
What It Really Takes to Handle Exceptional Conditions
Rebecca Wirfs-Brock

Wirfs-Brock Associates
www.wirfs-brock.com

rebecca@wirfs-brock.com

This material is taken from Object Design: Roles, Responsibilities and Collaborations by
Rebecca J Wirfs-Brock and Alan McKean, to be published by Addison Wesley in November
2002. Copyright Addison-Wesley 2003. Used with permission of the publisher.

Henry Petroski, structural engineer and historian, talks of the need to understand the
consequences of failure: “The consequences of structural failure in nuclear plants are so great
that extraordinary redundancies and large safety margins are incorporated into the designs. At the
other extreme, the frailty of such disposable structures as shoelaces and light bulbs, whose failure
is of little consequence, is accepted as a reasonable trade-off for an inexpensive product. For
most in-between parts or structures, the choices are not so obvious. No designers want their
structures to fail, and no structure is deliberately under designed when safety is an issue. Yet
designer, client, and user must inevitably confront the unpleasant questions of ‘How much
redundancy is enough?’ and ‘What cost is too great?’” As software designers, we too need to
make our software machinery hold up under its anticipated use.

Software need not be impervious to failure. But it shouldn’t easily break. A large part of
software design involves building our software to accommodate situations that, although
unlikely, still have to be dealt with. What if the user mistypes information? How should the
software react? What if items a customer wants aren’t available? Even if the consequences of not
delivering exactly what the customer wants are not catastrophic, this situation must be dealt with
reasonably—in ways acceptable to the customer and the business.

When information is mistyped, why not notify the user and let them re-enter it. Not enough
stock on hand? Again, ask the user to cancel or modify their order. Software should detect
problems and then engage the user in fixing them!

But what if a user is unable to guide the software? Shouting “stack overflow!” or “network
unavailable!” won’t help a disabled person who communicates by using software that interprets
her eye blinks and constructs messages. “Punch in the gut” error messages are unacceptable in
that design. It should handle many exceptional conditions and keep running without involving
the user.

There is an enormous difference between making software more reliable and “user
attentive,” and designing it to recover from severe failures. Fault tolerant design incorporates
extraordinary measures to ensure that the system works despite failure. For example, telephone-
switching equipment is extremely complex, yet has to be very reliable. Redundancies are built
into the hardware and the software. Complicated mechanisms are designed to log and recover
from many different faults and error conditions. If a hardware component breaks, a redundant

piece of equipment is provisioned to take its place. The software keeps the system running under
anticipated failure conditions without losing a beat.

The more serious the consequences of failure, the more effort you need to take to design in
reliability. Alistair Cockburn, in Agile Software Development, recommends that the time you
spend designing for reliability fit with your project’s size and criticality. He suggests four levels
of criticality:

• Loss of comfort. When the software breaks there is little impact. Most shareware falls
into this category.

• Loss of discretionary monies. When the software breaks it costs. Usually there are
workarounds, but failures still impact people, their quality of work and businesses
effectiveness. Many IT applications fall into this category. Applications that affect a
business’ customers do so as well. If a customer gets overcharged because of a billing
miscalculation, this doesn’t cause the business severe harm. Usually the problem gets
fixed, one way or the other, when the customer calls up and complains!

• Loss of essential monies. On the other hand, some systems are critical. At this level of
criticality, it is no longer possible to correct the mistake with simple workarounds. The
cost of fixing a fault is prohibitive and would severely tax the business.

• Loss of life. If the software fails people could get injured or harmed. People who design
air traffic control systems, space shuttle control software, pacemakers, or anti-locking
brake control software spend a lot of time analyzing how to keep the system working
under extreme operating conditions.

The greater the software’s criticality, the more justification there is for spending time to design it
to work reliably. Even if not a matter of life and death, other factors may drive you to design for
reliability:

• Software that runs unattended for long periods may operate under fluctuating conditions.
Exceptional conditions in its “normal” operating environment shouldn’t cause it to break.

• Software that “glues” larger systems together often needs to check for errors in inputs and
work in spite of communications glitches.

• Components designed to “plug in” and work without human intervention need to detect
problems in their operating environment and run under many different conditions.
Otherwise, “plug and play” wouldn’t work.

• Consumer products need to work, period. Their success in the marketplace depends on
high reliability.

A Strategy For Increasing your System’s Reliability
Reliability concerns crop up throughout development. But once you’ve decided on the basic

architecture of your system, assigned responsibilities to objects, and designed collaborations, you
can take a closer look at making specific collaborations more reliable—by designing objects to
detect and recover from exceptional conditions.

We suggest you start by characterizing the different types of collaborations in your existing
design. This will give you a sense of where you need to focus efforts on improving objects and
designing them to be more resilient. Then, identify key collaborations that you want to make
more reliable. Once you’ve characterized you system’s patterns of collaborations and prioritized
you work, you need to get very specific:

• List the exceptions and errors cases you want your design to accommodate.
• Decide on reasonable exception handling and error recovery strategies to employ
• Try out several design alternatives and see how responsibilities shift among collaborators.

Settle on a solution that represents a best compromise.
• Define additional responsibilities for detecting exceptions and obligations of other objects

for resolving them if that is part of your solution.
• Look at your design for holes, unnecessary complexity, and consistency

A system is only as reliable as its weakest link. So it makes little sense to design one very
reliable object surrounded by brittle collaborators. Or to make one peripheral task very reliable
while leaving several central ones poorly designed. The system as a whole needs to be designed
for reliability, piece by piece.

Determine where collaborations can be trusted
One way to get a handle on how collaborations can be improved is to carve your software

into regions where “trusted communications” occur. Generally, objects located within the same
trust region can communicate collegially, although they may still encounter exceptions and
errors as they perform their duties. Within a system there are several different cases to consider:

• collaborations between objects that interface to the user and the rest of the system;
• collaborations between objects within the system and objects that interface with external

systems;
• collaborations between objects outside a neighborhood and objects inside a

neighborhood;
• collaborations between objects in different layers;
• collaborations between objects at different abstraction levels,
• collaborations between objects of your design and objects designed by someone else;
• collaborations between your design and objects that come from a vendor-provided library

Who an object receives a request from is a good indicator of how likely is it to accept a request at
face value. Who an object calls upon determines how confident it can be that the collaborator
will field the request to the best of its ability. It’s a matter of trust.

Trusted vs. Untrusted Collaborations
When should collaborators be trusted? Two definitions for collaboration are worth re-

examining:
Collaborate: 1. To work together, especially in a joint intellectual effort. 2. To cooperate
treasonably, as with an enemy occupation force. —the American Heritage Dictionary.

The first definition is collegial: objects working together towards a common goal. When objects
are within the same trust region, their collaborations can be conscientiously designed to be more
collegial. Both client and service provider can be designed to assume that if any conditions or
values are to be validated; the designated responsible party need only do them once.

Figure 1. Trust Assumptions

In general when objects are in the same architectural layer or subsystem, they can be more
trusting of their collaborators. And they can assume that objects that use their services call upon
them appropriately.

The second definition requires you to think critically. When collaborators are designed by
someone else, or when they are in a different layer, or a library, your basic assumptions about the
appropriate design for that collaboration need to be carefully examined. If a collaborator can’t be
trusted—it doesn’t mean it is inherently more unreliable. But a more defensive collaborative
stance may appropriate. A client may need to add extra safeguards—potentially both before and
after calling an untrusted service provider.

If a request is from an untrusted or unknown source, extra checks may be made before a
request is honored. There are several situations to consider:

• When an object sends a request to a trustworthy colleague
• When an object receives a request from a trusted colleague
• When an object uses an untrusted collaborator
• When an object receives a request from an unknown source
• When an objects receives a request from a known untrustworthy source.

Collaborations between trusted colleagues. A client that provides a well-formed request
expects its service provider to carry out that request to the best of its ability. When an object
receives a request from a trusted colleague, it typically assumes that the request is correctly
formed, that it is sent at an appropriate time, and that data passed along with the request is well
formed (unless there is an explicit design decision that the receiver takes responsibility for
validating this information).

During a sequence of collaborations between objects within the same trust region there is
little need to check on the state of things before and after each request. If an object cannot fulfill
its responsibilities and is not designed to recover from exceptional conditions, it could raise an
exception or return an error condition enabling its client (or someone else in the collaboration
chain) to responsibly handle the problem. But the object may be legitimately to not check. And it

UserLoginController PasswordChecker

isValid(password)

I am sending you a request at the right
time with the right information

I assume that I don’t have to check to
see that you have set up things properly
for me to do my job

won’t even notice when things fail. In a trusted collaboration there is no need to check for invalid
collaborations. So if trust is ever violated, things can go terribly wrong.

When using an untrusted collaborator. When collaborators are untrusted, extra precautions
may need to be taken. Especially if the client is designed to be responsible for making
collaborations more reliable. You may pass along a copy of data instead of sharing it with an
untrusted collaborator. Or to check on conditions after the request completes.

When receiving requests from an unknown source. Designers of objects that are used under
many different situations—such as those included in a class library or framework— have to
balance their objects’ expected use (or misuse) with overall reliability goals. There aren’t any
universal design rules to follow. Library designers must make a lot of hard choices. You can
design your object to check and raise exceptions if data and requests are invalid (that’s certainly
a responsible thing to do, but not always necessary) or not (that’s the simplest thing, but not
always adequate). Your goal should be to design your framework or library to be consistent and
predictable, and to provide enough information so that clients can attempt to react and recover
when you raise exceptions.

When receiving requests from an untrusted client. Requests from untrusted sources often are
checked for timeliness and relevance. Especially if your goal is to design an object that works
reliably in spite of untrustworthy clients. Of course there are degrees of trust and degrees of
paranoia! Designing defensive collaborations can be expensive and difficult. In fact, designing
every object to collaborate defensively leads to poor performance and potentially introduces
errors.

Implications of Trust
Determining “trust regions” for a system is straightforward. And once you determine them,

it is easier to decide where to place extra responsibilities for making collaborations more reliable:

In the application that enables a disabled user to communicate, all objects within the
“core” of the application were designed to work together and are considered to be within
the same trust region. Objects in the application control and domain layers all assume
trusted communications. Objects at the “edges” of the system—within the user interface
and in the technical services layer—are designed to take precautions to make sure
outgoing requests are honored and incoming requests are valid. For example, the
Selector debounces user eye blinks and only presents single “click” requests. And the
MessageBuilder quite reasonably assumes that it receives “trusted” requests from the
objects at the edges: the Selector and the Timer. Objects controlled by the
MessageBuilder assume they are getting reasonable requests, too. So requests to add
themselves to a message, or to offer the next guess are done without questioning the
validity of input data or the request. Trusted collaborations within the “core” of the
system greatly simplified the implementation of the MessageBuilder, the Dictionaries, the
Guesser, the Message, and Letter, Word and Sentence objects’ responsibilities.

Objects at the “edges” of the system have additional responsibilities for detecting
exceptions and trying to recover if they can, or if not, to report them to a higher authority

(someone at the nurse’s station). When a message cannot be reliably delivered, extra
effort is made to send an alarm to the nurse’s station and raise an audio signal.

Figure 2. The Selector and the Timer are designed to deliver trusted requests to the Message
Builder, allowing it to focus on coordinating the construction of the user’s message

In a large system, it is useful to distinguish whether collaborations between components can be
trusted, and furthermore, to identify guarantees, obligations and responsibilities of each
component. Once these constraints are agreed upon, each component can be designed to do its
part to ensure the system as a whole works more reliably.

A telco integration framework receives service order requests and schedules the work to
provision services and set up billing. The architecture of the system consists of a number
of “adapter” components that interfaced to external applications. Collaborations
between an adapter and its “adapted” application were generally assumed to be
untrusted, while collaborations between any adapter and core of the system were trusted.
The order taking adapter component received requests to create, modify or cancel an
order from an external Order Taking application. These requests were converted into an
internal format used by the scheduler that was part of the framework integration services.
The order taking adapter did not trust the Order Taking application to give it well-
formed requests: it assumed that any number of things could be wrong (and they often
were). It took extraordinary efforts to guarantee that requests were correctly converted to
internal format before it passed them to the scheduler.

MessageBuilder Timer

Selector Presenter

Message

Guess

Guesser

Guess
Dictionaries

Controls pacing

guess letters, words, and sentences

coordinates guessing

knows contents and delivers itself

adds itself when selected

signal when user selects voice or display the guess

coordinate everything

Even so, it was still possible to receive requests that were inconsistent with the actual
state of an order: for example a request to cancel an order could be received after the
work had already been complete. It was business policy not to “cancel” work that had
already been completed. So while collaborations between the order-taking adapter and
the scheduler were trusted, well-formed requests could still fail.

Figure 3. The telco integration framework architecture

Identify Collaborations to Make Reliable
At first, you may not know just exactly what measures to take to increase your system’s

reliability. First, identify several areas where you want to ensure reliable collaborations. Revisit
your initial design and take a stab at improving it. You might consider:

• Collaborations in support of a specific use case or task
• How an object neighborhood responds to a specific request
• How an interfacer handles errors and exceptions encountered in an external system
• How a control center responds to exceptional conditions and errors raised by objects

under its control

Once you’ve identified a particular collaboration to work on, consider what needs to be done.
Maybe no additional measures need to be taken—objects are doing exactly what they should be

external
applications

Provisioning

Billing

Order
Taking

external
applications

Provisioning
Adapter

Billing
Adapter

Number
Portability
Adapter

Number
Portability

Integration
Framework

Services

the telco
framework and

adapters

Order
Taking Adapter

doing. More likely, you will want to add specific responsibilities to some objects for detecting
exceptional conditions and responsibilities to others for reacting and recovering from them. The
first step to making any collaboration more reliable is to understand what might go wrong.

Once you’ve gauged how reliable your software needs to be, consider key collaborations
and look for ways to make them more reliable. As you dig deep into design and implementation
you will uncover many ways your software might break. But let’s get real! While it is up to us
designers to decide what appropriate measures to take, to propose solutions, and to work out
reasoned compromises, extraordinary measures aren’t always necessary.

Will Use Cases Tell Us What Can Go Wrong?
“The major difference between a thing that might go wrong and a thing that cannot possibly
go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out
to be impossible to get at or repair.” —Douglas Adams, Mostly Harmless (Hitchhiker’s
Guide Series #5)

Ideally, some requirements document or use case should spell out the right thing to do when
things go wrong. But use cases generally describe software in terms of actors’ actions and system
responsibilities, not what can go wrong and how to remedy it. At best, use case writers will
identify a few problems and briefly describe how some of them should be handled. But even
then, use case writers may have been going astray. What someone considers a big problem might
not be. Just because someone describes a possible exception and how it should be resolved
doesn’t mean it will actually happen. Your design may have successfully sidestepped around the
potential problem.

But that doesn’t relieve you from the responsibility of identifying real problems and
resolving them. As you dig into design, you are likely to identify many exception conditions and
devise ways of handling them. When your solutions are costly or represent compromises, review
them with all who have a stake in your software’s overall reliability. They should weigh in on
your proposed solutions.

It is easy to waste a lot of time considering things that might go wrong, but won’t, or
pondering the merit of partial solutions when there is no easy fix. To not get bogged down,
distinguish between errors and exceptions. Errors are when things are wrong. Errors can result
from malformed data, bad programs or logic errors, or broken hardware. In the face of errors,
there is little than can be done to “fix things up” and proceed. Unless your software is required to
take extraordinary measures, you shouldn’t spend a lot of time designing your software to
recover from them.

On the other hand, exceptions aren’t normal, but they happen and you should design your
software to handle them. This is where the bulk of your energy should go—solving exceptional
conditions. If exceptional conditions have been identified for a use case, how they should be
accommodated may have been as well:

Invalid password entered—After three incorrect attempts, inform the user that access is
denied to the online banking system until he contacts a bank agent and is assigned a new
password.

To translate this into an appropriate design solution you’ll need to assign some object the
responsibility for validating the password; several more are likely to be involved in recovering

from this problem. This is pretty easy—there is nothing difficult or challenging in designing an
object to validate a password or report an error condition to the user.

But wait. Is this an error or an exception? Mistyped passwords are a regular if infrequent
occurrence. We want our software to react to this condition by giving the user a way to recover,
so we view it as an exception, not an error. In fact, most use cases describe exceptions that cause
the software to veer off its “normal” path. Some will be handled deftly and the user will be able
to continue with their original task. These are recoverable exceptions. With others, the user
won’t be able to complete their original task. The use case will end abnormally, but the
application will keep running. From the user’s perspective these are unrecoverable exceptions.
Rarely will use cases mention errors, unless their authors are experienced at describing fault
tolerant software
.

Object Exceptions are Different than Use Case Exceptions
Let’s get one thing clear. Exceptions described in use cases are fundamentally different than

exceptions uncovered in a design. Use case exceptions reflect the inability of an actor or the
system to continue on the same course. Object exceptions reflect the inability of an object to
perform a requested operation. During execution of a single step in a use case scenario,
potentially several use case-level exceptions could happen. However, the execution of a single
use case step could result in thousands of requests between collaborators, any number of which
could cause numerous different object exceptions. There isn’t a one-to-one correspondence
between exception conditions described in use cases and object exceptions. Regardless, we need
to make our application behave responsibly. We also need to make it reasonably handle the many
more exceptional conditions that arise during execution.

Object Exception Basics
An exception condition detected during application execution invariably leads some object

or component to veer off its “normal” path and fail to complete an operation. Depending on your
design, some object may raise an exception, while another object may handle it. By handling an
exception, the system recovers and puts itself into a predictable state. It keeps running reliably
even as it veers off the “normal” path—to an expected but “exceptional” one. Left unhandled,
however, exceptions can lead to system failure, just as unhandled errors do.

It is up to you to decide what to do when an exception condition is encountered. Many
object-oriented programming languages define mechanisms for programmers to declare
exceptions and error conditions, signal their occurrence, and to write and associate exception-
handling code that executes when signaled. Alternatively, you could design an object to detect an
exception condition, and instead of raising an exception, it could return a result indicating that an
exception occurred. Partly it’s a matter of style and largely a matter of implementation language
that determines whether you design your objects to raise exceptions or report exception
conditions. Either design described below would “handle the exception condition” of an invalid
password.

Figure 4. Execution transfers directly to callers’ exception handling code

Figure 5. Caller checking a result for exceptions during the call

The first uses exception facilities in the programming language; the second returns values that
signify an exceptional condition. Both techniques convey the exceptional condition to the client.
Yet another design alternative would to make a service provider smart. It might remember that
an exception condition has occurred and provide an interface for querying this fact.

Let’s look further at what it means to define and use exception facilities in an object-
oriented programming language. When an object detects an exception and signals this condition
to its client, it is said to raise an exception. In the Java programming language, the term is “throw
an exception.” In order to throw a specific exception, a programmer would declare that a
particular type of Throwable object (which contains contextual information) to be sent along
with the exception signal. An object throws an exception by executing a statement:

UserLogin
Controller

Application
Coordinator

login(user, password)

third login attempt raises exception

login(user, password)

one or more of the callers handles the exception

Presentation
Coordinator

<<exception>>
<<exception>>

UserLogin
Controller

Application
Coordinator

login(user, password)
login(user, password)

Presentation
Coordinator

creates and returns description of exception in result

callers read results and handle exception

result

result

if (loginAttempts > MAX_ATTEMPTS) {
throw new LoginAttemptsException();

}

The handler of an exception signal has several options. It could fix things up and then
transfer control to statements immediately following the code that raised the exception
(resumption). Or, it might re-signal the same or a new exception, leaving the responsibility for
handling it to a possibly more knowledgeable object (propagation). In most cases, instead of
grinding to a halt, it is desirable to make progress. This involves a cooperative effort on behalf of
both the object raising the exception, the client sending the exception-causing request, and one or
more objects in the collaboration chain if the requestor chooses not to handle the exception then
and there.

There must be enough information available to an object that takes responsibility for
handling the exception to take a meaningful action. Be aware that when you design an exception
object you can declare information that it will hold. The object that detects the exception
condition when it creates an exception object populates it with this information.

We offer these general guidelines for declaring and handling exceptions:

Avoid declaring lots of different exception classes. The more classes of exceptions you define,
the more cases an exception handler must consider (unless it groups categories of exceptions
together). To keep exception handling code simple, define fewer classes of exceptions and,
design clients to take different actions based on answers supplied by the exception object.

Deep and wide exception class hierarchies are seldom a good idea. They significantly
increase the complexity of a system yet the individual classes are seldom actually used. Compare
the complexity of an IOError class hierarchy with twenty subclasses (probably arranged in some
sub-hierarchy structure) with one I/O error class that knows an error code with twenty possible
values. Most programmers can remember and distinguish 5-7 clearly different exception classes,
but if you give them 20-30 exception classes with similar names and subtle distinctions they will
never be able to remember them all and will have to continually refer back to the system
documentation.

Identify exception classes the same way you identify any other classes— via responsibilities
and collaborations. Unless two exceptions will have really distinct responsibilities or participate
in different types of collaborations they shouldn't need different classes. Outside the world of
exceptions you wouldn't normally create two distinct classes simply to represent two different
state values, so why create multiple exception classes simply to represent different values of an
error code?

A case where it makes sense to have different exception classes would be for FileIOError
and EndOfFile exceptions. Some people might try to treat EndOfFile as a FileIOError but this
wouldn’t be a good design choice. FileIOError represents a truly exceptional and unexpected
occurrence. Its collaborators are likely to have to take drastic actions. EndOfFile is usually an
expected occurrence and its collaborators are likely to respond to it by continuing the normal
operations of the program. Seldom, if ever, do you want to respond in the same way to both of
these exceptions. But you are quite likely to want to respond in an identical manner to all
FileIOErrors.

Name an exception after what went wrong, not who raised it. This makes it easy to associate
the situation with the appropriate action to take. The alternative makes it less clear why the
handler is a performing specific actions. An exception handler may also need to know who
originally raised it (especially if it was delegated upward from a lower-level collaborator), but
this can easily be defined to be included as part of the exception object. In this coding example,
TooManyLoginAttemptsException explains what happened not who threw it:

try {
loginController.login(userName, password);

}
catch (TooManyLoginAttemptsException(e)) {

// handle too many login attempts
}

Recast lower-level exceptions to higher-level ones whenever you raise your abstraction
level. When very low-level exceptions percolate up to a high-level handler, there is little context
for the handler to make informed decisions. Recast an exception whenever you cross from one
level of abstraction to another. This enables exception handlers that are way up a collaboration
chain to make more informed decisions and reports. Not taking this advice can lead your users to
believe that your software is broken, instead of just dealing with unrecoverable errors:

A compiler can run out of disk space during compilation. There isn’t much the compiler
can do in this case except report this condition to the user. But it is far better for the
compiler to report “insufficient disk space to continue compilation” than to report “I/O
error #xxx”. With the latter message, the user may be led to believe there is a bug in the
compiler, rather than insufficient resources which could be corrected by the user. If this
low-level exception were to percolate up to objects that don’t know to interpret this I/O
error exception, it will be hard to present a meaningful error message. To prevent this,
the compiler designers recast low-level exceptions to higher-level ones whenever
subsystem boundaries were crossed.

Provide context along with an exception. What are most important to the exception handler are
what the exception is and any information that aids it in making a more informed response. This
leads to designing exception objects that are rich information holders. Specific information can
be passed along including: values of parameters that caused the exception to be raised, detailed
descriptions, error text, and information that could be used to take corrective action. Some
designers, when recasting exceptions, embed lower level exceptions as well, providing a
complete trace of what went wrong.

Figure 6. Preserving information in “inner exceptions”

Preserve information in “inner exceptions” Assign exception-handling responsibilities to
objects that can make decisions. There are many different ways to “handle” an exception: it
could be logged and rethrown (possibly more than once), until someone takes corrective action.
Who naturally might handle exceptions? As a first line of defense, consider the initial requestor
as the first line of defense. If it knows enough to perform corrective action, then the exception
can be taken care of right away and not be propagated. As a fallback position, it is always
appropriate to pass the buck to some object that takes responsibility for making decisions and
controlling the action. Controllers and objects located within a control center are naturals for
handling exceptions.

Handle exceptions as close to the problem as you can. One object raises an exception, and
somewhere up the collaboration chain another handles it. Sure this works, but it makes your
design harder to understand. It can make it difficult to follow the action if you carry this to
extremes.

Objects that interface to other systems and components often take responsibility for handling
faulty conditions in other systems they interface to, relieving their clients of having to know
about lower-level details and recovery strategies. Objects that play a role of providing a service
often take on added responsibility to handle an exception and retry an alternative means of
accomplishing the request.

Consider returning results instead of raising exceptions. Instead of raising exceptions, you
always can design your exception-taking object to return a result or status that is directly checked
by the requestor. This makes it more obvious who’s got to take at least some responsibility—the
requestor.

UserLogin
Controller

Application
Coordinator

object creates initial exception

login(user, password) TooMany
LoginAttempts

Exception

<<create>>

UserAccess
Exception

<<create>>

original description is preserved in “inner exception”

login(user, password)

<<exception>>

<<exception>>

Exception and Error Handling Strategies
In the case of errors as well as exceptions, it is a matter of how much effort and energy you

want to expend handling them. Highly-fault tolerant systems are designed to respond to take
extraordinary measures. A highly fault tolerant system might recover from programming errors
by running an alternate algorithm, or from a disk suddenly becoming inaccessible by printing
data on an alternate logging device. Most ordinary software would break (gracefully or not,
depending again, on the design and the specific condition).

There are numerous ways to deal with a request that an object can’t handle. Doug Lea, in
Concurrent Programming in Java, poses the question “What would you do if you were asked to
write down a phone number and you didn’t have a pencil?” to explore several options. One
possibility, is what Lea calls unconditional action. In this simple scheme, you’d go through the
motions of writing as if you had a pencil, whether you did or not. Besides looking silly, this is
only acceptable if nobody cares that you fail to complete your task.

Employing this strategy often leads to unpredictable results. In real life, you likely wouldn’t
be so irresponsibility, and your software objects shouldn’t behave this way either. If an object or
component or system that receives a request isn’t in the proper state to handle it, nothing can be
guaranteed. An unconditional act could cause the software to trip up immediately, or worse yet,
to fail later in unpredictable ways. Ouch! There are more acceptable alternatives:

• Inaction—Ignore the request after determining it cannot be correctly performed.
• Balk—Admit failure and return an indication to the requestor (by either raising an

exception or reporting an error condition).
• Guarded suspension—Suspend execution until conditions for correct execution are

established, then try to perform the request.
• Provisional action—Pretend to perform the request, but do not commit to it until success

is guaranteed.
• Recovery—Perform an acceptable alternative.
• Appeal to a higher authority—Ask a human to apply judgment and steer the software to

an acceptable resolution.
• Rollback—Try to proceed, but on failure, undo the effects of a failed action.
• Retry—Repeatedly attempt a failed action after recovering from failed attempts.

These strategies impact the designs of both clients as well as objects fulfilling requests, and,
possibly, other participants in recovery activities. No one strategy is appropriate in every
situation. Inaction is simple but leaves the client uninformed. When an object balks, at least the
requestor knows about the failure and could try an alternative strategy. With guarded suspension,
the object would patiently wait until some other object gave it a pencil (the means by which
someone knows what is needed and supplies it is unspecified).

Provisional action isn’t meaningful in this example, but it makes sense when a request takes
time and can be partially fulfilled in anticipation of it later completing it. Recovery could be as
simple as using an alternate resource—a pen instead of a pencil. Appealing to a higher authority
might mean asking some human who always keeps pencils handy and sharp to write down the
number instead. Rollback doesn’t make much sense in this example, since nothing has been
partially done—unless the pencil breaks in the middle of writing down the number. In this case
the object would throw away the partially written number. Rollback is a common strategy where
either all or nothing is desired and partial results are unacceptable. Retrying makes sense only
when there is a chance of success in the future.

To sum up, there will always be consequences to consider when choosing any recovery
strategy:

“The designer or his client has to choose to what degree and where there shall be failure.
Thus the shape of all designed things is the product of arbitrary choice. If you vary the
terms of your compromise...then you vary the shape of the thing designed. It is quite
impossible for any design to be ‘the logical outcome of the requirements’ simply because
the requirements being in conflict, their logical outcome is an impossibility.”—David Pye

Mixing or combining strategies often leads to more satisfactory results. For example, one object
could attempt to write down the phone number but broadcast a request for a pencil if it fails to
locate one. It might then wait for a certain amount of time. But if no one provided it with one,
ultimately it might ignore the request. Meanwhile, the requestor might wait awhile for
confirmation, and then locate another to write the phone number after waiting a predetermined
period of time. The best strategy isn’t always obvious or satisfying. Compromises don’t always
feel like reasonable solutions—even if they are the best you can do under the circumstances.

Design a solution
So far, we’ve considered strategies for handling failures for a single request. Making larger

responsibilities more reliable can get much more complex. Once you’ve identified a particular
part of your design that you want to make more reliable, think through all the cases that might
cause objects to veer off course. Start simply, then work up to more challenging problems. Given
the nature of design, not all acceptable solutions may seem reasonable at first. You may need
time for a solution to “soak in” before it seems right.

Brainstorm Exception Conditions
Complex software can fail in many, many ways. Even simple software can have many

places where things could go wrong. Thinking through all the ways software might fail is
difficult work. Make a list. Enumerate all the exceptional conditions you can think of for a
specific chunk of system behavior. Whether you are working on your design in support of a use
case, or designing some collaboration deep inside your system, list everything that you
reasonably expect could go wrong. Consider:

• Users behaving incorrectly—entering misinformation or failing to respond within a
particular time

• Invalid information
• Unauthorized requests
• Invalid requests
• Untimely requests
• Time out waiting for a response
• Dropped communications
• Failures due to broken or jammed equipment, such as a printer being unavailable
• Errors in data your software uses including corrupt log files, bad or inconsistent data,

missing files

• Critical performance failures or failure to accomplish some action within a prescribed
time limit

This list is intended to jog your thinking. But be reasonable. If some condition seems highly
improbable...leave it off your list. Put it on another list (the list of exceptions you didn’t design
for). If you know that certain exceptions are common, say so. If you don’t know whether an
exception might occur, put a question mark by it. You may not know what are reasonable and
expected conditions if you are building something for the first time. People and software and
physical resources can cause exceptions. And the deeper you get into design and implementation,
the more exceptions you’ll find.

Limit Your Scope: Pick a Likely Exception and Resolve It. Take exception design in bite-
sized increments. If you’ve already designed your objects to collaborate under normal
conditions, start modestly to make it more reliable. Pick a single exception that everyone agrees
is common enough and you think you know how it should be handled. If you are designing
collaborations for a specific use case, tackle one “unhappy path” situation. What actions should
occur when there are insufficient funds when making an online payment? What if the user blinks
her eyes too rapidly and makes a false selection? What if the file is locked by another
application?

After you’ve decided on what seems a reasonable way to handle that situation, design a
solution using the object-oriented design techniques we’ve described. Minimize or purposefully
ignore certain parts of your design in order to concentrate on those objects who will take
exception, and those who will resolve it. You needn’t reach all the way from the user interface to
the lowest technical service objects. Here is what we consider to be both in and out of scope for
the exceptional case of insufficient funds:

Make A Payment- Insufficient Funds
Assume a well-formed request (no data entry errors)
Ignore backend system bottlenecks
Ignore momentary loss of connections or communication failures (they will be handled by
connection objects in the technical service layer)
Offer the user an opportunity to enter an alternate amount

Determine who should detect an exception and how it should be resolved. Assume that
everything goes according to plan up to the point of where the particular exception you are
considering is detected.

We know the existing backend banking system returns an error code indicating
insufficient funds to our external interface component. Now what?
The backend banking component reports the exception via a Result object to the
FundsTransfer object that is responsible for coordinating the transaction. The
FundsTransfer interprets this as an “unrecoverable exception” which causes it to halt
and return a Result (indicating failure) to the User Session.

Describe additional responsibilities of collaborators. Objects that are service providers,
controllers and coordinators are often charged with exception handling responsibilities.

In the online banking application, the FundsTransferTransaction—a service-
provider/coordinator—coordinates the work of performing a financial transaction. It makes
relatively few decisions, only altering its course when the result is in error. It is responsible for
validating funds transfer information, forwarding the request to the backend banking interface
component, logging successful transaction, and reporting results.

Objects within the application server component are within the same trust region. They
receive untrusted requests from the UI component and collaborate with the backend banking
component (each of those collaborations span another trust boundary). The backend-banking
component interfaces to the backend banking system, a trusted external system that either
handles the request or reports an error. Occasionally, communications between the backend bank
system fail, and then our software must take extraordinary measures.

Objects at the edges of a trust region can either take responsibility for guaranteeing that
incoming requests are well formed, or they can delegate all or part of that responsibility.In the
online banking application, any incoming request from the user component is validated. The
UserSession object receives and validates requests from the UI component, then creates and
delegates the request to specific service providers. When a request to transfer funds is received
from the UI component, a FundsTransferTransaction is created. It has responsibility for
validating the funds transfer information and reacting to errors reported from the backend
system.

As you work through exception handling scenarios assigning additional responsibilities to
collaborators, make sure you consider:

• Who validates information received from untrusted collaborators
• Who detects exceptions
• How exceptions are communicated between collaborators (via raised exceptions or error

results)
• Who recovers from them
• How recovery is accomplished
• Who recovers from failed attempts at recovery
• Who recasts exceptions, or translates them to higher levels of abstraction

Record Exception Handling Policies
Once you’ve decided how to solve one exceptional condition, tackle another. Often you can

leverage earlier work. If you decide that “these type of exceptions” are very similar to “those”
ones, you’ll likely want to handle them consistently. Write down general strategies you will
attempt to follow. Deciding on exception handling policies can save a lot of work:

System Exception Policies
Recoverable software exceptions. These are caught exceptions that do not necessarily
mean an unstable state in the software (corrupt message, time outs, etc.). The strategy to
be followed in these cases is to first log the exception and then try to handle it (if retrying
is likely to succeed). If not, raise the exception so it can be handled (if the caller is within
the same process); or to return an error (if the caller is not within the same process).
Unrecoverable software exceptions. These are caught exceptions that presumably can
lead to an unstable state, like running out of memory or a task being unresponsive. The

response in these cases is to log the cause of the exception and to restart the application
unless the severity there is a “hold&do not restart” indication for that specific condition.

Document Your Exception Handling Designs
You will likely want to beef up existing design documentation with exception handling

details. But don’t pile on details. You can easily make a collaboration story incomprehensible or
a diagram illegible obscuring the main storyline. Instead, draw new diagrams to show how
specific exceptions are handled. Leave existing diagrams alone. Any new diagram will look
nearly identical to the “normal” case, but will include additional details about how an exception
is detected, communicated and dealt with.

Your stakeholders and fellow designers will get a much better sense of your exception
design if you explain it. Describe what exceptions you considered, how each is resolved, and
what you consider to be out of scope:

The online banking application is designed to cover communications failures
encountered during a financial transaction. A full set of single-point failures was
considered. Some double-point failures were explicitly not considered, as they are both
unlikely and covering them adds undue complexity to the processing of transactions.
In each case, the general strategy is to ensure that transaction status is accurately
reflected to the user. Failures in validating information will cause the transaction to fail,
whereas intermittent communications to the external database or to the backend banking
system during the transaction will not cause a transaction to fail.

In our opinion a picture isn’t worth a thousand words and a thousand words doesn’t always
cut it either. If you can find a way to explain concepts and design strategies using a combination
of visual and textual information, you’ll be a more effective communicator. Here is an example
showing key components and objects involved in performing a “prototypical” online banking
transaction. A table that explains what exceptions can occur and their impacts on the user,
accompanies it. Once this multi-media explanation was created, how the software was designed
to react to exceptional conditions was easily communicated.

Figure 8. A “high-level” sequence diagram showing a typical banking transaction

result

:MakePayment
Transaction

UI :Session

performTransaction()
makePayment()

Legacy Server

prepareRequest()

submitRequest()

connect()

disconnect()

logResult()

submitRequest()

result
result

Exception or Error Recovery Action Affect on User

Connection is dropped
between UI and Domain
Server after transaction
request is issued

Transaction continues to
completion. Instead of
notifying user of status,
transaction is just logged. User
will be notified of recent
(unviewed) transaction results
on next login.

User session is terminated…
user could've caused this by
closing his or her browser, or
the system could have failed.
User will be notified of
transaction status the next time
they access the system

Failure to write results of
successful transaction to
domain server log

Administrator is alerted via
console and email alerts.
Transaction information is
temporarily logged to
alternative source. If
connections cannot be re-
established, the system
restricts users to “read only”
and account maintenance
requests until transaction
logging is re-established

User can see an unlogged
transaction in transaction
history constructed from
backend banking query… but
won't have it embellished with
any notes he or she may have
entered

Connection dropped between
domain server and backend
bank access layer after request
is issued

Attempt to re-establish
connection. If this fails after a
configurable number of
retries, transaction results are
logged as “pending” and the
user is informed that the
system is momentarily
unavailable…check in later.
When connections are re-
established, status is acquired
and logged. Further logins are
prevented until backend
access is re-established

User will be logged off with a
notice that system is
temporarily unavailable and
will learn of transaction status
on next login

Backend banking request fails Error condition reported to
user. Transaction fails. Failed
transaction is logged

User receives error
notification but can continue
using online services

Table 1. A table that explains online banking transaction exceptions and their impacts on the
system and its users

Review Your Design for Holes
Even with best intentions, you just can’t spot all the flaws in your work. Have you ever had

that “Aha! moment,” explaining something to someone else. Simply talking about your design
with someone else helps you see things clearly. A fresh perspective will help spot gaps in your
design. The most common bugs in exception handling design, according to Charles Howell and
Gary Veccellio, who analyzed several highly reliable systems, crop up when:

• failing to consider additional exceptions that might arise when writing exception handling
logic. Don’t let your guard down! Any action performed when handling an exception
could cause other exceptions. Often the appropriate solution to this situation is to raise
new exceptions from within the exception handling code.

• mapping error codes to exceptions. At different locations in your design, various objects
may have the responsibility to translate between specific return code values to specific
exceptions. The most common source of error is to incompletely consider the range of
error codes—mapping some, and not all cases. Mapping is often required when different
parts of a system are implemented in different programming languages.

• propagating exceptions to unprepared clients. Unhandled exceptions will continue to
propagate up the collaboration chain until either they are handled by some catchall object,
or left to the run time environment. Designers usually want some graceful exception
reporting or recovery. What they’ll get instead, will be program termination, if clients
aren’t designed to handle an unexpected exception.

• thinking an exception has been handled when it has merely been logged. Exception code
should do something meaningful to get the software back on track. As a first cut, you
may implement a common mechanism to log or report an exception. But this doesn’t
mean it has been handled. You’ve done nothing but report the problem—which is only
slightly more useful than taking no action at all.

In addition to these potential sources of error, look for places where complexity may have
sneaked in:

• redundant validation responsibilities. When you aren’t certain who should take
responsibility, sometimes you put it in several places. There may be different levels of
validation performed by different objects in a collaboration—first checking that the
information is in the right format, next checking that it is consistent with other
information. It is OK to spread these responsibilities between collaborators. But avoid
two different objects performing identical semantic checks.

• unnecessary checks. If you aren’t sure whether some condition should be checked, why
not check anyway? Because it can decrease system performance and give you a false
sense of security. This is an easy trap to fall into. By doing this, you’ve done absolutely
nothing to increase your software’s reliability and are likely to confuse those who will
maintain your design.

• embellished recovery actions. Extra measures at first seem like a good idea... but wait. Is
it really necessary to retry a failed operation, log it, and send email to the system
administrator? Look for where extra measures detract from system performance, make
your system more complex... and on a really bad day could clog up someone’s inbox.

At the end of a review, you should be convinced that your exception handling actions are
reasonable, cost effective and are likely make a difference in your system’s reliability.

Summary
As a first step in increasing reliability, you need to understand the consequences of system

failure. The more critical the consequences, the more effort and energy is justified designing for
reliability. To clarify your thinking, distinguish between exceptions—unlikely conditions that
your software must handle—and errors. Errors are when things are wrong—bad data,
programming errors, logic errors, faulty hardware, broken devices. Most software doesn’t need
to be designed to recover from errors, but can be made more reliable by gracefully handling
common exceptional conditions.

Approaches for improving reliability are rarely cut and dried. The best alternative isn’t
always clear. To decide what appropriate reactions should be taken involves sound engineering
as well as consideration of costs and impacts on the system’s users.

Objects do not work in isolation. To improve system reliability you must improve how
objects work in collaboration. Collaborations can be analyzed for the degree of trust between
collaborators. Within the same trust boundary, objects can assume that exceptions will be
detected and reported, and that responsibilities for checking on conditions and information will
be carried out by the appropriately designated responsible party. In some programming
languages, exceptions can be declared. When an exception is raised, some other object in the
collaboration chain will take responsibility for handling it. An alternative implementation
technique is to return values from calls that can encode exceptional conditions.

When collaborations span trust boundaries, more precautions may need to be taken.
Defensive collaborations—designing objects to take precautions before and after calling on a
collaborator—are expensive and error prone. Every object shouldn’t be tasked with these
responsibilities. When you need to be very precise, define contracts between collaborators.
Bertrand Meyer uses contracts to specify the obligations and benefits of the client and provider
of a service. Spelling out these terms makes it absolutely clear what each object’s responsibilities
are in a given collaboration.

Further reading
Doug Lea has written a very handy book called Concurrent Programming in Java: Design

Principles and Patterns. This book is invaluable, to even non Java programmers. It is packed
with in depth discussions and examples and good design principles. Even if you aren’t building
highly concurrent applications, this book is worth careful study.

Advances in Exception Handling Techniques grew out of a workshop on exception handling
for the 21st century. It is a collection of chapters written by programming language researchers,
database designers, distributed system designers and developers of complex applications and
mission critical systems who share their vision of the current state of the art of exception
handling and design. You will find very readable papers that discuss exceptions from multiple
perspectives.

Bertrand Meyer’s book Object-Oriented Software Construction (Second Edition) is the
definitive work on software engineering using the principle of Design by Contract. It is a
weighty book. But the two chapters, Design by contract: building reliable software, and When

the contract is Broken: exception handling, are a good exposure to the thinking in terms of
preconditions, postconditions, invariants and collaboration contracts.

Henry Petroski talks about the role of failure analysis in successful design in To Engineer is
Human. Software designers clearly don’t understand the laws that govern software failures as
well as structural engineers understand physics and materials. But you can learn many lessons
from this book.

References
Douglas Adams, Mostly Harmless (Hitchhiker’s Guide Series #5), Random House, 1993
Henry Petroski, To Engineer is Human, Vintage Books, 1992
David Pye, The Nature and Aesthetics of Design, Van Nostrand Reinhold Company, 1978
Alistair Cockburn, Agile Software Development, Addison-Wesley, 2002
Alexander Romanovsky, Christophe Dony, Jorgen Lindskov Knudsen, Anand Tripathi, Eds.,
Advances in Exception Handling Techniques, Springer-Verlag, 2001
Doug Lea, Concurrent Programming in Java (tm) Second Edition: Design Principles and
Patterns, Addison-Wesley, 2000
Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, 1997
Charles Howell and Gary Veccellio, “Experiences with Error Handling in Critical Systems” in
Advances in Exception Handling Techniques, Alexander Romanovsky, Christophe Dony, Jorgen
Lindskov Knudsen, Anand Tripathi, Eds., Springer-Verlag, 2001

