Soliware

www.computer.org/software

Driven to ... Discovering Your Design Values

Rebecca J. Wirfs-Brock

Vol. 24, No. 1
January/February 2007

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works
may not be reposted without the explicit permission of the copyright holder.

IEEE

COMPUTER
SOCIETY

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.



Editor: Rebecca J. Wirfs-Brock

Wirfs-Brock Associates

rebecca@wirfs-brock.com

Driven to ... Discovering
Your Design Values

There will be variations of everything forever. ... Ideas don’t disappear. They change form,

they merge with other ideas.

oday we have design or development ap-
proaches that are, for example, responsi-
bility driven (RDD), test driven (TDD),
behavior driven (BDD), domain driven
(DDD), and model driven (MDD). Not
all thought leaders in software develop-
ment have been “driven”—Bertrand Meyer, for
example, invented Design by Contract. But
whether “driven” or not, these
approaches all emphasize a core
set of values and principles
around which practices, tech-
niques, and tools have emerged.
A thoughtful designer should be
able to pick and choose among
practices without losing their
essence. But not all practices are
congruent. After stewing in this
alphabet soup for years, I'm
keen on exposing the common and complemen-
tary threads that are interwoven among various
design practices.

Responsibility-driven design

So how can you integrate various practices
without watering them down or muddling your
thinking with too many considerations? It’s cer-
tainly easy if you have one belief system with
one small set of coherent values and practices
that guide your work. In 1989, Brian Wilkerson
and I authored the paper “Object-Oriented De-
sign: A Responsibility-Driven Approach.”! For
better or worse, we started the trend of tagging
design approaches as “driven.” To make our
point, we oversimplistically divided object de-

0740-7459/07/$20.00 © 2007 IEEE

—Bob Frankston, coinventor of VisiCalc

sign approaches into two camps: those that fo-
cus first on structure and those that focus first
on action (or responsibilities or behaviors). We
argued that designers who first focus only on an
object’s structure fail to maximize encapsula-
tion. Thinking too early about structure makes
it too easy for implementation details to bleed
into class interfaces.

We contrasted two approaches for designing
a RasterImage class that represented a rectan-
gular grid of pixels. (We wrote this paper when
raster technology was new, and at the time we
both worked at Tektronix, a leading provider of
graphics workstations.) With a data-first ap-
proach, we started defining our RasterImage
class by declaring the image data structure and
then adding methods to retrieve and set the im-
age and query its dimensions. Voilal—a class
where form and function were inextricably in-
tertwined. The pixel grid data structure wasn’t
considered a private implementation detail.
Next, we demonstrated how a designer could
think differently about the problem by asking,
“What actions could this object be responsible
for?” and “What information should it share
with others?” This led us to first define opera-
tions for our RasterImage class to scale and
rotate the image and access pixel values. The in-
ternal image representation, which we didn’t
specify until after we’d defined the interface,
was considered a private detail.

By consciously assigning most objects action-
oriented responsibilities, you can design even
seemingly data-centric objects to perform some
actions as well as encapsulate structural details.

January/February 2007 |EEE SOFTWARE 9



Hiding that structure makes those de-
tails easier to change. To us it seemed
that the order in which a designer con-
siders things profoundly affects the re-
sulting design—even for a class as
straightforward as RasterImage. To
quote Samuel Alexander, the philoso-
pher, “An object is not first imagined or
thought about and then expected ... but
in being actively expected it is imagined
as future and in being willed it is
thought.”

Since those early days I've added the
notion of role stereotypes,? acknowledg-
ing that not all objects are active. Infor-
mation holders—objects with responsi-
bility for maintaining data—have a place
in a design, too. But encapsulating their
private details is important.

Test-driven design

RDD evolved in the highly interactive
world of Smalltalk development, where
developers routinely designed a little,
coded a little, and tested a little in short
cycles. The delightful tension of cycling
between imagining what an object might
do, building it, and then refining your
ideas and cycling through your design
again can lead to deep insights. This has
led agile-programming thought leaders
to promote test-driven development
practices. Test-driven design emphasizes
deciding on an interface and then writ-
ing code to test that interface, before im-
plementing code to make the interface
pass the test.

In Test-Driven Development by Ex-
ample, Martin Fowler claims that TDD
“gives you this sense of keeping just one
ball in the air at once, so you can con-
centrate on that ball properly and do a
really good job with it.”3 With a design-
test-code-reflect-refactor rhythm, good
code emerges alongside well-designed
interfaces.

Linda Crispin explains that TDD isn’t
really about testing.* Instead, it’s a prac-
tice that gets you thinking about as
many aspects of a feature as you can be-
fore you code it. With frameworks such
as Fit and Fitnesse, TDD has extended
beyond its initial focus on just develop-
ers to enable nontechnical people to
write concrete examples of inputs and
expected results in tabular form. Pro-

10 IEEE SOFTWARE www.computer.org/software

grammers write test fixtures that use
these behavioral specifications to test
the code.

As TDD practices have grown, new
variants of them, along with newer test-
ing frameworks, have emerged. Users of
iMock use mocks that mimic unimple-
mented behaviors to drive out an appro-
priate distribution of responsibilities
among collaborators.> They don’t think
that it’s just about testing, either. Mock-
ing lets you incrementally design and
build software, hypothesizing and refin-
ing your ideas as you go.

BDD is another subtle refinement of
TDD. BDD proponents firmly believe
that how you talk about what you’re do-
ing influences how you work. The focus
is on writing small behavior specifica-
tions to drive out the appropriate design.
As Dave Astels puts it, “A major differ-
ence is vocabulary. Instead of subclass-
ing TestCase [as you would do using
an xUnit framework], you subclass con-
text. Instead of writing methods that
start with test, you start them with
should.”® Testing, to BDD proponents,
connotes verifying code after it’s built.
Instead, they want to encourage incre-
mental design by writing small specifica-
tions, then implementing code that
works according to spec.

Does every method
warrant a contract?
Probably not. Methods
that don’t cause side
effects probably don’t
need contracts.

Design by Gontract

In contrast, Design by Contract
(DbC) has roots in formal specifica-
tions. To specify how they expect sys-
tem elements to interact, designers
write contracts specifying what must be
true before a module can begin (precon-
ditions), what must be preserved during
its execution (invariants), and what it
guarantees to be true after it completes
(postconditions). You could specify con-
tracts for components, services, or even
individual methods. However, in prac-
tice, most contracts are written at the
method level because existing program-
ming languages and tools support work
at that level. Writing contracts is easier
if the languages and tools you use sup-
port them and you have good examples
to emulate. The Fiffel language inte-
grates contract support into the lan-
guage and runtime environment; most
other object-oriented languages don’t.

Before looking at Contract4], a
DbC tool for Java, I thought that spec-
ifying contracts for languages without
built-in support would be clunky.
However, using aspect technology,
Contract4] automatically weaves as-
pect-specific contract tests, which are
specified in method comments, into
your running code. Contracts specified
this way leave method code unclut-
tered with assertion statements and
leave a nice documentation trail of
how methods should be invoked.

If you choose to, you could apply
TDD practices to understand your
classes’ behaviors and then add contracts
to methods whose behaviors you want
verified at runtime. But I suspect these
two communities differ considerably in
their thinking. Some TDD proponents
want to discourage after-the-fact verifica-
tion, which to them seems antithetical to
designing for quality. But adding con-
tracts does tighten up how you use
classes, theoretically making it easier to
catch errors before they propagate.

When you change your design,
sometimes contracts will naturally
change, too. But once your design ideas
settle down, you can finalize or add
contractual details. But does every
method warrant a contract? Probably
not. Methods that don’t cause side ef-



fects probably don’t need contracts. But
I know I’d certainly find it easier to use
class libraries if contract specifications
were part of their documentation even
if they weren’t validated at runtime.

What about incorporating DDD
ideas into your design practice? Accord-
ing to Eric Evans, DDD isn’t a technol-
ogy or methodology but “a way of
thinking and a set of priorities, aimed at
accelerating software projects that have
to deal with complicated domains”
(www.domainlanguage.com/ddd/
index.html). A central activity in DDD is
searching for the language that experts
use to talk about the problem and then
literally reflecting that language in classes
and services in a domain layer. Eric be-
lieves that, “If developers don’t realize
that changing code changes the model,
then their refactoring will weaken the
model rather than strengthen it.” Creat-
ing a domain model is intricately tied to
expressing it in working code. Domain-
driven design is an active, ongoing
process of expressing this domain lan-
guage in code.

In contrast, adherents of MDD
(some call it model-driven engineering
to avoid the Object Management Group
trademarked term) first develop a plat-
form-independent model of their system
(usually in UML or a domain-specific
language) before translation tools trans-
form the model into platform-specific
code. MDD practitioners strive to
clearly represent system concepts and
behaviors with the goal of producing an
abstract model, not working code (the
translation tools do that for them). This
view of model building followed by
transformation probably causes the
great divide between MDD practition-
ers and other design schools—even
though they share many common de-
sign values. After recently listening to
and talking with several well-known
MDD proponents who were discussing
what constitutes well-designed classes,
methods, and components, I found my-
self nodding in agreement with many of
their design guidelines.

ow you design should be based on

your principles and values. Al-

though a big division exists between
those who believe the act of coding is
what validates the design and those who
don’t, you can learn many things about
good design from each. My mantra has
always been, “Be open to new ideas and
techniques that make me a better de-
signer.” I side with Canadian politician
Dan Miller, who proclaims, “You know,
we have our differences, everybody
does, honest, real differences, but I do
believe strongly that we as neighbors are
drawn together far more than we’re dri-
ven apart.” @

1. R. Wirfs-Brock and B. Wilkerson, “Object-
Oriented Design: A Responsibility-Driven Ap-
proach,” Proc. 1989 ACM SiGrLAN Conf.

Object-Oriented Programming, Systems, Lan-
guages, and Applications (OopsLA 89), ACM
Press, 1989, pp. 71-75.

2. R. Wirfs-Brock, “Characterizing Classes,”
IEEE Software, Mar./Apr. 2006, pp. 9-11.

3. M. Fowler, Test-Driven Development by Ex-
ample, Addison-Wesley, 2003.

4. L. Crispin, “Driving Software Quality: How
Test-Driven Development Impacts Software
Quality,” IEEE Software, Nov./Dec. 2006, pp.
70-71.

5. S. Freeman et al., “Mock Roles Not Objects,”
Companion to 19th Ann. ACM SIGPLAN
Conf. Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA
04), ACM Press, 2004, pp. 236-246; www.
jmock.org/oopsla2004.pdf.

6. D. Astels, “A New Look at Test-Driven Devel-
opment,” http://blog.daveastels.com/files/BDD
_Intro.pdf.

Rebecca J. Wirfs-Brock s president of Wirfs-Brock
Associates and an adjunct professor at Oregon Health & Science
University. Contact her at rebecca@uirfs-brock.com.

Subscribe
Now!

delivers the latest peer-reviewed developments in
pervasive, mobile, and ubiquitous computing to
developers, researchers, and educators who
want to keep abreast of rapid technology
change. With content that’s accessible and
useful today, this publication acts as a catalyst
for progress in this emerging field, bringing
together the leading experts in such areas as

» Hardware technologies
» Software infrastructure
» Sensing and interaction
with the physical world
» Graceful integration
of human users
» Systems considerations,
including scalability,
security, and privacy

www.computer.org/pervasive

January/February 2007 1EEE SOFTWARE 11




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 1.8)
  /CalRGBProfile (Apple RGB)
  /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




