good

design
E d i t o r : R e b e c c a J . W i r f s - B r o c k n W i r f s - B r o c k A s s o c i a t e s n r e b e c c a @ w i r f s - b r o c k . c o m

	 September/October 2008 I E E E S o f t w a r e � 71

Design

online tickler list of potential refactorings.
Its catalog of refactoring patterns is more
current than that in Refactoring: Improv-
ing the Design of Existing Code (M. Fowler
et al., Addison-Wesley, 1999).

Simple refactorings supported by auto-
mated tools are easy. Others require a series
or combination of manual changes. Inex-
pensive refactorings often improve design
clarity and are worth considering whenever
you have to revise code.

For example, Extract Method moves
a cohesive chunk of code from a larger
method into a new method. Performed re-
peatedly, this approach lets you deconstruct
a lengthy code and separate implementation
details into extracted methods that are called
by code in the slimmed-down controlling
method. In the process, you can also give
these extracted methods intention-revealing
names. The relatively straightforward refac-
toring results in cleaner code and a clearer
expression of design intent.

Some refactorings involve significant re-
coding and changes to tests. That doesn’t
mean that they aren’t warranted; it just
means they cost more and require more jus-
tification. For example, to perform Replace
Conditional with Polymorphism, you create
new subclasses with methods that encapsu-
late chunks of variable behavior previously
embedded in conditional logic. I wouldn’t
perform this refactoring unless I thought
that logic was overly complex and I needed
to make additional changes that could be
embodied in these new, simpler, and more fo-
cused classes. Doing so enables me to make
certain extensions without modifying ex-
isting code. It also prevents me from head-
ing down the path of tangling even more
decision-making logic throughout that class
as I support more variation.

When refactoring
becomes risky
Last year I spent time with two developers
reworking a bulky, hard-to-maintain class.
We cleaned it up by performing a number of
interface-preserving transformations. One
goal we had was to break up particularly
long methods. Using Extract Method, we
created a simpler method that invoked helper
methods. We also created new helper classes.
The developers felt confident in making these
refactorings because these changes had mini-
mal impact on regression tests.

They stopped short of making another

change I suggested—a design consolidation,
really—because it would require changing
code in two class hierarchies. I wanted to
push through this change because it would
remove redundancies. If each hierarchy used
a common strategy class, then complex logic
would only need to be refactored once. But
because the two class hierarchies operated
on different types, this would require us to
invent an abstraction shared by both hierar-
chies. Not hard to do, but still more rework
than they wanted to take on. It also would
have forced them to critically examine hun-
dreds of lines of code to see whether coding
differences in these hierarchies were mean-
ingful or merely gratuitous. Given their
code’s complexity, this wasn’t a trivial exer-
cise. My suggested refactoring would have
introduced more work than they or their
management were comfortable with.

I couldn’t help wondering what bugs
lurked in the code we didn’t touch. We
had an opportunity to flush out several by
cleaning up the design and making sure
that inconsistencies were intentional in-
stead of accidental (and adding appropri-
ate comments). Cut-and-paste-then-modify
reuse enables you to quickly wedge in func-
tionality but can have long-term conse-
quences. At the moment the decision was
made to not make similar code consistent,
the design’s integrity drifted.

History is important
What held them back from making my
suggested change is that they didn’t know
whether code differences were significant.
Nothing in the code gave them a clue. And

the original designer no longer worked
there. Brian Marick makes the intriguing
connection between technical debt and the
need for history (www.exampler.com/blog/
2008/06/22/technical-debt-paying-it-
down). He suggests that debt-free imple-
mentations don’t need history.

Although I think this position is rather
extreme, it’s true that during development
many refactorings take place. If these refac-
torings are reasonable, the design often
needs little explanation other than how it
works and why a particular path was cho-
sen. However, the history behind fundamen-
tal design decisions and why they were made
is important to communicate. Wouldn’t it
be great if this commentary were readily
accessible, rather than hidden in someone
else’s head?

When there’s technical debt, history
and explanations become even more im-
portant. For example, you need to explain
that “there’s duplication here because when
we finished adding these classes, we didn’t
have time to go back and rework them to
use a common strategy.” These explana-
tions shouldn’t get lost or dismissed as ra-
tionalizations. Brian suggests, “Maybe em-
bedding history in the code (somehow) is a
way of increasing the debt load the team is
capable of supporting in perpetuity.”

I t’s important that design teams continue
to work effectively and make changes to
code that has some technical debt. We

aren’t perfect, and any complex system is
bound to have a certain amount of tech-
nical debt. Implementing our design ideas
gives us feedback, causing us to adjust our
initial solutions. Designs change and evolve.
Sometimes good solutions turn out to need
tweaking—it’s a constant learning process.
But over time, the costs of making change
increase. If there’s too much debt, making
changes will be difficult and costly. Tangled
code is going to be difficult to change even
with explanatory notes.

Enabling continued, steady change re-
quires that we acknowledge design correc-
tions and adjustments as a natural part of de-
velopment. Evolving designs must be cleaned
up regularly so that technical debt won’t
overwhelm the design. If we did, then ab-
sorbing change wouldn’t be so difficult.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates. Contact her at rebecca@wirfs-brock.com; www.
wirfs-brock.com.

Enabling continued,
steady change requires

that we acknowledge
design corrections and

adjustments as a natural
part of development.

