
0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E November/December 2009 I E E E S O F T W A R E 9

E d i t o r : R e b e c c a J . W i r f s - B r o c k ! W i r f s - B r o c k A s s o c i a t e s ! r e b e c c a @ w i r f s - b r o c k . c o m

design

S uccessful software systems often live far
longer than their original designers an-
ticipated. And over their lifetime, most
of those systems evolve. Developers who
make modi!cations, !x bugs, and add new
features to long-lived systems have an easier

time of it if they keep the code base habitable (“Cre-
ating Sustainable Designs,” Rebecca Wirfs-Brock,

IEEE Software, May/June 2009)
and preserve design integrity. But
even so, maintenance can be pain-
ful when new requirements invali-
date initial design assumptions.
Given that we can’t anticipate the
design impact of every future re-
quirement, is it enough to keep
our code clean and our designs
well factored? Or should we be
doing something more?

Support Design Variability
Most complex systems support a fair amount of
variability from the start. Some systems support
those variations poorly—they’re rife with cut-copy-
and-paste reuse and overly complex code. Condi-
tional checks and hard-coded constants are com-
mon. The code is as uninspired as its designers
were. As a consequence, the implementation may
support a high degree of variation, but the design is
accidental or chaotic. The system squeaks by with
in"exible, dif!cult-to-change code.

A more "exible design would have fewer hard-
wired assumptions, !xed values, and duplicated
code. It might have been refactored and revised
numerous times to accommodate shifting design
concerns. Most likely, it was initially designed to be
testable and it continues to be tested. Initially, ab-

stractions may have been identi!ed, but they too
have been reworked and revised. The current de-
sign is coherent because of its revisionist designers.

Flexible design is the byproduct of preparation
and continued attention to detail. Where there’s a
lot of variability in a design problem, a "exible solu-
tion will incorporate appropriate design hooks that
allow for developers to predictably add planned
extensions. Once they’ve established ways to sup-
port speci!c variations, developers can follow pre-
de!ned extension recipes rather than hacking in
new features that are similar to existing ones.

Extremely "exible designs, however, can be un-
necessarily complex. If you don’t watch out, soft-
ware that’s too cleverly designed ends up with a pile
of complexity that’s rarely used but must be under-
stood in order to maintain the system. Extending
such a design can involve making many error-prone
steps. Yet even elegantly crafted "exible designs can
have steep learning curves. New developers need to
be taught the right way to make changes and ex-
tensions. They need to learn design idioms. Coding
conventions need to be enforced.

Joshua Kerievsky, in Refactoring to Patterns,
offers advice on how to avoid overly complex solu-
tions: “Patterns are a cornerstone of object-oriented
design, while test-!rst programming and merciless
refactoring are cornerstones of evolutionary design.
To stop over- or under-engineering, balance these
practices and evolve only what you need.”

OK. We all know we shouldn’t create elaborate
solutions when simpler, adequate solutions suf!ce.
And we should refactor our design when we’re
faced with changing requirements. But how can
you know whether you’re evolving a design along
reasonable dimensions? Is agile development the
answer? Agile development processes embrace the

Rebecca J. Wirfs-Brock

“One must always be aware, to notice even though the cost of noticing is to become responsible.”
 —Thylias Moss

The Responsible Designer

10 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

DESIGN

notion of making decisions at the last re-
sponsible moment.

On agile projects, just-in-time require-
ments drive incremental development. As
a consequence, design activities are short
and focused on the current iteration. You
design to meet current requirements and
don’t have time to over-design.

Indeed, agile development can be a
heady experience when you’re fed a steady
stream of right-sized requirements. If you’re
so lucky, you can be extremely productive.
You don’t fret about tomorrow’s problems;
instead you solve the problems of the day.
You get to focus on simple design and clean
code. Frequent, timely feedback gives you
insights into the next problem you tackle.
You work closely with others. Nobody
goes off and does cowboy coding or clan-
destine design.

But agile development isn’t always a de-
signer’s paradise, as Joe Yoder and Brian
Foote pointed out in their Agile 2009 con-
ference debate, “Big Balls of Mud: Is This
the Best that Agile Can Do?” Agile prac-
tices, if followed naively, can lead to system
decay (also known as big balls of mud; see
their original big balls of mud pattern at
www.laputan.org/mud). Lack of any up-
front design can lead to muddled design.
Continuously evolving a software archi-
tecture can prove expensive. Piecemeal
growth can be haphazard and lead to less
than optimal designs. Late changes to re-
quirements can cause signi!cant design
churn.

It seems obvious, but it’s worth stat-
ing: no development process can eliminate
disruptions caused by signi!cant require-
ments changes. When your design context
changes, of course you need to rethink
earlier decisions. One myth that should
be dispelled about agile design is that it al-
ways happens just in time at the keyboard
with no upfront planning or thought about
design. That may make for a sensational
story, but it’s only common when you’ve
already !gured out the hard bits. If your
development tasks are predictable and rou-
tine, well then, you don’t need to spend a
lot of time thinking about your design.
Your primary job is to produce working
code and keep it clean. But when tackling a
new and challenging design problem, even
agile designers take time to explore their
options—especially if there’s great risk or
uncertainty. It’s the responsible thing to do.

Flexibly Support
Core Variations
But given the shifting design context that
many of us live with, whether we work
on agile projects or not, what can we do
to better support variability that’s inher-
ent in most software? James Coplien wrote
about commonality-variability analysis
in his PhD thesis and in “Commonality
and Variability in Software Engineering”
(IEEE Software, Nov./Dec. 1998).

The !rst three steps of commonality-
variability analysis aren’t strictly about
design. Instead they characterize the vari-
ability that your software needs to sup-
port. These activities set you up to make
more informed design decisions. Ideally,
you should do this for core areas of soft-
ware functionality that have signi!cant
impact. You start by asking what func-
tions will change over time or work dif-
ferently because of certain known condi-
tions. A list of points of variation, or hot
spots, can focus your efforts. Each hot
spot becomes a separate design problem.

Coplien outlines these steps for analyz-
ing and then solving the design for a hot
spot:

 1. Establish the scope of the variation—
how much of the design will you
consider?

 2. Identify what’s common and what
varies.

 3. Bound the degree of variability the de-
sign solution will support. Place spe-
ci!c limits on how much variation it
can support. Explain those limits.

 4. Exploit commonalities in a design solu-
tion; while

 5. Accommodating the variability.

Ideally, you should do this analysis col-
laboratively with business decision-makers
having relevant domain expertise. This is
especially important if you anticipate elabo-
rate or costly design solutions. Experienced
designers often spot potential variations
that business experts might not. If we soft-
ware designers work collaboratively with
business decision-makers, we can jointly
determine whether potential points of vari-
ability are real and meaningful to the busi-
ness, or just byproducts of our highly tuned
abstraction skills. If they’re important, then
we should pay extra attention.

James Taylor, in “Using Business Rules

in Stable, Core Processes” (http://jtonedm.
com/2009/09/03/using-busines-rules-in-
stable-core-processes) distinguishes be-
tween core business processes that are
stable and predictable, from those at the
business’s edges where change is the norm
and business processes and rules seemingly
never settle down. Whether you design IT
software or embedded systems, it makes
sense to focus on crafting "exible solutions
for the known, stable parts. The other
parts may be important, but their design
constraints will keep changing and evolv-
ing. It may be good enough to keep the
code habitable.

Fortunately, you can apply everything
you’ve learned about good design to creat-
ing a "exible design solution. However, it
requires extra effort. You may need to:

 ! refactor, isolate, encapsulate, and redis-
tribute responsibilities;

 ! design places where behavior can be
“tuned” or replaced;

 ! use factoring strategies and known
patterns;

 ! design con!gurable behavior and data;
 ! apply inheritance when variations are
relatively few and static, or choose
composition when variations are many
or need to change at runtime;

 ! de!ne interfaces that can be imple-
mented by different classes; and

 ! enable dynamic con!guration of sys-
tem behavior.

When you propose a "exible design so-
lution, it’s reasonable to state your design’s
limitations. Flexibility always has limits. A
well-designed, "exible solution encapsu-
lates known variable aspects and provides
mechanisms that adequately support ex-
pected changes and adaptations.

I dentifying “just enough” "exibility is
a key design skill. And at the end of
the day, a responsible designer should

strive to make informed decisions about
what’s an appropriate amount of design
"exibility.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates. Contact her at rebecca@wirfs-brock.com; www.
wirfs-brock.com.

